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ABSTRACT

This paper studies the motion of a particle whose tune is inside and
near a linear half-integer stopband. Results are found for the tune and beta
functions in the stable region close to an edge of the stopband. Results are
found for the growth rates and for the exponentially growing particle motion
inside the stopband. It is shown that the eigenvalues and the eigenfunctions
of the transfer matrix are real inside the stopband. All the results found are
also valid for small accelerators where the large accelerator approximation
1s not used.

1. Introduction

Inside a linear-half integer stopband the particle motion can be unstable and grow
exponentially. A result is found for the growth parameter g which is the imaginary part of
the tune. It is shown that the real part of the tune inside the stopband is constant at the
value ¢/2, where v = ¢/2 is the center of the stopband, ¢ being some integer. The proof
given does not depend on perturbation theory, and the result follows from the symplectic
properties. The eigenvalues and eigenfunctions of the transfer matrix are shown to be real
inside the stopband. In the stable region near an edge of the stopband, the tune varies
rapidly and the beta function becomes infinite as the unperturbed tune approaches the

edge of the stopband. Results are found for the tune and beta function in the stable region



near an edge of the stopband. It is found that the beta function becomes infinite inversely
as the square root of the distance of the unperturbed tune from the edge of the stopband.
The basic equations used are also valid for small accelerators, where the large accelerator

approximations is not used, and all the results found are valid for small accelerators.

2. Results when the tune is not in the stopband

Before treating the interesting case where the tune is inside the stopband, it will be
helpful to first treat the case where the tune is not inside the stopband. It will then become
clear where the perturbation solution breaks down, when the tune is inside the stopband,
and how the perturbation solution can be repaired.

It will be assumed that in the absence of the perturbing fields, the tune of the particle
is 9 and that the motion is stable when vy is close to ¢/2, where ¢ is an integer.

It is assumed that a perturbing field is present which is given on the median plane by
ABy = -G (s)z (2-1)

G(s) is periodic in s and contains the field harmonics that can excite the stopband around
v = q/2.
Introducing n defined by
n=az/p"?, (2-2)
where 3 is the beta function of the unperturbed field, the equation of motion can be written

as d2
@Zw%n:f

f=vB*AB,/Bp
f=-v§6°Gn/Bp
Bp =pc/e, df = ds/vf

Egs. (2-3) are valid for large accelerators, and a small change is required! to make them

(2-3)

valid for small accelerators (see section 7). However, the final results found below are valid
for small accelerators that require the use of the exact linearized equations. This is shown

in section 7.



Eq. (2-3) can be written as
d*n 2
— + vy = —21b(8) n
de? (2-4)

b(8) = %I/oﬂzG/Bp
Because b(f) is periodic a solution for  will have the form
n = exp (ivs0) h (6) (2-5)

where h(6) is periodic. It is assumed that the tune vy will change to v, because of the

perturbing field. Thus 5 can be assumed to have the form

n = As exp (ivs0) + Z Ay exp (iv,0)
r#s (2—6)

Vr=Vs+n
where n is some integer but n # 0. For a zero perturbing field the solution for 7 is
n = Aexp(ivgh). Thus for small perturbing fields it can be assumed that

VS:VO

(2)
A € Agforr # s
Putting Eq. (2-6) into Eq. (2-4), one obtains a set of equations for the A,
(Vf — 1/3) A, =21 Z b7 A7
(2-8)

T
1 2
by = — / df b(6) exp (—iv 0 + iv76)
27 0
Vr=vs+n
Egs. (2-8) are a set of homogenious equations for the A,. The condition required for
a solution to exist is that the determinant of the coefficients of the A, should vanish. This
condition will determine v, and then Eq. (2-8) can be solved for the A, in terms of A,. It
is more convenient to solve Egs. (2-8) using an iterative perturbation procedure. For the

initial guess for 5 in this iterative procedure, one can assume
n = Asexp (ivsh) (2-9)

One can put this result for # in the right hand side of Eq. (2-8), and solve for A, which

gives
(1/3 — z/g) A = 209b,5As
(2-10)

v =vs+n



For r = s, Eq. (2-10) gives

(V2 —13) As = 2upbss As (2-11)
which determines vs. One finds
Vg —Vp = bss (2—12&)
which can be written as
Vs — vy = by
1 27
by = -2—7-;/0 deb (6) (2.12b)
1 L
-4 [ #esB0
T Jo

This is the well known result®?® for the first order tune shift due to a gradient G. The
solution for n to first order can be found using Eq. (2-6) and Eq. (2-8)

ha 89 bTS T9

vy = Vs +n, n#0

which can be also written as

. 2vpby, .
n = Asexp (iv56) {1 + Z n(n+2 )exp(mﬁ)}
(2-13b)
1 L
= ——7;/ dspGexp (—inb) /Bp
0
One can see from Eq. (2-13b) that the above solution will not be valid when 1y is close to

a half-integer for the denominator (n + 219) can become very small.



