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JNTRODUCTION,

In order to assess the possibility of producing quark-gluon
plasmas in ultra-relativistic heavy ion collisions, it is important to
smderstand  what happens in the very beginning ol such collisions. It
15 usually assumed that the quanta which are produced in the central
rapidity - region quickly reach a state of local thermodynamic
cquilibrium  |1). Such an assumption of thermalization is certainly a
conventent one, as it leads for example to a simple dynamical model of
the collisions based on hydrodynamics [2) . However, its validity
tenalns to be checked. In particular, one would like to know how to
characterize the quanta which have a chance to thermalize, on which
time scale this thermalization takes place, what is the energy density
ut the system soon after thermalization, etc,.. To answer most of
\hese gquestions would require solving a kinetic equation, given
sppropriate initial conditions and a detailed knowledge of the
sictoscoptc processes by which the quanta exchange energy, momentum,
or pussibly their number. Our goal in this paper will be more modest;
we shall attempt to detetmine the properties of the quanta which turn
it free particles during an ultra-relativistic heavy ion collision
and which give the dominant contribution to the initial energy
density,

Our starting point 18 a parton model. We assume that, in the
center of mass frame, where they are fast moving objects, the
colliding nuclei may be viewed as collections of quasi real particles,
the partons, with lifetime much larger than the collision time.In the
spirit of the "sudden approximation" of guantum mechanics, we assume
that the nuclear wave functions are essentially unaltered by the

collision; that 1s, Jjust alter the collision, the distribution of

partons in phase space remains identical to what it was just before

the colliston., However, during the collision, some of the partons
receive energy and momentum which, we assume, is just enough to put
them on their mass shell. They then evolve as free particles, at least
over a short period of time. OQur purpose 1is to point -out some
properties ot this system ot free partons at the time it is formed, In
particular, we shall tind that the dominant contribution to the energy

density comes from partons with transverse momenta gqrowing like

ﬁ-m"’ . This 1is in contrast for example with other parton models,
\

such as the dual parton model |J], which use partons with limited
transverse momenta. One may worry that the lack of partonic saturation
in these models will lead to an overestimate of the soft parton
contributions in collisions of large nuclei.

Recantly, lua lpd Kajantie|4] presented an attempt to estimate
the thermalization time in nuclear collisions. Eventhough we shall not
adopt their view on the thermalization problem we would like to
mention that our discussion in section 2 expands on their treatment of
the kinematics of the parton distribution. We shall show in this
section that the system of free streaming partons exhibits two
different regimes as a function of time, the first regime being
dominated by the 1longitudinal motion of the fast partons. Our
arguments concerning the charactérization of the partons which get
freed during the collisions are developped in section 3. We shall
present two fairly different scenarios which 1lead to the same A
dependence of the partons transverse momenta. The last section of the
paper contains numerical estimates of the torﬁation time and the

initial energy density.

2, THE FREE STREAMING REGIHE.

We assume that,at least for a short period of time, the phase
colhierence between the partons can be ignored and we describe the
system of partons by a classical distribution function £(p,x}, where 2
represents the space-time coordinates, and p the maomentum. We shall
assume that the distribution is uniform in the transverse direction,
i.e. flp.xd=flp ,p,,z,t) . Longitudinal (p,,z)'and transverse (p )
variables play different roles in the present discussion, and in order
to expresa easily the conseguences of longitudinal Lorentz boosts, it
is convenient to transform the 1longitudinal variables. We define a

"gpace-time rapidity" vy and a proper time 7T

.

1 Ltz
1= In— \511“~z 4 (2.1})
2 t-z

in terms of which one has t=ticoshy, z=t sinhy . Similarly, one

introduces a “momentum rapidity” y:




1 pn.pz
- - 2 2
y-zlu P, 'pr'pl (2.2)

P, P

[} z

such that p =p, coshy, P, sinhy.

