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On the Differential Algebra Underlying the
COSY INFINITY Computer Code Due to M. Berz

V. Garczynski

Accelerator Development Department
Brookhaven National Laboratory

Upton, NY 11973, USA

The mathematical foundations of the differential algebraic approach
to beam optics, due to M. Berz, are described. They are simplified by
identifying the underlying algebraic structure with the well known algebra
of truncated polynomials. Concrete examples of derivations in this algebra,

consistent with the truncation operation, are given.

1. Introduction

There are effective methods for solving systems of differential equations, to any order

in Zi,1_4

' =F(z,6), (6 — parameters)
(1.1)
z(s;) = z.
Here z can be a multidimensional vector like, that used in particle beam optics, for example.
The solution of this problem can be stated as a mapping between the initial variables

zi = z(si), and the final ones zp=z (3f)
2= M (21,6), (12)

The map M is of particular interest for accelerator physics as it contains important in-
formation about various characteristics of a given ring, (nonlinearities, dependence on
external parameters §), and can be used for fast tracking over many turns. The Taylor

expansion coefficients of the map, the derivates, more exactly

% 8* M
az}”f = Wa k= 1723 ceey 1, (13)

=



2 Introduction

yield the transfer matrix if ¥ = 1, and the higher-order aberrations, if ¥ > 1. The
corresponding derivatives of M with the respect to the parameters § are called sensitivities
of a particle beam optics system.

It is known! that it is possible to determine derivatives of a given regular function f (z)
of a real variable z, through a given order n, by evaluating the function in the algebra
containing elements of the form

A = (ao,ai1,...,a,) — generic element,
e=(1,0,0,...,0) — unit element, (1.4)
d=(0,1,0,...,0) — a differential.

More exactly, the following formula holds

f@e+d)=[f(@),f @), (), O ()], (15)

which yields the Taylor expansion of the function f around the point z. This permits to

avoid using the definition of derivative as a (computer inconvenient) limit

lim f(z+ Az)— f(2)
Az — 0 Az '

f'(z) = (1.6)

Moreover, the subsequent elements of the array (1.5) can be easily implemented on a
computer, and evaluate in parallel. All that is needed here are rules for the addition,
multiplication by a number, and multiplication rules for the (n 4 1)-tupoles A of real
numbers, to which the evaluation of the left-hand side of the formula (1.5) reduces once the
function f () is given. We will describe this, what is called, the arithmetic of differentiation
shortly. It turns out that the algebra D of (n + 1)-tupoles is a commutative algebra.’ It is
also a differentiable algebra® because it admits derivations. This means that it is possible

to define some linear operations 9, acting on the (r + 1)-tupoles
9:A— 04, (1.7)
and such that the Leibnitz rule is satisfied
8(A-B)=(A)-B+ A-0B. (1.8)

Essentially this kind of approach to the particle optics, but in a somewhat different

formulation, which refers to, so called, Non-Standard Analysis, was recently employed and
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developed in a series of papers by Berz.”® His formulation culminated in the computer code
package — COSY INFINITY — which can handle aberrations of any order in seemingly any
optical system.’

We shall describe here the simplest, in our opinion, formulation of the basic assump-
tions and rules of this approach. It turns out that the algebra involved is the familiar
truncated polynomial algebra.’ Also, we will explain how the derivations in the algebra,
D can be introduced in order to remove the confusion on this point in some of the Berz
papers (cf., e.g.” formulae (20) and (21)). The operations 8 proposed there are not deriva-
tions, contrary to what is asserted, they do not satisfy the Leibnitz rule. It seems. that
suitable verification of the COSY INFINITY code, in its differential algebraic routines,
will be required. Besides, this would be a kind of an embarrassment since the very name
“differential” is justified only when the algebra does admit some derivations.