3. Results when the tune is inside the stopband

It is assumed that vy is near vy = ¢/2, ¢ being an integer. The stopband is defined as
the range of 1 for which the tune, v, in the presence of the perturbation given by Eq.

(2-2) has a non-zero imaginary part. One can write v, as
Vs = Usp — ig (3-1)
It will be shown that inside the stopband, where g # 0, then

VsR = Q/‘?' (3—2)

This may be shown as follows. Let y be the phase shift for a period, and y = 27y, where
the period has been assumed to be one turn or 27 in 6. Let T be the transfer matrix for

one period. Then one has

1
cospp = 5 (T11 + Toa), (3-3)

and one sees that cos y is real even inside the stopband since the T;; are real. One also has
cos fi = cos 27 (V3R — ig) = cos (2mvsg) cosh (27g) + isin (2wvsg) sinh 27mg (3-4)

In order for cos p1 to be real, one has to have either g = 0 or, if ¢ # 0, 2mvyp = nw, where

n is some integer. Thus, inside the stopband where g =£ 0,

Vsp =n/2 (3-5)
In order to have continuity when the perturbation goes to zero, one has n = q and

Vsk = /2 (3-6)

For the range of vy which is inside the stopband, v, remains constant at vsr = q/2 while
g goes, as will be seen below, from g = 0 at the edge of the stopband to a maximum value
in the middle of the stopband, where vy = ¢/2. One may note that this result does not
depend on the use of perturbation theory and is valid even for large perturbations. A proof
of the result, based on perturbation theory, is given below.

Now let us return to the problem of computing the growth factor, g, using perturbation

theory. The iterative perturbation approach used in section 2 appears to breakdown when



vy is close to ¢/2. One sees from Eq. (2-10) that when vy ~ ¢/2, then one of the A,
becomes comparable to A,, and this is the A, for which v, = v; — ¢, v, ~ —q/2. Thus
in the above iterative procedure for finding 7, one will assume for the initial guess for 7,

instead of Eq. (2-9),
n = Asexp (1v,0) + Az exp (1v50)

(3-7)
Vg=Vs—¢
Then Eq. (2-10) is replaced by
(l/f — 1/3) Ar = 219br s A + 209D, A5
(3-8)
Vr=Vg+n or vpr=rvs+n=vs—qg+n
For r = s and r = 3 one obtains 2 equations for A; and A;
(V2 — 18) As = 2vpbgs A5
(V2 — 12) Az = 2uobs, As (3-9)

Vg=Vs—¢q
In Eq. (3-9), it has been assumed, for simplicities sake, that bs; = 0. This can be
accomplished by redefining vy to be v + by.

In order for Egs. (3-9) to have a solution, one must have

(v = 8) (13 — ) = 4 |bss”

(3-10)
vs=vs—gq
Eq. (3-10) determines v,. If one writes v5 = v, — ig, one finds
[(VSR - ig)2 — u@] [(VSR —q - ig)z] = 4v¢|Av|? (3-11a)
where Av = bgs L
Av = 211— ds Bexp(—igd) G/Bp (3-11Db)
T Jo

|Av| will turn out to be the half width of the stopband. Assuming that vy and v, are
close to ¢/2, then Eq. (3-11a) can be rewritten as

(vsg — 19 — ) (g — vsp + 19 — 1) = |Av? (3-12)
The imaginary part of the left hand side gives the equation,

9(2vsg~q)=0 (3-13)



Inside the stopband where g # 0, one gets
VsR = Q/ 2
Using Eq. (3-14) for v, the real part of Eq. (3-12) gives

(¢/2—w)* +* = |Av]?
9=+ {IavP — (gf2—w)} "

(3-14)

(3-15)

Eq. (3-15) shows that the growth parameter g has a maximum at vy = ¢/2 where g = |Av/,

and decreases to zero at vy = ¢/2 =+ |Av|. The stopband width is then 2|Av| and extends

from ¢/2 — |Av| to ¢/2 + |Av|. Thus |Av/| is the half-width of the stopband.

