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ABSTRACT

A treatment is given of the orbit dynamics for linear unstable motion
that allows for the zeros in the beta function and makes no assumptions
about the realness of the betatron and phase functions. The phase shift per
turn is shown to be related to the beta function and the number of zeros
the beta function goes through per turn. The solutions of the equations of
motion are found in terms of the beta function.

1. Introduction

In the case of linear unstable motion, the beta function can be zero at some points in
the lattice. Because of the zeros in the beta function, and other assumptions often made
about the realness of the beta function and phase function, the usual treatment given for
stable motion does not carry over to the case of unstable motion. A treatment is given
below, that allows for the zeros in the beta functions and does not make assumptions about

the realness of the betatron and phase functions.

It will be shown that the solutions of the equations of motion can be written in the

form .
e = 8% exp ()
*ds .w (1-1)
=P — 4+ 1—=N.
w B 277

N, is the number of times ((s) goes through zero between sy and s. P indicates the

principle value of the integral. The solutions of the equations of motion can also be



written as
o = exp kps/I] £ (5) (1-2)
where f(s) is periodic and L is the length of one turn. It will be shown that for unstable

motion }
u =2 (g +iq/2)
1

q= §Nz (1_3)
_ P L gs
9= 2 0

where N, is the number of zeros the beta function goes through in one turn. P indicates
the principle value of the integral.

Often, the case of unstable linear motion is found when a gradient perturbation is
applied to a lattice whose unperturbed v-value is close to ¢/2, ¢ being some integer. In
this case, perturbation theory will show [1] that the solutions have the form given by Eq.
(1-1) where g/2 is the half integer close to the unperturbed to the v-value. In the general
case, where the unstable motion cannot be viewed as due to a perturbing gradient then
the value of ¢ is given by %N » where N, is the number of zeros in the beta function in one

turn.

It will also be shown that near a zero of the beta function at s = s1, ¥ will become

infinite and the dominant term is % is given by

P~ i% log (s — s1) (1-4)

2. The Definition of the Beta Function

The linear parameters can be defined in terms of the elements of the one period transfer

matrix. The 2 x 2 transfer matrix, M, is defined by
z(s) = M (s,s0)z(s0)

= (2) 1)
Pz

The one period transfer matrix is defined by

M(s)=M(s+L,s) (2-2)



where the lattice is assumed to be periodic with the period L. The matrix M is assumed

to be symplectic

MM =1

M=SM S (2-3)
(0 1 _ (10

= (5 0) 7= 1)

S is the transpose of S. Also |[M| = 1 where |M| is the determinant of M. One can show
that M(s) and M(so) are related by

M (s) = M (s, s0) M (s0) M (s0,5) (2-4)

It follows from Eq. (2-4) that My + ]\Zfzz, the trace of M , is independent of s. For
unstable motion it is assumed that [Mn + Mzzl > 2. This may be shown to lead to
unstable exponentially growing motion.

One can now introduce the constant parameter p defined by
1 /.- ~
coshpy = 5 (Mu + Mzz) (2-5)

If M + Mzg is positive, then y will be real. However if Mn 4+ Moy is negative then y has

to have the imaginary part igm where ¢ is an odd integer. In general, one can write

B = pR+1qm
coshup = % IMH + ]\;Izzl (2-6)
where q is an even integer if Mu +M22 is positive, and ¢ is an odd integer when My +]\Zf22
is negative. It will be seen below that up is the exponential growth per period; that is,
the growth per period for the unstable solution is exp(ug). It will also be seen below that
q is related to the number of zeros in the beta function, §(s), in a period, which is 2q.

u is related to the eigenvalues of M , A1 and Ay, where A\ + A2 = My + M,y and
Mz =1 from |M — M| = 0. Tt follows from Eq. (2-5) that