Ve shall ignore in this section the processes which may change
locally the number of partons, and also the collisions which change
the momenta. Then, the parton distribution obeys the following kinetic

equation:

at P, at af af
0 = —t — — = cosh(y-y}— + asinh(y-n)— (2.3)
a p, dz at 199

where we have assumed the partons to be massless. The general
solution of this equation is easily seen to be of the form:

flp,.p 2, t) = £(p ,¥) (2.4)

where the variables on the 1l.h.s. are defined in the center mass

frame, while on the r.h.s. we have set [5]:
wo=pt sinh(y-y) = p t-p 2z (2.5)

The Lorentz invariant w may be given the following interpretation: w/1
is the longitudinal momentum measured in a frame moving with rapidity
1 with respect to the center of mass frame; on the other hand, -H/p‘
is the longitudinal coordinate z in a frame moving with rapidity y.
Nole that for a free parton emanating from the point z=t=0, w=0. The
parton distribution function may then be calculated in terms of the

momentum distribution to(p'.p‘) at z=0 and some initial ‘time t,:

]
t{p v} = la(p,.;—) t,tp,.p, ) =t(p ,p, ,220,L ) (2.6)

1]
This way of defining the distribution function may look at first

somewhat annoying since it introduces an arbitrary time scale ty-
However, we shall see soon Ehat we can take the limit where L" goes to
zero.

A particular choice for the initial distribution functlion,

which is motivated by the y-independence of the momentum;distribution,

see eq.{2.12) below, is the following:
= LLE
ftpoop,) = alp ) 0T ~{p |} (2.7

vhere glp,) 1is some “transverse momentum distribution. The formula
{2.7) assumes that for a given P, and in the plane z=0, the deniily
of partons is independent of the longitudinal momentum P, WP to a

maximum value p:‘". The equation.(2.7), together with (2.6}, implies:
£(p vp, 2.t} = glp Y0(c-|w]|) {2.8)

where vwe have set c=t°p:"'. In fact, we shall argue below that c i3 a
numerical constant of order 1.
Let wus examine some of the implications of the ansatz (2.8).

First, it is easy to show, using the formulae {(2.5), that:

{c=-[v]) = D{O~yty) 0 {(Oty-y) (2.9)
vhere we have set:
c
&=ginh™! (—) ‘ (2.10)
T,

In particular, the initial distribution at t=0 has the form: .

c .
tip .p, ,z,t=0) = q(p')n(——~——;— -lzt) (2,11}
p_coshy

This initial distribution coincides with that advocated by Hwa and
Kajantie. 1Its structure is easily wunderstood. The partons with
rapidity vy are.sprecad over a distance 1l/v, where 1u2c/p’ and 7=t0shy

is the usual Lorentz contraction factor, The diatance 1l may be taken
to be of the order of the guantum spreading of the wave function of

partons with longitudinal momentum plﬁo. Since P, is the only enerqgy
scale in the problem, it is natural to take 1/2ruz~1/6p1ndlp'. which
implies c¢~1. Now, the fastest partons occupy a longitudinal size

uac/p:“‘ ; thus, by a time mt“=c/p:“‘ no such partons remain in the
plane z=0. This provides an interpretation of the time t introduced

in {(2.6) and shows furthermore that, in the very high energy limit, to
K .



13 much smaller than any time in the problem.

Another important teature of the distribution (2.8) or {2.11)
is illustrated by calculating the number of partons per unit rapidity
at t=0;

dhi

= nn’pof dz tlp ,p, .2,t=0) -Z“R’cq(p') (2.12)
d*p dy
h | .
where nR* is the transverae area of the colliding nuclei. This
distribution is independent of y, as expected from the behaviour of
the structure functions at small x. In fact, the relation between the
phase-space distribution function and the atructure function is given
by:
1 . 3
P' dn ., . Pt . .
dp'* =2nr*c] gl(p )d®p {2.13)
1 0 L} T

. 2
on(x.p')= »
o dP, dy

where GA(x,p:) is the parton (gluon} density of the nucleus, see
section 1, and x is the fraction of the longitudinal momentum per
pucleon carried by the parton.

f.et us now evaluate the contributions to the energy density
and the particle number density at z=sy=0 , of the partons with
transverse momentum p . Using the fact that dpz=p'coahy dy, one easily

tinds:

O
—— p’q(p ’)I Ady coshy = Zq(pr)sinhﬂ (2.14a)

de (1)

d’pl
these tormulae lend themselves to a simple physical interpretation in
the tvo limiting cases of short and long times,
At short time, the range of integration is large, Huln{l/n),
and partons with all rapidities are found in the plane z=0. The

formulae (2.14) give:

o 1
—— = p; 9lp )j dy cosh®y = -p2gip ) (20+sinh28)  (2.14b) -
1 -8 27 7

dn de | S ’
—— = p gip, Jo” — = = plylp o't (2.15)
dkp dap 4

r

Thus at very short time the dominant contribution to the energy
density comes from the partons with a large rapidity. When it , the
energy per particle 1s of the order of the maximum longitudinal
max