We start with, and consider it in great detail, the simplest possible case of n = 1
and z being a real number, and the generalize the construction to an arbitrary order n
and any amount of the independent variables. We borrow freely, both from the mathe-
matical literature,! 5 and from Berz’s works”—® while keeping the same unifying approach
throughout the paper. Originality rests on our treatment of the derivations and on stress-
ing the main role of the truncated polynomial algebra as the underlying concept of the
whole differential algebraic approach. The author has endeavored to make the treatment

as simple as possible while maintaining the necessary mathematical rigor.
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2. The Algebra D (1,1)

Suppose that one is interested only in the linear approximation to a differentiable

function a(z) of a single variable z € R, then
a(z)=ap+arz+---, (2.1)

(z always within a region of convergence). Thus the function is completely characterized

by its two lowest order Taylor coefficients ag = a (0), a; = o' (0), forming an ordered pair
A =(ag,a1) € D(1,1). (2.2)

One may restore the function, up to the linear terms, as a scalar product
a(z)=(A4,X)+---, (2.3)

where the vector X is of the form

X =(1,2). (24)

Hence, the vector A describes the whole equivalence class of functions having the same
Taylor expansion through the first order, around z = 0.
The elementary operations on the differentiable functions, expanded through the first

order around the origin,

1° Scalar multiplication :
Aa(z) = Aao + Aaiz + - -+, X — real number, (2.5)
2° Addition :

a(x)+b(z)=ao+bo+ (a1 +b)z+--- (2.6)
3° Multiplication :

a(z)b(z) =0b(z)a(x) = aoby + (aghy + arbp)z + - -- (2.7)
4° Division :

a(w)_ao—l—alx—}—---_ao a1by — aghy

b($)_b0+b1$+—b0 bg s ’ bO%O, (2‘8)

induce the following operations on the set D (1,1) of ordered pairs:
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1° XA = X(ao,a1) = (Aag, \a1) , A — real number, (2.9)

2° A4+ B= (ao,a1)+(bo,b1) =(a0+bo,a1+b1), (2.10)

3° A-B= (ao,al) . (bo, bl) = (aobo,aobl + albo) =B- A, (211)
A (ag, al) ap alb() - agbl

4° = = ==, ——= b . 2.12
B~ (bo,b1) \b' 0 b #0 (212)

Multiplication is distributive across addition
A-(B+C)=A-B+A.C. (2.13)

Hence, the set D(1,1) is a commutative algebra® which is isomorphic to the algebra, of
truncated first-order polynomials. It is also a differential algebra since a derivation in

D(1,1) can be found. Namely, the operation 8 defined as follows
0A = 0(ag,a1) = (0,0a1) (2.14)
satisfies the Leibnitz rule (due to the multiplication rule 3°),
0(A-B)=(0A)-B+ A-0B. (2.15)

Notice that this derivation corresponds to the following differential operation on the func-

tions
d
D = le_a—z’ (2.16)
where
Da(z)=ajx+---=(0A-X)+---, (2.17)

the simple differentiation operation % does not lead to a derivation in D (1, 1) when applied

in a naive way

d
%a(m) =ap -, (2.18)

with the corresponding operation on the algebra D (1,1) given by the equality

8(a0, al) = (al, 0) y (2.19)
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as it does not satisfy the Leibnitz rule. In order to produce a derivation in D(1,1),
the differential operation D, must respect the division on the linear part and the higher-
order terms which are neglected. This is not the case for simple differentiation % which
produces linear term out of the neglected quadratic terms. These and higher-order terms
compose what is called an ideal I;. Any linear combination of the neglected terms is also
of higher-order in z. The product of any function a(z) with any term from the set I;
yields an element from the set Iy, again, viz., o(z) + o(z) = o(z), and a(z)o(z) = o(z).
These properties are essential for mathematical correctness of the definition of the algebra
D (1,1).

The Taylor expansion (2.1) can be written as
a(2) = (4, X) +a(s), (2.20)

where a(z) belongs to the ideal I;. Omission of the second and of the higher- order
terms can also be viewed as the truncation operation T, which yields the pure first-order
polynomial,

Ti{a(z)} =ap+ a1z = (4,X). (2.21)

The correct differential operation D which induces a derivation on D (1,1) must respect
the division (2.20) of a function a(z) onto the first-order polynomial and an element from

the ideal I;. More exactly, the following condition must be satisfied
Ty {DL}=0. (2.22)

This says that the derivation D does not produce linear terms out of the neglected terms
belonging to the ideal I;. However, it may produce higher order terms when acting on
first-order polynomials. The algebra of truncated polynomials D (1,1) can be viewed as
a quotient algebra of differentiable functions, D (R), over the ideal I, viz., D(1,1) ~
D(R) /L.

