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Introduction

The RHIC accelerating rf system operates at 26.7 MHz and has to provide, as its
name suggests, the power and agility to accelerate the beams from injection up to the end
energy and to hand them off to the storage rf system. The machine cycle mandates beam
gymnastics for ions at transition crossing, and for ions and protons alike at beam handoff.

It is therefore required that the accelerating cavities be able to perform an amplitude
step from zero to full voltage in about one millisecond, and to reverse phase at full voltage
within about 100 microseconds.

This note discusses methods to simulate the dynamic behavior of the accelerating
cavity system and gives results for the amplitude and phase transient in response to fast
changes of the reference signal. The frequency variation during ion acceleration is slow in
comparison and can be taken care of by a (mechanical) tuner; implications will not be
considered in this context.

Simulation by PSPICE

PSPICE is a powerful circuit simulation program that allows analysis in the frequency

as well as the time domain. A simplified circuit model for the accelerating rf system was
established and system responses evaluated (Annex 1). Frequency response in open-loop
and in closed-loop (i.e. with rf feedback) was obtained for the overall circuit. It is well
known from basic feedback theory that the possible loop gain is limited by the overall delay
in the feedback chain. This delay has to be a multiple of 1/(2 * frf) = 18.73 nsec since the
nominal phase at the center operating frequency should initially be set at 180 degrees (using

a phase reversal transformer if necessary).



A delay of 6 * 18.73 = 112.7 nsec has been assumed in the simulation, since this
covers a 500 W ENI drive amplifier (33 nsec) plus 2 * 10 m of high-speed foam cable ( 2
* 36.7 nsec).

The PSPICE results confirm predictions obtained with the help of the NICHOLL’s diagram,
namely that a loop gain of 40 dB leads to a near-ideal overall response whereas a loop gain
of 50 dB results in a peaking of 5 dB at the limits of the passband (see Annex 1).
Simulation of the transient response was less convenient for the following reasons:
-difficulties arise to simulate adequate limiting characteristics to model saturation of
the amplifier.
-the output of the transient analysis traces the fine-grain structure of each rf cycle but
fails to deliver the global parameters of interest, namely amplitude and phase. These
have to be elaborated manually or by some kind of user-written post-processor that
follows each individual rf cycle and evaluates its points of zero crossing and
maxima/minima. The natural time constant of a cavity with Q=10000 amounts to
Q/PI = 3180 cycles, so following a transient with 2 * 3 = 6 time constants means
evaluation of some 20000 cycles, each with some 2600 points to assure proper
PSPICE convergence. Working through megabyte output files or patching together
meters of graphics output is highly inefficient to say the least.
-it takes more than 80 minutes on a 33MHz 486 PC to simulate the response
corresponding to a single cavity time constant.

Simulation of the high-Q cavity in the time domain by PSPICE has therefore been

abandoned.

Evaluation of the waveform envelope by direct integration

The ultimately wanted information is the envelope of the rf waveform, i.e. the
amplitude/phase response. In a single RLC resonator, which is a sufficiently complete model
of the accelerating cavity for simulation of the long-range wake field, the time dependance
of the envelope is given by the differential equation

du/dt =(I-U *Y)/2 *C)
with U the voltage envelope, I the driving current, Y the cavity conductance (all complex

quantities) and C the cavity capacitance.
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A program has been written in Q-Basic that integrates the above equation
numerically using the Runge-Kutta algorithm. The code is a modification of a vintage
program written in an early version of Turbo-Pascal lacking adequate graphics capabilities.

A listing of the program is given in Annex 2. It treats real and imaginary parts
separately and integrates in time steps equal to one rf cycle (can also be chosen longer
without sacrifice in precision). The code includes the hardware-related subroutines
MODULATE (to simulate rf feedback and a limiting amplifier), GENERATOR (to provide
the rf drive with amplitude and phase jump) as well as the algorithm-related subroutines
RUNGEKUTTA (the differential equation solver) and VARDOT (to deliver the time-
derivatives of the variables).

The program has been tested against output of another program, simulating an RLC
circuit by superposition of 20000 sequential rf drive cycles whose response can be checked
analytically; perfect agreement has been found.