. nm'uAIZ: at this time, most of the energy is 1n the
longitudinal motion.

momentum p

For long time, A is small, Ov]/21, and one gets:

dn de
= ZPTO(P r)A

= Zp:q(p e (2.16)

2 2
d P, '] P,

The quanta which remain at z=0 after a long time are those which éarry
little longitudinal momentum. In this regime, the density decreases as
1/t , and the energy per particle is simply equal to the tranaverse
momentum. Note that ip both regimes, the particle density, eq.{2.14a),
decreases as 1/1 (see eq.(2.10})}.

The crossing between the two regimes, i.e. the short and long
time behaviours, takes place when the rapidity range of the partons
which populate the region z~0 is of order unity, i.e. &vl. In terms of
time, this condition is equivalent to 1up‘~d, that is 1nnAz. Thus the
time T, is, roughly speaking, the time it takes to the fast partons
to Ileave the collision zone occupied by the slow ones. We shall show
in the last section that 1, also turns out ,to be equal to the
“formation time", that is to the time at which the partons get freed

because of collisions,

3 APEROXIMATE CRITERIM FOR PARTONS SET XREE BURING THE CQLLISION.

In this section, we are going to propose simple criteria for
deciding which quanta are freed during a head-on relativistic heavy
ion collision. These are the partons contained {n the distribution
(2.11) which suffer a hard enough interaction to allow them to convert
their momentum into physical particles, We shall wmake estimates of the

transverse enerqgy released during the collision in the central unit of



rapidity. We shall also estimate the energy density at the time the
partons are freed from their initial wave function. As we shall see,
the partons which dominate the energy density have P, about 1 GeV so
that the dynamics is marginally in the weak coupling regime, w1/}, Ve
might expect perturbation theory to serve as a reasonable guide
although we would be hard pressed to certify our estimates reliable
within a factor of 2 ’

To begin, we imagine a head-on heavy ion collision, say in the
center of mass system, as described above. We take our partons to be
gluons since these are the quanta which dominate the semi-hard
collisions with which vwe are concerned. Then the inclusive gluon "jet"

cross section is:

do 1 dx, . -, 4o X
x —-:——c 2 ;—— x'GA(xl.p‘) xGA(x,p') ——: O(xlxs-dpl) {3.1)
dp'dx L . dp'

where GA(x,p:) is the usual g¢gluon density of the nucleus. We shall
ignore possible correlation effects in the nucleus which could make x
gteater than 1. Also, in  our estimates we  shall take
GA(x,p:)z A G(x.p:) with A the number of nucleons and G(x.p:) the

gluon number density of the nucleon, ¢ is the gluon-gluon cross

section given by [6]):

46 (%2 W uf  us . st :
- —0-—=-=) (3.2)
at " 25? s* ot u?

where the "' indicates variables directly related to gluon-gluon

dx
- 1
scattering ls=x|xs, etc) , and CA=J. Because the —— integration in
x
1

{3.1) is logarithwmic, the dominant contribution comes from small angle

scattering, i.e. the 1/€? term in (3.2). Thus ve approximate:

da xCA 2 o
— A ] — (1.1)
dp? " 2p?
B | '

Detining

du

vlpl . x)=p} (3.4)
2
dp‘dx
one finds; .
. uCA 2 g . 1 dx| .
wlph,x) = [—| — x6, (x,p?) — % G _(x ,p*) {1.5)
. it 2 A H 2 X t A ' T
Py dp, 1
XS

Now, at small x the Altarelli-Parisi equation is:

P «C 1 dx
2 2 A ! 2
p'-——xGA(x,pr) T e —_— xIGA(x‘,pt) {3.6)
GP: A P
so that
2 (’.CA "“ 2 2 a 2 . - ‘
d(p‘,x) = —;— —: xGA(x,p') v ;—: x"GA(xn,p') 3.1
p p

r T

where x°=dp:/xs. In the central unit of rapidity, we suppose that xG
is independent of x, see{2.12), so that:

NCA n Q
d(p:,x)x[—E—J ——: p:——:(xGA(x,p:))' . {1.8)
2p‘ ap'

Now what should we take for p: ? That is, which parton
transverse momenta are going to dominate the cross section v and hence
the produced transverse energy distributions? ;f p: is taken very
large, v(p:,x)mllp: and the resulting cross seclion is very small,
such high transverse momentum gluons are simply virtual fluctuations
which are not fEreed during the collision, According to {3.8), we
should choosg.p‘ very sm§11 to increase o, Hovwever, (3.8) ceases to be
valid when p: is too small since gluon saturalion effects become
important. Perharps it is worth reminding the reader of the physical
{dea behind gluon saturation [7] and why such effects are especially
importanl in large ions.