2.1 Special Elements: Zero, Unit Element and a Differential

Notice, that the elements

0=(0,0), e=(1,0)— unit element, (2.23)
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are neutral elements with the respect of addition and multiplication, respectively
A+0=A4, A-e=A (2.24)
Another special element, d, has non-zero entry on the second place
d=(0,1), a differential. (2.25)
It is nilpotent element of the algebra D (1,1), i.e.,
d* =0. (2.26)
Notice that for any real number r € R one can find an element in the algebra D (1,1)
r—re=(r,0), (2.27)

and this element can be considered as an extension of r to the algebra. This comes about

because of the property that demonstrates the consistency of the extension procedure
rA =r(ag,a1) = (rag,ra;) = (r,0) - (ag,a1). (2.28)
Any element of the algebra can be decomposed as follows
A = (ag,a1) = (ag,0) +(0,a1) = age + a1d = Tha(d) = a(d). (2.29)

In the last expression it is assumed that the scalar appearing in a(z) is replaced by its

extension, age, to the algebra.

2.2 Ordering on D(1,1)

A consistent ordering can be defined on D (1,1) as follows: We say that the element

A is smaller then element B,
A<B ifay<by, orifapy=10y and a1 <by, (2.30)
and similarly for A > B. Two elements A, B are equal

A=B ifag=0by and aj=b;. (2.31)
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Hence, the first components, when not equal, decide which of the two elements is larger.
Only when they coincide do we compare the second components. The ordering has all the

natural properties. In particular if

A < B,
then for any C
A+C<B+C,
and, for C >0
A-C<B-C.

A consequence of the ordering is that the algebra D (1, 1) contains infinitely small elements

since, for any real A > 0

O0< Ad< (ao,al) , if ag 75 0. (232)

This justifies the name of element d, differential, which is smaller than any number (having

non-zero first component). Infinitely small elements
(0,a1) € D(1,1), (2.33)

form an ideal in D (1,1), which we denote Jy, i.e.,

1° (Oaal) + (07 bl) = (07 aj + bl) € Jy,
2° a-(0,b1) = (0,a9-b1) € Jp, forany A€ D(1,1).

An absolute value of A can be defined as follows

A, A>0
4] = {_A7 4<o. (2.34)
It has all the usual properties
|A- B| =14]-|B|,
|A+ B| < |A] +1B, (2.35)

|A| =0, if, and only if A =0.

Having the norm one may consider sequences {A,;n = 1,2,.. .} of elements from

D (1,1) which are Cauchy-convergent to some limits.
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2.3 Functions on D (1,1)
One can extend a real function f (z) on R to a function on D (1,1) as follows
f(z) = f(ze+ hd), (2.36)
where every constant ¢ appearing in f(z) is replaced by its extension to the algebra
c— (c,0). (2.37)

Expanding into the Taylor series yields
f(ze+ hd) = f (ze) + hf' (ze)d =
=f(z)e+hf (z)d= (2.38)
= [f(2),hf' (a)] .

Examples:
1° exp(A) = exp(ag,a1) =

= exp (age + a1d)
= [exp (o), a1 exp (ap))
— exp (an) - (1, a1).
ai
2° InA=In(ap,a1) = <lna0, —) .
ag
3° sin(A) =sin(ag,a1) = [sin(ag), a1 cos (ag)] .
0 -1 -1 -1 ay
4° tan™ A =tan"" (ap,a1) = [tan (ao)’m] .