Dynamic behavior of the accelerating system
A.General

The figures show amplitude and phase of the rf waveform for typical operating

conditions, with the output organized as follows (see fig 1):
All parameters are listed in the upper left corner, defining
- Cavity ( q, rupongq, frf, deltaf); the cavity is detuned by -500 Hz with respect to the
driving rf frequency in all cases.
- Phase reversal: the rf drive remains at 0 degrees from O to start (450 microseconds),
ramps linearly to +180 or -180 between start and stop (450 and 550 microseconds)
and remains there until total (1000 microseconds).
- Rf drive irf (1mA throughout) together with the hard-limiting threshold imax
-Rf feedback loop gain
-Initial conditions of the cavity voltage ( real and imaginary part =0)
-plotscale 1000 V (see below).
A polar plot of the voltage envelope is given in the upper right corner, extending
from -plotscale to +plotscale with zero voltage in the center.

A rectangular plot of amplitude and phase is given on the bottom part. The
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horizontal scale is from O to total (1000 microseconds), the vertical scale O to plotscale for
the amplitude and -180 to +180 for the phase.

Since the cavity shunt impedance is 700 kiloOhm in all cases, "full"response for the
1 mA drive is 700 V. This corresponds to 7 units on both the polar and on the cartesian
plot. The geometric length of the amplitude response is also arranged to be equal in both
displays.

B.Response without rf feedback

Fig.1 shows the response of a cavity that is detuned by -0.375 half-bandwidths, which
corresponds to a steady-state phase of -20.5 degrees. The excitation is the standard
amplitude step with a subsequent phase shift of -180 degrees, i.e.in the same direction as
the steady-state phase. The passband of the cavity is centered slightly below the steady state
signal, and the main spectral components of the FM signal that is equivalent to the phase
shift lie on the same side. The cavity voltage settles first to about 95% of "full"response,
droops to approximately 50% during the phase shift and resettles finally again to 95% at the
inverted phase.

Fig.2 depicts the same initial conditions, but with a phase shift in the direction
opposite to the steady-state phase. The droop is now much more pronounced in depth and
duration, since the main spectral components of the exciting signal are offset on the other
side of the steady-state line than the cavity passband. Transition crossing with this waveform
would lead to large distortions of the bucket and subsequent beam losses.

C.Response with rf feedback

Fig.3represents the cavity response with the rf feedback loop closed at a gain of 100,
under the same conditions as fig.2 above, with phase shift in the positive (unfavorable)
direction. Initial settlement is much faster and up to "full"response at zero phase despite
of the cavity detuning.

The droop during the phase shift is reduced but still prohibitively high. The reason
is saturation of the amplifier, whose maximum output current is limited to 1.5 times the
nominal current for full response.

Figs. 4 to 6 refer to amplifier overdrive capabilities of 2.24,3.16and 4.5 respectively.

This corresponds to rf peak driver powers of 5, 10 and 20.25 times the nominal drive power



of about 100 W. The droop is reduced accordingly until the ideal response is attained.
The slew-rate of the amplitude is also reduced in proportion to the available peak
current. For the overdrive capability 4.5 that assures ideal phase response for a 100-
microsecond reversal time, the amplitude can be raised to 100% within less than 40
microseconds.
CONCLUSION
Rf feedback can be implemented with a loop gain of at least 100 which leads to fully

satisfactory dynamic characteristics for low-to-medium levels. Maintaining full rf amplitude
during phase reversal is however critically dependent on the available overdrive capability
of the amplifier, which has to be as high as 4.5 to meet the specifications under worst case
conditions.

Rf driver powers in excess of 2 kW are needed to make full use of the final tube’s
capabilities if class-B bias is maintained throughout. The tube can however be driven into
class A for the short periods where full peak power capability is required; this saves drive
power and can be achieved by pulsing the grid bias.

Amplitude requirements concerning slew-rate are less critical than those concerning

phase reversal. The former are automatically covered if the latter are met.
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ANNEXR 2
BECLARE SUB HOREEASELL) o)

DECLARE SUB GENERATOR (t!) Progran Aé- @23“"9
DECLARE SUB VARDOT ()

9 1%
DECLARE SUB CRECTOPOL (x, vy, mag, ang)
TARRRKAR AR RHRORRR ROk KRR PROGRAM RESRUKU  skskokaorskaiokokaeskokkok sk ok kokok Kk sk ko ok ok skok Kok

b3 Evaluates RESonatorRESponse to pulsetrain *
% using Runge-Kutta integration *®
UK W.Pirkl, April93 *

"% Purpose: Study of RHIC accelerating system with rf feedback (envelopes) %
< KRRk KR KR KK AR AR AR K AR A KA AR AR ACK KA KRR K KA KRR R ARRAOR KA AR R AR R R Rk ks ok ko kokokok
GOSUB initialize