~T
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To that end, consider a Jarge nucleus having longitudinal
soaentum  p per nucleon. We suppose that p is much greater than the
aucleon mass, m. Then, according to (2.11), the valence quarks in the
pucleus, belonging to the individual nucleons, are within a
longitudinal region of size proportional to 2Rm/p with R the radius of
the nucleus, However, the gluons and sea quarks, having a particular
value of x, cannot be confined to a longitudinal size smaller than
1/px so that for x(1/2Rm these quanta overlap in loagitudinal
coordinate space. The transverse size of the gluons is {8x |~1/p  s0
that if v, is very large such small quanta will not overlap in the
full three dimensional coordinate space. lowever, as one considers
gluons with smaller P, overlapping configurations become more common.
when xGA(x,p:)xp:R’ ditferent gluons must begin to occupy the same
spat1al  region, Since xGA(x,p:):AxG(x.p:) one sees that this dense
contiguration is enhanced in large nuclei with strong interactions
expected between the quanta when pfuuA/R’. (The factor of «, to be
deryved below, reflects the fact that the overlapping gluons interact
{recombine) with strength w,) Thus, the actual transition from a low
dunsity to a high density gluonic system occurs at xGA(x,p:)zp:R’/m

Now let's try to make these ideas a little more precise, The
usual Altarelli-Parisi equation (3.6) is appropriate for a low density
system and expresses the fact that as one looks to smaller transverse
s1zes, larger p|'s ., the gluon density increases because a gluon may
actually be composed of two gluons of smaller transverse size. This
aspect ot the A-P equation is traditionally called gluon splitting or
gluon emmission. However, as the gluon number density becomes large,
ve may expect the opposite process, gluon recombination, to beéome
mportant, Gluon recombination, where two gluons combine to forh a
single gluon lowers the number density. This is formally expressed as
1 higher twist mnoditication of the wusual A-P equations. At small

values ot x this modified equation takes the form:

5 «C 1 dx
;S : A 2
p{*«XGA(K,p') = -T— —_ x|GA(x‘,pl)

JP: ! x %

'.'.(.‘A i 1 \]xl ety \
- ——— [Pr— o M q
p : " xlbﬁ (x',p[) {(1.9)
2p| x

11

where G:" is the two gluon distribution of the nucleus. For a

spherical nucleus of independent nucleons [8]

.- xGA(x.p:))’ A‘(xG(x,p:))'
XG4 (x,pt) = = (3.a0)
8/9 ur? 3/9 nr?

with R the radius of the nucleus and G the gluon distribution of the
nucleon, ,
Clearly, as p: hecomes smaller, recombination becomes more

important. We expect the gluon number density to stabilize when xG\(x,p:)np:R’/u

which corresponds to

I
pP—xG = xG . (3.11)
i M A A

8p'
The largest p: at which {3.11) holds should determine the p: to be
used in (3.8) to give the freed transverse energy in the collision,
lowever,(3.11) is a little hard to use with (3.9} because the
x-integration in that equation is not limited to very small x. It is

easier instead to use the weaker equation

3 2
x——p:———xGA(x,p:) = 0 (3.12)
X Bp: : .

as a criterion for the saturation region. Eq.(3.12) follows from the
expectation that xGA(x,p:) become independent of x in the saturation

region. Eqs.(3.12) and (3.9} give

&CA W
—| — x*G'* (x,p*) = xG (x,p*) (3.1))
x . A T A T
2p
i
or
ey
16 plk .
AXG(x,p?) = =~ —— : (3.14)
! 9n -\C\ .
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This gives p: as

p? 8 — € {3.15)
LI (&

Differentiation of (3.14) with respect to p: and using (3.8) yields:
16
u(p:.x) = - ® R? A xG {3.16)

Eq. (3.16) gives the number of produced gluons per unit rapidity in a

head-on collision of two spherical nuclei as:

dN [
— m —— = 2 X x0 (3.17)
dy

-np?

and the transverse enargy as!