A1 = exp (1)
(2-7)
A2 = exp (—u)
One can define the linear parameters, 8, o, -, using the elements of the one period

transfer matrix. If one uses the form of the transfer matrix often used [2] for stable motion



the linear parameters will be imaginary for unstable motion. To make the linear parameters

real, they will be defined here in terms of the one period transfer matrix as

~ | coshy 4 asinhpu B sinh p :
M = [ v sinh cosh 4 — acsinh (2-8)
py=1-a

B, a, v are then given in terms of M;; as

B = (—1)? Miz/sinh R

o = (__1)q (Mll — Mgz) /2 sinh,u,R (2—9)
y=01-a%)/8

Eq. (2-6) does not specify the sign of pp. One can define the sign of ugr to be always
positive. Then £, «, v can then be computed from the Mij using Eq. (2-9). It will be
seen later that the sign of (s) can change within a period, and §(s) can be zero at certain
values of s for unstable motion.

Having defined the linear parameters, one can now find the relationships among them,
their connection with the growth rate, the emittance and the solutions of the equations of
motion. The treatment usually given for stable motion does not carry over for unstable
motion, because if often assumes that 3 and v, as defined for stable motion, are real and
that 3 is never zero. One needs a treatment which does not make assumptions about the

realness of 3, 1, and allows § to go through zero. This is given below.

2.1. Differential Equations for 8, a, v

It is assumed that the linearized equations of motion can be written as

dzx
7 = Anz + Auaps
s
d; N
—;—x = Az + Ag2ps (2-10)
S
An+A»=0
In the large accelerator approximation, Aj; = A2 = 0 and A12 = 1. We note that
iM (s,80) = A M (s,30) V
ds (2-11)

d
-C-l—;M (s0,8) = —M (s0,5) A



The last equation follows from M(s, so)M(so,s) = I. Then using Eq. (2-4)

M (s) = M (s,s0) M (s0) M (s0, ) (2-12)
one finds
%:AM—MA. (2-13)

A is the 2 x 2 matrix whose elements are the A;; of Eq. (2-10). Replacing M , using Eq.
(2-8), in Eq. (2-13) gives the result

@ _ 2A118 — 2Apa

ds

d

d—i = —An B + A2y (2-14)
_6_11 = 245100 — 2A117

ds

The first equation in Egs. (2-14) gives the connection between o and
= (222 4 4 2-15
o= ( 5 T 11/3) (2-15)

2.2. Differential Equation for

In this section, the differential equation for § will be obtained without making any
assumptions about the form of the solutions of the equations of motion. For the sake
of simplicity, the derivation will be given for the large accelerator case which assumes
A1 = Ay =0 and Ajp = 1.

Introducing b, where 8 = b%, Egs. (2-14) can be written as

db
bg; -

da

— = Kb?

ds 7 (2-16)
dy

PP



The first two equations in (2-16) then give

4 (bfi—b) = —Kb* — 4

ds \ ds
2
= —Kb? - [6—12- (1 —b? (j—i’) )] (2-17)

1 [db\?
(2
= Kb b? + (ds)

one then gets

d?b 1
gz TEb =0 (2-18)
b= g3

Eq. (2-8) differs frm the usual result for stable motion only in the sign of the 1 /6% term.

3. pB(s) for Unstable Motion from Perturbation Theory

Before proceeding further in finding the solutions of equations of motion for unstable
motion, and their connection with the beta function, 8(s), it will be helpful to examine a
result for the beta function found using perturbation theory. In reference [1], the case was
studied where a particle doing stable motion with the unperturbed tune v is perturbed
by a small gradient perturbation which opens up an unstable stopband around vy = ¢ /2,
where ¢ is some integer.

In reference [1], the two solutions of the equations of motion inside the stopband are
found using perturbation theory, and will be denoted here as z; and z2. Using 21 and 22

one can find the components of M, and in particular

2 = g (=21 (5) 32 s0) + 22 () 1 (s0)}
dzs dzy

W=og o

In the following, the large accelerator approximation is being used, Ajp = 1, A13 = A2 = 0.