1 1 1
o Al S S
5 (a0, a1) age + a1d aoel—{—Z—éd

=—1—e(1—a—1d> =le——c%d

ap ag ag

_ (L _m) |
_ (ao, ag) a0 £0.
6° VA=+/(ag,a1) = Vage +ard = \/‘1—06\/1+%d
al al
7 fog(A)= fog(ag,a1) = fo[g(ao),a1g (a)] =
= [fog (a0),a19' (a0) f'og (ao)] ,
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where fog is the composition of two functions f and g, i.e., (fog) (z) = 7 [g (z))].
8 f(z)= —— +a?

e @D+an

(13 s (32)

= [f(1)7f,(1)] .

3. A Generalization to Higher-Orders: The Algebra D (n,1)

The scheme admits an immediate generalization to higher orders which we shall briefly
outline. Let a(z) be an infinitely differentiable function of a real variable z, having the

Taylor expansion around the origin

z
a(a:)—ag+a11'+ --—i—anm—i—---, (3.1)
where

akza(k)(O), k=0,1,...,n,

and the neglected higher order terms form an ideal I,.
Lfet T, denote the truncation operation which preserves the terms through the n-th

order . .
T
Ty a(@)} = Y mr = (4,%), (3.2)
k=0 )
where the vector X is

T z"
X (1), o5

while the vector A, consisting of the coefficients ag, describe the whole equivalence class

of functions having the same Taylor expansion through the n-th order
A =(ag,a1,...,a,) € D(n,1). (3.4)
The arithmetics rule on D (n, 1) are:
1 XA = (Xag,Aa1,..., ay), A —real number,

2° A+ B={(ag+bo,a1+b1,...,an+by),
3% A-B=B-A=C = (co,c1,.--,¢n),
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where

a;b;
— 1] ot
cr = k! Z AR (3.5)
0<2,5<n
(1+5=k)
The above rules correspond to the multiplication by a scalar, addition and multiplication

of the relevant truncated Taylor expansions:
To{)a(2)} = (M4, X), (3.6)
To{a(z)+0b(z)} =(4,X)+(B,X)=(A+B,X), (3.7
T {a(2) ()} = Tu {I(4, X) + a ()] [(B, X) + B ()]}
=Th{(4,X)(B,X)}=(A-B,X)=(B-A4,X)=
=(C,X). (3.8)
This follows because the « and ( belong to the ideal I,. Hence, the set D(n,1) is a
commutative algebra. This is also a differentiable algebra as it admits derivations. More
precisely, every derivation D defined in the algebra of differentiable functions, such that
T.{DI,} =0, (3.9)
induces corresponding derivation & on the algebra D (n,1) according to the formula
T.{(A,DX)} = (04, X). (3.10)
For a proof, see Appendix A. Comparing the coeflicients at equal powers of z on both sides

of this equality one finds all the components (04);, k =0,1,...,n.

Examples: The expressions

d
Dazxag—, a=1,2,...,n, (3.11)
z

define the derivations on the algebra of differentiable functions, satisfying the condition
(3.9). The corresponding induced derivations d, on the algebra D (n, 1) are obtained from
the formula (3.10),

k! >
(0o A) = { el b=ty 2 (3.12)
0, k<a.

One sees from it that for &« > n + 1 the derivations become trivial, transforming every

element to zero. One gets more derivations by taking linear combinations of the J,’s

8= Xala, (3.13)
a=1

where the A\, are arbitrary real numbers.
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3.1 Special Elements: Zero, Unit Element and Differentials

One has obviously:

0=(0,0,...,0), zero element, (3.14)
e =(1,0,...,0), unit element, (3.15)
0—th place
and
di =(0,1,...,0) =d, 1-st differential, (3.16)
1—st place
and
dr =(0,0,...,1,...,0), k-th differential, (3.17)
—th place
and
dn = (0,0,...,1), n-th differential. (3.18)
n—th place

It follows from the multiplication rule of the algebra that

& =k\dy, k=1,2,...,n, (3.19)
and

"l =0, (3.20)

Any element of the algebra D (n,1) can be decomposed as a linear combination of the

unit element and the differentials d,

A =(ap,a1,...,a,) = (ap,0,...,0)+
+(O,a1,...,0)+
+(0,0,...,a,...,0)+

+(0,0,...,a,) = (3.21)
=age+ardi + -+ + andy =Zakdk =
k=0
n dk
=Y ay7 = a(d) (3.22)
k=0

where inside of a(d), the zero element, ag, is replaced by its extension age to the algebra.
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3.2 Ordering on D (n,1)

We define an ordering on D (n,1) in a similar fashion as on the D (1,1) algebra,

A>B if ag > bg,or
if ag =bg, if ay > by,or (3.23)
if ag = by, a1 = b1, and if ag > by, ete.