dE
1

— =2 p_AxG (3.18)
dy i

The tactor 8/9 in eq.(),17) comes from an averaging over impact
patameter. Eqs.{3.17) and {(3.18) are rather remarkable in that our
determination ol p: by the equality of emission and recombination
leads to a produced number of gluons per unit rapidity exactly twice
the number 1in the wave tfunction. This factor of 2 is the factor
explicitely exhihited in (3.1). In a frame whers the measured gluon
has small rapidity we interpret this factor of two asm corresponding to
the gluon coming from either the two different colliding nuclei, In
any case, it is remarkable that the recombination calculation carried
out 4n Ref.8 and the calculation done hers wusing (3.3) exactly
conpsnsate leaving the simple expressions (3.17) and (3.18).

In order to obtain from eqs.(3.17-18) number and enerqy
densities, we assume tLhat the newly freed partons obey the same free
streaming kinematics as described in the previous section. Thus
partons with transverse momentunm p, occupy a volume V=2cnR ’/pr. see
{2.11). ¥e shall furthermore assume, and will Jjustify in the next
section, that all the partons within a rapidity range O~ conttibute
to the densities in the plane z=0. We obtain thus a number density:

3
N 1

13

248 dN 3(1A AxGYa/a

nm == (3.19)
A} y 2y N R?

and an energy density: .

20 9B, 9 AXGYa

¢y = —= = Q| (3.20)
vV dy 8 A R?

Hhile the explicit numbers which may be extracted from (3.19-20)
gshould only be taken as rough estimates (see section 4}, we believe
the o« and A dependences exhibited in (3.15)-(3.20) are cortect
predictions of QCD, at least ftor large enough A.

Before we go and discuss the time at which this encrgy is
freed, we would like to make a somewhat different estimate ot which
gluons are freed in a head-on wultra-relativistic heavy ion collision.
The mechanism which we are about lo discuss is subleading, by a power
of o, in the amount of energy freed and we are not able to give a
gystematic account of this order « correction. Nevertheless, because
of its intuitive appeal and because the resulting estimates are not
too much smaller than those contained in (3.19-20), we should like to
outline this simple mean free path argument. We emphasize that this is
not an alternate version of our previous estimates but a discussion of
a separate physical mechanism,

Consider a gluon, say in the right moving nucleus,.just before
the collision. We suppoze that this qluén can have vwide angle
scatterings with those gluons lell moving with respect tu it and
occupying the one unit of rapidity bordering it. (Beyond this one unit
of rapidity,the scatterings are predominantly small angle and are
exactly those scatterings covered by {3.8}.) Let us focuss on the mean

free path A of our right moving gluon. We have:

] 1
A= e Y ——e—— (3.21)
nu AXG | .
" a
R* iz,

" .
where o is the cross seclion for wide anale gluon-~gluon scattering and

sz 1s the longitudinal width occupied by the gluons through which our



s

Y |

right -moving gluon passes, This gluon should be freed if it has one
wide angle scattering as i1t passus through the distance bHz. Thus A€Az

is the criterion for converting the gluon from virtual to real. This

requires
AXG .
—_—u 31 (3.22)
nR?
Ve estimate 8 by taking .
o = |oE) — {3.23)

atl. . .

(RS RIS X1

with lu{leIZ. Then .
a 27n
U o= — (uCA)' (3.24)
163

Substituting (3.24} into (3.22) and taking fﬂ-p: one finds

. A 24 M {1.25)
p w —— .
1 AT 32 e

in contrast to our previous vresult (3.15) ,

The p: given by (3.2%) 1is higher order in « compared to that
given by (3.15) , however in practice there ls only a factor of two
d1fterence between the two estimates. Since both gluons involved in
the scattering described by (3.24) remain in about the same unit of

rapidity we arrive at a transverse energy per unit rapidity

dE'
— 2 B, A xG (3.26)

dy '

and, using the same volume and rapidity range as before, an energy

denstty

13

1
Ip haG g ~(AXGYa
&N 2 —— (uC ) |— (31.27)
aR? ibn A R

about a factor two less than that obtained in (3.20).