(3-1)

W corresponds to the Wronskian and is a constant of the motion and can be evaluated at

any value of s. One can find § from M evaluated at s = sg + L, and Eq. (2-9),

B = (—1)7 Mys/ sinh ug (3-2)



The result for z; to lowest order [1], is

21 = B (s) exp (96) cos (¢0/2 — (51 +62) /2)
9= ||Avf - (g/2-w)’]”

Av = % / dsfo (s) Bip exp (—1iq8)
df = ds/vofo, &1 = ph(Av)

d2 = ph[(¢/2 — o) +14]

The gradient perturbation is ABy = —G(s)z. g is positive. The result given by Eq. (3-3)
has an error which is first order in the perturbation. The 3 solution is obtained from Eq.
(3-3) by replacing g by —g and 83 by —d2. B0, 1o are the unperturbed beta function and

tune.

One may note that =1 can also be written as

21 = B exp(q +iq/2) 6] [1 + expli (g6 — (61 + 62))] (3-3b)

which makes more evident the floquet form of the solution. One sees that u, the phase

change in one turn is given by

@ =2rg+iqm

One can write z1 and z9 as

21 = 3 exp (96) ha (6)

23 = B2 exp (—g6) bz (6)
h1(8) = cos (g8/2 — (51 + 82) /2)
ha (6) = cos (g6/2 — (61 — 62) /2)

(3-4)



One then finds

22— b xp (~a8) b | =g + i + 365/60]
xlczng = fohihy [ g+ hy/hy + ﬁo/ﬁo]

W = -1-/]—-— [—2gh1h2 + hlhlz — hllhz]

0

1 (3-5)
W = % [—2gcos(q8/2 — (61 + &2) /2) cos (q8/2 — (61 — 82) /2)

— (g/2) cos (¢0/2 — (61 + 62) /2) sin (g8 — (61 — J2) /2)
+ q/2cos(g0/2 — (61 — 82) /2) sin (¢6/2 — (61 + 62) /2)]

W—z—qsmcSZ, sindy = g/|Av|
Vo

where the 2ghihy term in W has dropped as being of high order than the remaining term.
One finds for My, from Eq. (3-1)

My, = % (Bo (6) Bo (80))% [ — exp [g (6 — 80)] 1 (8) bz (60)
+ exp [~g (6 — 6b)] k1 (60) 2 (6)]
Putting 8 = 6y + 27 and noting that h1(9) = (__1)q hl(e()), hz(e) = (_1)q hz(e()), and

(3-6)

2wg = pR, one gets
My = :W/;Q (—=1)72sinh pg cos (¢f0/2 — (61 + 82) /2) cos (g6 /2 — (61 — &2))  (3-7)

B can then be found using Eqs. (3-2), (3-5) and (3-6)

41/0 |Al/|

B(0) = Bo (6) — 0s(g0/2 — (61 4+ 82) /2) cos (q8/2 — (61 — 82) /2) (3-8a)

Eq. (3-8a) can also be written as
21/0 |Av|

B (6) = Po (6) ——— [cos &3 + cos (g8 — 61)]

) (3-8b)
9= [IAle —(a/2-w)’"]"

Egs. (3-8) show that as a function of 6, 8 will change sign and go through zero twice

in each interval of 27/q. These two zeros are located at

@ =61 £é+m (3-9)



As a function of vy, 3 becomes infinite near the edge of the stopband |¢/2—vg| = |Av| and
drops to a value of the order of By near the center of the stopband, vy = ¢/2. In one turn,
A6 = 27, B has 2q zeros. One sees that the number of zeros of £ in one turn is related to
the imaginary part of p, which is ¢m.

This result that connects the number of zeros in 8 in one turn with the imaginary part
of the change in the betatron phase in one turn, was found here using perturbation theory,

but will be shown to be generally valid in the next section.