GOSUB getdata

GOSUB conditiondata

GOSUB drawframe -

GOSUB plotfunction

GOSUB resetscreen

END

initialize:
PIM v, va, vd
OPTION BASE ©
arrdim = 2
“¥%¥ v...arrvay variables, va...array temporay arguments,
“%%¥ vd...array derivatives
k%% arrdim...dimension of array= order of DIFF.EQ.
“%%% array(0) holds time, array(l)...array(arrdim) holde variables proper
CLS

pi = 3.141583: radian = 180 / pi
SCREEN 12 “k% 640 pixels hor, 480 vert (GATEWAY 486)
“VIEW (80, 0)-(559, 479) “xk% 4797479 pixels in viewport
“VIEW (120, 40)-(520, 440) “k% 400/400 pixels in viewport
“VIEW (75, 40)-(558, 440) %% square after printing
RETURN

getdata:
rupong = 70
qa = 10000
frf = 2.67E+07
deltaf = -500
phistart.deg = 0
rhistopr.deg = 180
tstart = .00045
tstop = .00055
ttotal = ,001
irf = (001
imax = .0045
loopgain = 100
wl0R = 0!: w0i = 0
rlotecale = 10Q0! “*k¥%*x in Volts +-hor, +-vert
RETURN

conditiondata:
feav = frf + deltaf
trf = 1 / frf
c =1/ (2 xpi % fcav X rupong)
rres = rupong X g
vr =1 / rres .
vi = (frf / fcav.- fcav / frf) / rupong
phistart = phistart.deg / radian
phistop = phistop.deg / radian
FOR n = 0 TO arrdim
wewmint = 0 valnd. = 0 vdn)_=. 0. _

“¥%% real part of res. conductance
“¥%% imaginary part of res. cond.

Runge—Fue bére Tidegroution

NEXT n %ok filluéﬁéﬁib arra&s wity dummy values for definition
RETURN

drawframe:
Rk bext

“ WIDTH 80, 25
LOCATE 2, 1
PRINT “rupona “3 ruponq
PRINT "q "5 a
PRINT “frf s frf
PRINT “deltaf '3 deltaf

PRINT “phistart.deg ™
PRINT “phistop.deg

rhistart.deg
rhistop.deg

we e ue we

PRINT “tstart “; tstart
PRINT “tstop “: tstop
PRINT “ttotal "3 ttotal
PRINT "irf s irf
PRINT "imax 3 imax
PRINT "“loopgain *3; loopgain
PRINT "uOR "3 uOR
PRINT “u0I “s u0i
PRINT “plotscale *; plotscale

“akkRkk polar viewport
pwp = plotscale
VIEW (270, 10)-(630, 310)
WINDOW (-pwp, —-pwp)-(pwp. DWP)
FOR n = -pwp TO pwp + .01 STEP pwp / 10
LINE (-pwp, n)-(pwp, n)
NEXT n

%% 2%10 horizontal lines

FOR n = ~pwp T0 pwp + .01 STEP pwp / 10
LINE (n, -pwp)-(n, pwp)
NEXT n
x11l = wOR: yl1 = uw0i: PSET (x11, yl1), 4
TRkRKRRR cartesian viewport
VIEW (0, 320)-(630, 470)
“¥%kk amplitude window
WINDOW (0, O)-~(ttotal, pwp)
FOR n = 0 TO pwp + .01 STEP pwp / 10
LINE (-pwp, n)-(pwp, n)
NEXT n

¥k 2%10 vertical lines

“%%k 10 horizontal lines

! FOR.n = 0 TO ttotal + .01 STEP ttotal / 10 “%%* 10 vertical lines
' LINE (n, -pwp)-(n, pwp)
NEXT n

x12 = 0: yl12 = SQR(uOR * uOR + ul0i * u0i): PSET (x12, y12), 2

“%¥%% phase window

WINDOW (0, -180)-(ttotal, 180)

x13 = 0: y138 = 0: PSET (%13, y13), 1
RETURN

plotfunction:

v{l) = vwOR: v(2) = uw0i: v(0) = O
FOR t = 0 TO ttotal STEP trf
CALL GENERATOR(t)
MODULATE
CALL RUNGEKUTTA(trf)
“¥EkKk print results on three curves
“¥%kkpolar
uR = v(1): ul = v(2}
VIEW (270, 10)-(630, 310)
WINDOW (-pwp, -pwp)—(pwp, DWP)
LINE (x11, ¥1l1)-(uR, ul}, 4
| %11 = uR: yll = ul
; “kxkamplitude