A=DB ifar=0; k=0,1,...,n. (3.24)
The differentials of various orders satisfy the relations
Xoe>Ady > > Mdyy >0 > Andn (3.25)

for any real positive numbers Ag, Ay, ..., Ap.
Elements of the algebra, generated by the set of differentials (dj,djq1,...,dp) form the
ideal J; in D (n, 1)

n

dadre Ji, j=1,...,n. (3.26)

k=j

The following inclusion relations hold
D(n,1)DJ1DJ3D-D Jy. (3.27)

3.3 Functions on D (n,1)

An extension of a function f (z) on R to the algebra D (n,1) can be done in the same
way as before. One replaces all constants, ¢, appearing in f by ce and Taylor expands the

expression:

f(ze+hd) = f(ze) + f' (ze) hd + - - - + F™) (ze) h"d,,

(3.28)
For h = 1 one recovers the formula (1.5).
Similarly one defines the function f on a general element of the algebra,
f(ze+hidy + - + hydy), (3.29)

by expanding into a Taylor series and using the formula (3.16)-(3.20).
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Examples:
| 1° exp(A)=-exp(ao,a1,..-,an) =
= exp [(a0,0,...,0) 4+ (0,a1,...,a,)] =

= exp (aoe)exp (0,a1,...,an) =

n
1 k
:eXP(GO)ZF(O,Gl,---,Gn) .
k=0

A finite number of steps is required to calculate the exponential. The same is true in

general since dg"’l =0,k=1,2,...,n.

2° log(A)=1log(ag,a1,...,an) =

~ log [ao (1261_)] _
ag agp

_ A
gt o (02, 2]

_ it AU N
= [log (ap)] e + log [e + (0, o ao)]
n . k
~ iy lfpa
=fog(an)e + 1 L (0,2, 58] e >0

1
- ape + (0,a1,...,a,)

3° A—l = (ao,al, N ,an)—l

_ 1 1 _
a061+<0,%’...7%)
_ 1 2 n+l in
_a06[1 b+b +(=1) b],
bz(@,ﬂ,.--,“—”), " = 0, ag # 0.
ag ag

4° VA= \/(ao,al,...,an)= \/aoe—l—(O,al,...,an)
=+ /apeV1+b=

- 113...(2k—-1
= \/ELT]-@ (1 + Z(—-l)k 1 2’Ek‘ )bk> , Qg > 0.
k=1

where element b of the previous example, appears again.
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4. A Generalization to Two Independent Variables: The Algebra
D(2,2)

Let us now consider differentiable functions of two independent variables z and y, and

expand them to the second order around the origin

T y $2 y2
a(z,y) =ao + a107y + @01y +aze gy +anzy +angy +eo (4.1)
where ag, k,1 = 0,1,2 are partial derivatives of a(z,y) calculated at the origin. We would
like to relabel them as aj, j =0,1,2,...,5. For this some ordering of the basic monomials

in the expansion will be needed:’

Monomial its position a factor

My=1 I = =1

My =z I,=1 =1

My =y I, =2 F,=1
(4.2)

M; = z? I:= F3 = 2!

My =2y I, =4 Fy=1

.7\/,[5:y2 Iy2:5 F5=2'

The function a(z,y) can be written as follows
°L M
a(may):ZGLE+Z(A7X)+a (43)
k=0
where
r y 22z y y?