4. Solutions of the Equations of Motion and the Beta Function

For stable motion, the role of the beta function in the solutions of the equations of
motion is well known. A similar result will be found here for unstable motion. The
treatment usually given for stable motion, does not carry over to unstable motion because
of the assumptions usually made about the realness of the betatron and phase functions,
and the absence of zeros in the beta function.

Let us write the solutions of the equations of motion as

v = bexp (1)

) (4-1)
b= ﬁ'?

where # and b have been defined by Eq. (2-8). Then b has been shown to obey, see Eq.

(2_18)7

d2b 1
gz TEb+ 33 =0 (4-2)
K =—-Ayn

The treatment given in this section is for large accelerator case which assumes A1 =
Ass = 0 and Az; = 1. Similar results can be found for the general case. x then obeys the
equations

d?a

@ + Kz =0 (4:—3)
Putting the form of z assumed in Eq. (4-1) into Eq. (4-3), and using Eq. (4-2) for b one

gets

d¥p  2dbdyp  [dp\® 1
Trimat (%) 5= 4



10

Putting f = di/ds one gets

df 2db s 1
& e T E =0 (+5)
The solutions of Eq. (4-5) are
f==%(1/8") =£1/8, (4-6)
Thus
*ds
==+ — (4-7)

30
and the two solutions of the equations of motion are

z = 8% exp <j: / 0 %"’i) (4-8)

One may note that in deriving Eq. (2-8) no assumption was made about the realness
of B or 1. However, there is a problem with the result for unstable motion, as in the case
of unstable motion B(s) will go through zero. To evaluate the integral when B(s) has zeros,

Eq. (4-2) will be replaced by

b = lim ds

4-9
e—0 sp ,8 — 7€ ( )

where ¢ is a positive small quantity. It can be shown that Eq. (4-9) gives (see section 6)
s ds i
LA SOW Ny o
where s,, are the locations of the zeros of B(s) from so to s. P represents the principle
part of the integral.
One can also show that B'(s) = 42 at the zeros of B(s). Since By = a? — 1, then
o = +1 when 8 = 0. Since §' = —20, ' = F2 when 8 = 0. One can now write Eq. (4-10)

as

Sds am -
=P/ — + —N, 4-11
s=p [543 (411)

where N, is the number zeros in §(s) in sg to s.

One may notice that the imaginary part of 1 has on an unusual dependence on s. It
is constant in between zeros of B(s) and jumps by /2 at each zero of 3(s). One can use
Eq. (4-11) to find the change in ¢ over one turn, ¢(s + L) — %(s), and find

s+L s
berD) -y =P [ Friom (+12)
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where 2q is the number of zeros in $(s) in one turn, and L is the length of one turn.
For simplicity, it is being assumed that the period L is one turn. Since 3(s) is a periodic
function, the number of zeros of B(s) in one turn has to be even. If one defines the tune

as the imaginary part of ¥(s + L) — 9(s) divided by 27, then one has
tune = ¢/2. (4-13)

Eq. (4-13) shows the connection between the tune and the number of zeros in the beta
function in one turn. The real part of ¥(so+L)—1(so) gives the exponential growth in one
turn. If one defines the exponential growth factor, g, to be the real part of ¥(s+ L) —1(s)

divided by 27
P [stlgs

o), B

Another apparent difficulty with the solutions given by Eq. (4-8) is that at the s value

(4-14)

where B(s) is zero, both solutions appear to go to zero being proportional to g 3. This is
not possible as the £ motion which is a linear combination of these two solutions would
then also have to go to zero at this s value. It will now be shown that one of the solutions
will not go to zero at the zeros of B(s).

Let s1 be a zero of 8(s). Then near s = s1, b= B% goes to zero like (s —31)%. However,
it is shown in section 6, that near s = s1 that 1 become infinite like (1/8(s1))log(s — s1).
Note that 3(s1) = 42, and that bexp(1)) goes like (s — 31)%(3 — sl)i%. Depending on the
sign of B'(s), bexp(x)) may or may not go to zero at s = s1. If bexp(y) does go to zero,
then bexp(—%) will not go to zero. Thus one of the two solutions will not go to zero at
8 = s1.