CATT. OREOTOAPOT.(uR. nT. amnlitunde. vhase)

“hosy
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VIEW (0, 320)-(630, 470)
WINDOW (0, 0)-(ttotal, pwp)
LINE (x12, y12)-(t, amplitude), 2
x12 = t: yl2 = amplitude
“%¥¥X phase
WINDOW (0, -180)-(ttotal, 180)
LINE (x13, y13)-(t, phase), 1
%13 = t: y18 = phase
“LPRINT : LPRINT " main: t, uRI “; v(0), v(1), v(2)
NEXT t
BEEP: BEEP: BEEP

AL

RETURN
resetscreen: %% holds screen for dumping until key is pressed
DO WHILE INKEY$ = “": LOOP
SCREEN 9: WIDTH 80, 25: VIEW: CLS
RETURN

SUB CRECTOPOL (x, ¥, mag, ang)
“¥%%% prectangular to polar conversion, angle in degrees
IF x = O THEN
IF y > 0 THEN
ang a0
ELSEIF
ang
ELSE ang
END IF
ELSE
ang = 57.28577 * ATN(y / x)
END IF
IF % < O THEN
IF yv < 0 THEN ang = ang ~ 180 ELSE ang = ang + 180
END IF
mag = SQR(x ¥ x + ¥y * ¥)
END SUB

0 THEN

fted I ©

not

-90

SUB GENERATOR (t)
“k%k returns real/imag generator current into SHARED Ir,Ii
“%%% phase linearily ramped between tstart and tstop,
“kx%*% between phistart AND phistop
SHARED irf, tstart, tstop. phistart, phistop, isrcR, isrcl
iF t <= tstart THEN

rhi = phistart

ELSEIF t <= tstopr THEN

rhi = phistart + (phistop - phistart) * (t - tetart) / (tstop - tstart)

ELSE
rhi = phistop
END IF

isrcR = irf % COS(phi)
isrcl = irf % SIN(phi)

END SUB

SUB MODULATE
“¥x% Modulates drive to resonator, e.g, in rf feedback loop
SHARED v{(), iercR. isrcl, iR, iI, rres, loopgain, imax
’ iR = isrcR: il = isrcI kKK testcase
igrel = igreR - v(1) / rrea: ierrl = isrcl - v(2) / rres

AT+ dreedgadn ¥ dpreRs 3T = leeredain + SswnT

k%K comparator
THEE sedve WY sl

overdrive = SQR(iR * iR + il ¥ i1) / imax
IF overdrive > 1 THEN

e s e SN

“kkk limiter

iR = iR / overdrive
il = i / overdrive 7 é/%
END IF

END SUB

SUB RUNGEKUTTA (t)

“%%k% calculates one time step t of differential eguation

‘XX uses v...variables, va...temp.arguments, vd...derivatives
“kkk time in v(0), va(0): derivatives generated by SUB VARDOT

SHARED v(), va(), vd(), arrdim
DIM k1(10), k2(10}), k3(10)

FOR n = 1 TO arrdim
‘va(n) = v(n)
NEXT n
va(0) = v(0)
VARDOT

FOR n = 1 TO arrdim
kl(n) = vd{n) ¥ %
va(n) = vi{n) + ¥1(n) / 2

NEXT n
va(0) =v(0) + t / 2
VARDOT
FOR n = 1 TO arrdim
k2(n) = vd(n) * t
va{n) = v(n) + k2(n) / 2
NEXT n
VARDOT
FOR n = 1 TO arrdim
k3(n) = vd(n) ¥ t
va(n) = v(n) + k3(n)
NEXT n
va(0) = v(0) + t “

VARDOT

FOR n = 1 TO arrdim
v{n) = v(n) + (ki(n) + 2 *x k2(n) + 2 * k3(n) + vd(n) * t) / 6

v(0) = v(O) + ¢
END SUB

SUB VARDOT
“¥¥% returns derivatives
“¥kk aguments in SHARED array VA, results in shared array VD
“%%x time in VA(O) is not considered, taken care of by SUB GENERATOR
‘LPRINT "ir,ii.yr,yi,c": : LPRINT USING " #.EERT""7s dps 1i5 yrs vis ¢
SHARED va{), vd(}), iR, ii, yr, vi, ¢
vd(1l) = (iR - va(l) % yr + va(2) ¥ yi) / (2 ¥ ¢)
vd(2) = (41 - va(l) % yi — va(2) * yr) / (2 *x ¢)
END SUB