A:(a07a17"'7a5)7 X = 171?7?[757?,1'!'3—2_!_ ’ (44)

and where the neglected terms are of the third and higher orders in z,y. They form an
ideal Iy in the algebra D (Rz) of all differentiable functions of two variables.
Multiplying two functions of this type, and truncating at the second-order, one finds

the multiplication rules

a(a:,y)-b(a:,y) = (A'BaX)+"' =(C, X))+ = c(z,y);
where

C=A-B=B-A (4.5)
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and
Co = apby,

C1 = apby + ay by,
C2 = agbs + azby,

(4.6)
C3 = 2(aoh3/2 + a1bi + asby/2),
Cy = agbs + a1by + azby + ayby,
Cs =2 (aobs/2 + azby + asb/2) .
There are two special elements, the differentials, besides the unit element
e=(1,0,0,0,0,0), (4.7)
dr =(0,1,0,0,0,0), (4.8)
dy =(0,0,1,0,0,0). (4.9)
They have the properties
dz -dr =(0,0,0,2,0,0),
dz - dy = (0,0,0,0,1,0), (4.10)
dy - dy =(0,0,0,0,0,2),
and
de-dr-de=dz-de-dy=dz-dy -dy=dy-dy-dy=0. (4.11)
Evaluating the expression
a(ze+dz, ye +dy), (4.12)

where all the constants in a (z,y) are assumed to be extended to the algebra, one finds the

result

2 2 2
da Oa 8%a 0% 8a>(x,y)- (4.13)

a(me+d$7 y6+dy) = (‘%5‘53@’ o522’ 3m8y’ ayay

Exarriples: a(z,y)=z+y*+3

ze +dz = (2,1,0,0,0,0),
y6+dy = (y,O,l,0,0,0),
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Let =1, y = 2 then one gets

a(e+dz,2e + dy) = (1,1,0,0,0,0) + (2,0,1,0,0,0)>
+(3,0,0,0,0,0) =
=(4,1,0,0,0,0) + (4,0,4,0,0,2) =
= (8,1,4,0,0,2)

which agrees with the easily verifiable results

a(1,2)=8,  Oa(1,2)=1,  8ya(l,2)=4,
0%a(1,2)=0, %a(1,2)=0, 0%a(1,2)=2.

17

Possible derivations on the algebra D (2,2) are induced by the following derivations on

the algebra of all differentiable functions, and their linear combinations

Dy = x0;, Dy = 11,'263;, D3 = zy0y,
Dy = y0Oy, Dy = yidy, D¢ = xy0y.

For instance, the first derivation D, acts on a(z,y) as follows

Dla(way):(AaDlX)+:(87A7X)+ :a1m+a3:c2—|—a4my+--- .

Thus the induced derivation on the algebra D (2,2) is given by the formula
01 (ag, a1, a2, 03, as, a5) = (0, 41,0, 2a3, a4,0).
Similérly, for the D, derivation one finds
Dya(z,y) = ayz’ + - - -,
which means that the induced derivation 8, acts as follows

62 (a07a17 az,ag, aq, CL5) - (O, 07 0,201, 07 O) .

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

As an example of an application of the D (2,2) algebra we consider a midplane motion

in a 90° homogeneous bending magnet,” as shown in Fig. 1.
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Figure 1.
Denoting
a;=L2 =sin a;, (4.19)
p .
and
Pz . V
af = S| =smer (4.20)
7
one finds the following relations
Astinai=Ra,,~=R+xf—Rcosaf, (4.21)

and
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B = Rsinay = —Ray = R+ z; — Rcos a;.

We find the following expressions for the z and af from here

p=A-R(l1—cosa) =A—R(1-,/1-a2),
af=—%=cosai—-%—1:“1—-613—%—1,

. 57 1/2
rf=A—-RJ{1— {1—(\/1—a?—~%—1) ]

and

and finally we get
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(4.22)

(4.23)

(4.24)

(4.25)

Evaluating this map in the algebra D (2,2) spanned by the variables z and a we get all

the derivatives of z¢, ay with the respect to z;, a;.