4.DISCUSSION,
We turn now to the question of the formation time 1 i.e. the
time at which the partons are treed. In fact, it is easy to sce that
this time 18 of order l/p' in either of our dynamical estimates given
in the previous section. This follows from the fact that a gluon which
gets freed in the central unit of rapidity must have undergone a
scattering of momentum transfer P, with partons in the neighbouring
rapidity slicea. Thus 1, is the time during which the partons in the
central vapidity unit overlap with those partons with which they may
interact. Reterring to the discussion at the end of section 2 we see
that 1 is also the time bordering between the long and short time
behaviours in the free streaminq, regime. Viewing the collision in a
alightly more general frame, suppose the unit of rapidity which we are
considering 1s centered about Y=y, - Then using (2.5) and (32.8) we oce
that at time t the partona in this rapidity unit are located within

t 1
zy, = t tanhy + (4.1)
cosh'yu p'coshyo

where the first # in (4.1) comes from the unit rapidity spread and the
gecond t comes from the original spread, duc ta the uncertainty

relation, at t=0. At e coshyn/p' ve see that

1 1
zy & — smhyn 1 ————— © {4.,2)
’ p prcoshyn

1
with the spread iﬂ 0z due to the differences in rapidity being
comparable to the original uncertainty spread. Partons with rapidity
greater  than y“tl/2 or less than yo-I/Z have separated from those
centered about y, at the time tw coshyu/pr. Thus our physical picture
holds together. By the time the collisions nucessary to free the



16

partons occupying a unit of rapidity have occured, these partons have
physically separated, in the longitudinal direction, from the partons
corrsponding to ditfferent rapidity intervals,

In order to get numerical estimates, let's take A'/"«6,
R=1.2A"/*tm, xG=) and «=1/3, 1.e. «C, =1 (the value xG=3 is reasonable,
even traditional, but at this time it is not a well determined
;nanlity, experimentally). Then {(3.15 ) gives p‘zo.9acev , 1i.e,
1,~0.2tm/c. and one finds:

an
—~— 2 1300 {4.3a}
dy
dE,
— - % 1.2TeV (4.3b)
dy
T
n X 37/fm? (4.3c)
€ & 35GeV/En” {4.3d)

Our second estimate gives p‘zO.BSGeV, eq.{).25), and hence 1°n0.3fm,
nx25/fm® ,and ex17Gev/fn®. These large numbers reflect the large value
of the optimum P, in large nuclei. They correspond for A=l, that is
for proton-proton or proton-nucleus collisions, to prndBOHeV and
s~1GeV¥/fm® which look like reasonable values. The A dependence that we
have found for the energy density is quite similar to that obtained in
other models (9} , but for quite different physical reasons, In our
approach a non trivial A dependence 1s contained in the parton
transverse momenta,

Finally, +e have said nothing about the thermalization of the
partons set free during a heavy ion collisjion. In fact we have little
to say on this subject. Nevertheless, there is one amusing calculation
which can be done at this stage to perhaps get an indication of how
far from equilibrium our initial distribution is. For a free boson gas

in equilibrium one has

azr4 “7/2
B e 2 1,7
" 2 4(3) 30%0

¢

while from (3.19) one has +"“*/nal.) and from (3.24) ., (3.25) and
(3.26) one has «"/*/nxul.). Hua and Kajantie [4] use a refined version

of this type of comparison to argue about the thermalization time.
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However, eventhough the moments of the distribution may not be too layr
from those of an equilibrium distribution, as the numbers we just gave
seem to indicate, it is clear that the thermalization time must depend
on a collision rate and can't be determined from kinematical
consldera§ion alon;f In fact, we would like to arque difterently and
assume (hat the distribution function of the newly formed partons is
much 1like the free streaming distribution (2.8) in the long time
regime where the space-time rapidity v and the momentum space rapidity
y are strongly correlated, 1i.e, 7vxy. The way such a distribution
approaches equilibrium has been studied by Baym |9}, using a simple
collision time approximation. We finds that after a time «t~2, with @
the colligion time, the energy density is within 20% of 1ts local
equilibrium value. As an order of magnitude, we may take our mean free
path estimate, eq.(3.21)}, which gives ()m).nd/pt , With v, given by
(3.25), ({Note that DO becomes infinite in the limit of vanishing
coupling strength, as it should.) With the number given above, one
thus finds 0~.3ftm , and a thermalization time 1|h2200n0.6£m. Let us
emphasize again that this is meant to serve only as a rough estimate
and not as a substitute to a decent treatment of the thermalization
problem. In any case, energy densities such as those given above are
sufficiently high that heavy 1lon collisions involve new and
interesting aspects of QCD independently or not a true equilibrium is

reached.
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