It is interesting to note that the solutions given by Eq. (4-8) can be chosen to be real.
Let us start at the s value sp which is assumed to be in a region where 3(s) is positive
and let s; be the location of the first zero in §(s) after s = sp. In the region so to si,
the solution bexp(w) is real, as 8 and 9 given by Eq. (4-9) are both real. After s = s1,
B3 becomes negative and b = ,8’12 becomes pure imaginary. However 9 jumps at s = s1 by
iw/2. Thus the solution bexp(t) remains real just after s = s1. One can continue in this
way through the entire lattice with 8 and ¢ changing suddenly after each zero of B(s) so

as to keep the solutions real. This result is consistent with the result found in reference
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[1], that the eigenvalues and eigenfunctions of the one period transfer matrix are real in a

linear half integer stopband.

4.1. Eigenvectors of the Transfer Matrix

The eigenvectors of M will now be found in terms of 3, a and 1. It will also be shown
that the eigenvalues are given by exp(£Av), so that Ay = p, where Ay = p(s+ L) —1(s).
Starting from z = ,8% exp(£), one can find the corresponding p, from Eq. (2-10)

1 dz
Pz = ™ {@ — Anw}

Pe = ,H"% (—a =+ 1) exp (£9) (4-15)
1 1dg3
o= ™ (—58? + Allﬁ)

The two solutions can then be written as

1= <i+ gl ==y fa— o i (4-,16>

. 5 ds
1/)_2-1—1;[(1) 0 ,3-—7,6

These two solutions are the eigenvectors of M as

Mz = exp (M) 21, Mz = exp(—A¢)zs

(4-17)
AYp =1 (s+L)—(s) ‘
and the eigenvalues of M are

A =exp (Ay) A =exp (—Avy) (4-18)

Comparing Eq. (4-18) with Eq. (2-7), one sees that g = A¢ = (s + L) — ¥(s).

Since z/ exp(+us/L) is a periodic function, one can write z as
1
z = (2 exp [+us/L] f (s

B exp [ps/I £ (5) w19

2 = % exp [£2m (g +iq/L) s/ L] f (3)
where f(s) is periodic with period L. ¢ here is defined by 2¢ is the number of zeros in ((s)

in one turn. One also has

p=2m(g+iq/2) (4-20)
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where it is assumed that the period is one turn.
To summarize, it has been found that if 2q is the number zeros in the beta function in

one turn, then the eigenvalues of the one period transfer matrix, exp(£pu) are given by

@ = 2mg +iqm
P [Lds (4-21a)
=3y B

where P indicates the principle part of the integral, and the solutions of the equations of

motion are given by

z = B7 exp (£9))
b= i ds. (4-21b)

— 1€

5. The Emittance Invariant

The emittance invariant can be found from the Lagrange invariant for symplectic mo-

tion. If z1 and z4 are two solutions of the equation of motion then [2]
Ty Sz1 = constant (5-1)

It is assumed that the lattice is periodic, so that the coefficients in the linearized equations
ofmotion are periodic in s with the period L. Thus if z(s) is a solution then z(s 4+ L) or
M(s)z(s) is also a solution. In Eq. (3-1) putting z1 = =, z2 = Mz then one gets the
invariant [3]

T sMz = constant (5-2)

Using Eq. (2-6) for M one finds
z sMz = —sinp (—yz? + 2azp, + Bpk) (5-3)

Thus Eq. (5-3) gives the emittance invariant

€= fy:cz — 2azp; — ,Bpg

€= % (:cz —(az + ,Bpx)z) (5-4)

By=1-a"
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Eq. (5-4) shows that the curve € = constant is a hyperbola. In the case of stable motion,
the curve € = constant is an ellipse and € gives the phase space area enclosed by the ellipse.
For unstable motion, € does not have a simple interpretation in terms of phase space, also

€ can be negative.