Identifying @; with dz and a; with dy we get using the multiplication rules (4.6) we get

Ty = (07 170307070)a
a; = (0,0,0,1,0,0,0),
A = Ra; =(0,0,R,0,0,0).
Evaluating the square root we get

B=R[1——(1—ai)1/2] +z;=

=R [1— <1 —lazz)} + z; =mi+—;—Ra?,

2
= (O’ 1707 07 07 R)7

since_

af = (0,0,0,0,0,2),
and

a? =0
Further, we get

B 1
af = 7 = (O, _E’O’ 0, O,—l) ,

and similarly we get the result

(4.26)
(4.27)
(4.28)

(4.29)

(4.30)

(4.31)
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1
zf=A—Sa} = (0,0,R, ~50 0) , (4.32)

which, according to the formula (4.13) yields the respective derivatives at z; = 0, a; = 0.

5. Generalization to Higher-Orders, & Arbitrary Number of Inde-
pendent Variables: The Algebra D (n,v)

We shall now describe the most general case of differentiable functions of  independent
real variables z3, £ = 1,...,v having Taylor expansions through the n-th order

a(zy,...,zj)=ap+arzy +...+ayzy +...+

iy
Ty ...

+ay. g, = (A, X)) (5.1)
21!...7,,,!
(il-l—...i,,:n).

The neglected terms, of order higher then n, form an ideal I,. The number, N (nv), of

basic monomials appearing in this expansion is given by the formula,’ (cf. Appendix B),

(”nfy’!’)! = dim (X) = dim (4). (5.2)

N (n,v) =

Let us assume that all NV (n, ) monomials are arranged in a certain order. For each

monomial M we call Ijs its position according to the assumed ordering
My < Iy, (5.3)
Conversely, to each Ips we assign the corresponding monomial

Iy — My =2 - gy, (5.4)

14

and the factor

Fr=iyl.. il (5.5)

Hence, we may write the expansion (4.1) as follows

M.
a(azl,...,m,,)zz:afﬁ--{—---. (5.6)
I

The usual operations on the differentiable functions, supplemented by the truncation op-

eration T, at the n-th order polynomials transforms into the algebraic operations on the
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N -tﬁpoles formed by the coefficients ay,

A= (ap,a1,...,an—-1), (5.7)

1° A+B=(a0+b07"'7aN—1+bN—1)3 (58)

2 AA=(\ag,..., Aan_1), (5.9)

3 A-B=B-A=C(,

ib;

Cy = F, Ifi = (5.10)
0<i,j<N—1 " ¥
(M, = M; - ;)

Thus we get the commutative algebra D (nv) which is isomorphic to the algebra of trun-
cated polynomials.

As before, one distinguishes special elements
e=(1,0,...,0), wunit element,
d1=(0,1,...,0) = dxzq differentials corresponding

dy = (0,0,...,1,...,0) = dz, } to the independent variables

................

dy-1=(0,0,...,1), (N —1)-th differential,

through which one may express a generic element of the algebra,

A = (ap,a,... yAN—-1) = ape +aidy + -+ ayd, + -+ + an—_1dy_1 (5.11)

Also, one finds using (4.10) that the differentials are nilpotent

V=0, k=1,... N—1. (5.12)
One may extend a function f(x1,...,z,) to the algebra D (n,v) as follows
f(zie+dzy,...,zpe +dz,) = VLV D) (21,0 ,2), (5.13)

where

0 0
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Examples of this extension can be readily supplied in much the same way as in the
case of a single variable. One simply follow the multiplication rules (4.10) as applied to the
differentials di, . . ., d,, and takes into account their nilpotency [cf. (5.12)] when expanding
a function.

The derivations of differentiable functions

v O W 0
Doy =i o+, Doy = 3" (5.15)

where

1< a; <n, 1=1,...,v, (5.16)

induce the corresponding derivations on the algebra D (n,v) through the relations
Dosa(z1,...,20) = (A, Dy X) + - = (00 A, X) 4 -+ (5.17)

It is assumed that the truncation to the n-th order polynomials is performed in the first

terms, after the D,, derivation acts on the vector X, viz.,
T {(A, Dy, X)} = (00,4, X), (5.18)

1=1,...,v, a;=1,...,n.

