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1. Introduction

Since a coupling between transverse z and y degrees of freedom is expected in RHIC
it is important to examine its influence on beta-functions.! We shall calculate the shifts of
the beta-functions produced by point skew-quadrupoles distributed around the ring. The
X-Y coupling is linear in this case? and its effect can be calculated exactly assuming that

k-th skew-quadrupole of length £ is located at s in the ring and has strength g;.

‘
gk = (Ba8y)"* Ly k=1,...,N (1.1)

p Is:s k ?
where f3;, 8y are beta-functions of a perfect machine.?
It is known that in the presence of linear coupling there exists a matrix R such that

in passing to new variables u, v/, v, v' the transverse motions are decoupled i.e.,

A (7
! 1
“l=r|"], (1.2)
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yl 'U’
M m A 0
T = =R R, 1.3
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Here T is a single turn 4 x 4 symplectic transfer matrix for a coupled machine and A, B

are symplectic 2 X 2 submatrices describing uncoupled transverse motions

cos /41 - a1 sin sin
A= [ M1 % B B ,u1' ] (1.4)
—Y1 81 [y COS [41 — <1 SIN [4]
COS [tg + a9 sin sin
B= [ Ha T+ o Sin fig P2 He ] (15)
—"o SIn fig COS tg — (ug Sin Uy
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ak, Br, Yk» Mk, k = 1,2 are the usual Courant-Snyder parameters of decoupled motions.

We would like to calculate the beta-function distortions
ABy = pr — B, (1'6)
ABy = 3 — By, (1.7)

assuming that the linear coupling is small. This can be done using general formulae that

express the A, B submatrices in terms of the T matrix

A=M+(t+ 8 (m+m)m, (1.8)
B=N—(t+6) " (m+n)n, . (1.9)
where
t = %TT (M = N, | (1.10)
and
§= (£ +m+n))"* . (1.11)

Here 7 stands for a symplectic conjugate of m

mi1 Mg —_— ma2 —mj2 ‘
mz[ ]—>m=[ ] (1.12)
mao1 Mog —m21 mn

The single turn transfer matrix T' can be written as a polynominal
N
T=>Y 18, (1.13)
k=0

where T(®) are given via, k-th order in the ¢’s, driving terms. In this note we shall calculate

the beta-function distortions up to the second order in the ¢’s.
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2. Calculations of the Beta-Function Distortions
According to the formula (1.8), (1.9) one has the relations
Az = Prsinpg = Miz + (¢ +6) 7 (M +n)m],,, (2.1)
Biz = fzsinpp = Nig — (t+ 6) ™' [(m + 7) m]y, . (2:2)
Taking into account the tune splitting
= pg + Apy, (2.3)

po = piy + Apa, (24)

where Api, Apy are expressed through second-order driving terms, one gets from the

expansion (1.13), assuming oy (0) = ay (0) = 0, the results

BBz _110) _ 0 42 1@ 4 52\ _ 4@
,Ba: =3 (dcs dsc ) cot” gy + 3 (dcc +dss) dss’ | cot Pzt

+dD 4 (46" {— [(dgi))z + (dﬁi))z] sin iy cot iz — (A2 — d)) cos py+

+ (dPd? + dd) sinp, } + 0 (g1),
(2.5)

a6, _ 05 25

By B,
Here the driving terms of the first order d(!) and of the second order d(®) are defined

as follows:

[ dg) ] sin pig sin py
d N sin p7 cos py
?16) - E T cosprsinpl | (2.7)
dcs r=1 Fy K y
| gD | cos pl cos ,u,z
and
dg) sin p sin p}
a2 ) sin p3 cos py,
o|= 2 wesin(uy-p) | 5 T (2:8)
dgs 1<r<s<N cos u sin p?
a2 cos ps cos u?,
and py, p, are phase advances
Sr d Sy d
T S T S
= [ — , —. 2.9
Py / . Hy / B, (2.9)
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(0 4)

Additional sets of driving terms, denoted as dss , dsg etc, are obtained from the above

equations by simply exchanging z and y,

d®) (z,y) = d® (y,2),k =1,2 (2.10)
It is easy to notice the relations
Jg? = dg.ls)a
d'.(s}:) = dg)a
(2.11)
dg) = d.(s::;)a

diy) = diy.

It is interesting to check if the beta-function distortions disappear after correction of

the tune-splitting which requires, among others, that the following equalities hold
a2 —di3) =0,
28 o,
(2.12)
dy) —di2) =,
&2 —d =o.
Applying them to the formula (2.5), (2.6) one finds that residual beta-function distor-

tions are present

2 2
é’gﬁ = -—dg) cot g + dcg) +(t+ 6)|_A1u=0 {— [(dg};)) + (dg)) ] sin py cot piz+
B (2.13)
+ (dRd? + dVdl) sinp, } +0 (¢),
29, _bw, ot
ﬂy lAV:O 'Bz IAV:O,:L‘(—)y
and, according to the formula (1.10), (1.11)

t+ 5IAV=0 = 2(cos gz — cos py) + O (¢%) . (2.15)

One sees that passing to the limit v, — vy — 0 is delicate here, and higher order terms in
the last expansion should be included. This is essential since RHIC is designed to operate

at almost equal tunes: v, = 28.826, v, = 28.821.



References 5

Our results should be compared with perturbative calculations of the beta-function
distortions.* Clearly, the residual beta-function distortions can be removed if we correct
driving terms which appear in the formula (2.13), (2.14).

Assuming that skew-quadrupole errors are randomly distributed around the ring and

taking into account that

N < ¢* >=G? (2.16)

where, for RHIC we take
Go ~ 0.25, (2.17)

we get the estimate for the average distortion

Apy

>ov —0.25, 2.18
A (2.18)

<

and similar for < %%l >.
Even larger beta-function distortions are expected in SSC in which case Gy ~ 0.5 which

yields for the average beta-function distortion ~ —1.2.
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