Eq. (5-4) suggests introducing the new symplectic variable 7, p, where

()-+()

G= (fﬁ 3 ) (5-5)
n =B ta, Pn=:6 7 (az + fps)

1G] =1

The emittance invariant can then be written as

e=n’—p} (5-6)

5.1. Minimum Amplitude

Eq. (5-4) shows that the particle will move in a hyperbola. Under certain conditions,
the particle will first move to smaller = or p, before the amplitude of the motion starts to

grow exponentially. It will be shown below that z and p,; can attain the minimum

1
Tmin = (Be)? , (5-7)
Pomin = (—7€)%, Y=1-a’
Eq. (5-7) shows that z will have a mimimum when o> 0, and p ; will have a mimimum
when fe < 0if o] < 1or Be> 0if |a| > 1.
The minimum given by Eq. (5-7) can be computed from Eq. (5-4) by computing de/ds

and putting de/ds = 0 and either dz/ds = 0 or dp,/ds = 0.
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5.2. Asymptotes and Rotation Angle

If one plots Bp; versus z, one can ask what are the directions of the symptotes of the
hyperbola. If §; and §; are the angles with the z axis for these asymptotes, then they are
given by

tand1 =1 -«
(5-9)
tandy, = —1 — «
These results can be found by assuming the asymptotic expansion for 8pz, fps = tané x4+
co + c_1z7L... and putting this into the equation of the hyperbola, Eq. (5-4). Collecting
all the z? terms and putting the coefficient of 2% = 0 gives Eq. (5-8).

If one plots Bp, versus z, then one can ask through what angle this coordinate system

has to be rotated to make the hyperbola have its normal form. This rotation angle is given

by

(5-9)

6. Phase Function Results when  has Zeros

In this section, the result for the phase function, 1, given by Eq. (4-10) will be derived.
Also, the behavior of 1) when s is near the zeros of 3(s) will be studied.

First, let us consider the case where

3
b=lim [ =2

e—0 30 ,3 — 1€

(6-1)

€ > 0, and one assumes there is only one zero for B(s) at s = s1 between s = sp to s = s.

v="> / e /_:5 e )

Then, one can write
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where § — 0 but § > €. P stands for the principle part of the integral. Near s; one can
write 8 = '(s1)(s — s1) + ... and find

s1itd g s1+4 ds
/31-5 B—ie /1_5 B (s1) (s — s1) — 1€

,3’(31)/ (S+Z_62), s=s—s1, €=¢/f (s1)

3 +e (6-3)
NG (81) |6|
A (81) l
If there are many zeros between sp to s at 8 = 8y one then finds
b=P [ L4 6-4
Aoy~ (&4
Now, it will be shown that near a zero of §(s), like s = s1, ¥ becomes infinite like
P~ :i:—;— log (s — s1) (6-5)
The = corresponds to the sign of §'(s1). We write ¢ as
p=A+B
s 1 1
A= ds — — .
/so {ﬁ —ie  f(s1)(s—s1) - 26} (6-6)
s 1

B= 5o B'(s1) (s — 81) — 1€

where s is assumed to be close to s1 but s > s3.

The integral of A has no pole near s = s; and A does not become infinite at s = s3.

B can be written as

1
B= B (31) (s —s1) — i€
B = 7 (s ) {log (s — s1 — i€) — log (so — s1 — t€)} (6-7)

B~ :1:5 log (s — 1)
where, in the last result, only the dominant term that becomes infinite at s = s1, has been

kept and the result 8'(s1) = 42 has been used.

Thus near s = s1, 1 becomes infinite and the dominant term is given by
1
P~ :I:—z- log (s — s1) (6-8)

where the =+ is chosen to correspond to the sign of §'(s1).
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