All the concepts of the algebraic approach can be readily extended to this general case, at
the expense of some notational inconvenience, however. We shall stop at this point as a

general scheme is already clear.
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6. Concluding Remarks

Solving the differential equations (1.1), through some order n, one finds a map M, [cf.
(1.2)]. Its derivatives, the aberrations of a system, can be found by evaluation of the map
on the relevant element of the algebra D (n,v).

There are also other applications of the algebraic techniques which yield significant
economy of computing time in comparison with more conventional methods, (cf. the
Manual,’ for examples).

It is rather clear that the algebra of differentiable functions D (R”) is convenient for
analytic manipulations while the corresponding algebra D (n,v) of truncated polynomials
is well suited for computer handling, D (n,v) ~ D (R”) /I,.

It is possible to formulate the whole approach using more advanced mathematical
concepts of functional analysis. For instance, the relations (2.3), (3.2), and (4.3) suggest
the possible use of, so called, Gelfand duality and triplets.!® This seems, however, neither
necessary nor the practical.

The maximum order n of computed aberrations is limited by the available computer
hardware since the dimension, NV, of the array A grows drastically with the order n and
the number of independent variables, v, [cf. (5.2)].

Assuming the number N (n,v) to be of order 1 million one obtains the limits on the

maximum order n for different numbers of the independent variables, shown in the table

below.”

Number of Variables Maximum Order
v max(n)
6 99
8 30
10 14
12 10
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Appendix A.

We shall demonstrate, that the operation 9, induced by a derivation D on the algebra

of differentiable functions according to the formula (3.10), is a derivation on the algebra

D (n,1).
Proof: Let us consider functions a (z), b(z) which are Taylor expanded around the origin

a() = (4,X) + a(a), (4.1)
and

b(z)=(B,X)+ B(z), (A.2)

where a, 8 € I,. Acting with the derivation D one gets
Da(z)=(A,DX)+d (z) =
(A.3)
= (04,X) + d" (z),
and
Db(z) = (B, DX)+ 6 (z) =
= (0B, X)+ 8" (z),
where again o/, o, §', 8" € I, due to the condition (3.9). The relations (A.3) and (A.4)

(A.4)

can be written as follows

T, {(A,DX)} = (04, X), (A.5)
and
T.{(B,DX)} = (8B, X). (A.6)

For the product a(z)b(z) = ¢(z) one finds similarly

a(e)b(e) = (4 B, X) +7(2), (4.7)
and
Dla(2)b(s)] = (4- B, DX) + 7 =
— (8(A-B),X) +7" (48)

where v,v',4" € I, as before.
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By definition, the derivation D satisfies the Leibnitz rule
Dla(2)b(2)) = [Da(@)] b(x) + a(z) [Db(z)]. (49)

Applying the truncation operation T}, to both sides of this equality, and taking into account
the formulae (A.3), (A.4) and (A.8) we get after using the formula (3.8), the result

(0(A-B),X)=(9A-B,X)+(A-8B,X). (A.10)

The equality holds for any X which means that the coefficients at equal powers of z, on

both sides, coincide

d(A-B)=0A-B+A-0B, (A.11)

which entails that the operation 0 is a derivation on D (n,1).



27

Appendix B.

The number N (n,v), [cf. (4.2)] gives a total amount of the basic monomials in v
variables through order n. It equals the number N (n — 1, v) of such the monomials through
order n — 1, plus the number of monomials of exact degree n. The latter can be thought
as monomials in z1,...,z,_) variables only multiplied by a power of the variable z, such
that product is of exact degree n. The total number of such the monomials is, clearly,

N (n,v —1). Hence, one has the recursive relation
N(n,v)=N(n—-1,v)+ N(n,v—1). (B.1)

One knows [cf. (2.4), (3.3), (4.2)] that

N(1,1) =2,
N(n,1)=n+1, (B.2)
N (2,2) =6.

Moreover, the recursive relation is that for binomial coefficients. Hence, the solution is

N(n,v) = (”“) _nt) (B.3)

v nly!

It satisfies the relations B.1 and the conditions (B.2).
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