Now let us find the solutions for n that will give the particle motion inside the stopband.

To lowest order, 7 is given by Eq. (3-7) and inside the stopband
n = Asexp (1vs0) + Az exp (iv50)
vs=q/2—1g
vs=—q/2—1ig

A; and Aj are related by Eqgs. (3-9) which gives

_ 2V0b§3

T (g/2+ig)" — 02
Az = bss —A
(¢/2 — ) +ig

where it has been assumed that vy is close to ¢/2. Eq. (3-17) can be written as

Az = Agexp[—i (61 + 62)]

61 = phase Av
8y = phase [(q/2 — ) + ig]
where bss = |Av|exp(—i1), and |Av| = g% + (¢/2 — vp)? were used.
Putting these results for Az into Eq. (3-16) one gets for  and =
n = As exp (g6) cos (¢6/2 — (61 + 62) /2)
61 = phase Av
63 = phase [(¢/2 — o) + ig]
z = /%

(3-16)

(3-17)

(3-18)

(3-19)



where the multiplying constant exp[—i(§ + 62)/2] was dropped. Eq. (3-19) give to lowest
order the two solutions inside the stopband corresponding to whether ¢ is positive or
negative. The first order correction to 5 could also be found using Eq. (3-8) and the result

1s

n = Asexp(gf) |cos(q8/2 — (61 + 62) /2)

(3-20)
= LU CLERERCRIR
1 L
b = yly ds B G exp(—inf) /Bp

The results found above for the stopband width, the growth rate and particle motion in
the stopbands will apply equally well to small accelerators where the exact linear equations
have to be used, without the approximations used for large accelerators, as shown in section

7.

4. The realness of the eigenvalues and eigenvectors inside the stopband

It will be shown in this section that the eigenvalues and the eigenvectors of the one
period transfer matrix are real when vy is inside the stopband. If ’i‘(s) = T(s+ L, s) is the

one period transfer matrix, then the eigenvalues and eigenvectors satisfy the equation

T@>u@=sz> -

Pz

The symbol z is used to indicate both the column vector = and the first element of this
vector. The meaning of z should be clear from the context. The eigenvalue X is related to

v-value by

A = exp (ip) (1)
§ =27y

where, for simplicity, the period is assumed to be one turn or 27 in 4.



In section 3 it was shown that when vy is inside the stopband, v can be written as

v = ¢/2 — ig one finds for z, when vy is inside the stopband,

A = exp (¢igm + 27g)

43
A= (-1)"exp(27g) )

and the eigenvalue, J, is real when 1y is inside the stopband.

Now let us consider the eigenvectors of T. If A, z are an eigenvalue and eigenvector of
T, it 1s known that 1) is an eigenvalue of T, as T is symplectic. Since T is real, \*, z* are
also an eigenvalue and eigenvector respectively of T. It appears that one has 3 eigenvalues,
A, 1/A and A* instead of just two. Two of the 3 apparent eigenvalues must be equal.

When vy is not in the stopband then v, is real, 1/\ = exp(—iu) = A*, and the second
solution is A\*, z*.

When 1 is in the stopband, then v has an imaginary part, v = ¢/2 — ig. Then
1/X # X*. To avoid having 3 eigenvalues, one needs to have \* = X and z* = z, or A and
z are real when 14 is in the stopband.

One should note that the statement z is real means here that z can be made real by
multiplying by a constant. This is because an eigenvector can be multiplied by a constant
and still be an eigenvector of T. Thus the eigenvector may not appear real because of the
presence of a constant complex multiplier, but can be made real by multiplying it with a
constant.

In section 3, where n was found by an iterative perturbation procedure for v in the
stopband, the solution found, Eq. (3-17), is real as required by the above theorm, whereas
when 14 is not inside the stopband, the solution for n found Eq. (2-13) is complex. Since
the solution for  was specified to have the form given by Eq. (2-6), then z = n/8Y/2 is

the first element of the eigenvector, z, of T.
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5. Tune near the edge of a stopband

In this section, a result will be found for the tune in the stable region outside the
stopband but close to one of the edges of the stopband. It will be shown that close to the
edge of a stopband,

v —a/2] = {21A] [0 — vel}'? (5-1)
v is the tune in the presence of the gradient perturbation, v, is the edge of the stopband,
ve = q/2 % |Av|. |Av] is the half-width of the stopband. Eq. (5-1) shows that when vy is
close to an edge of the stopband, ve, v varies rapidly with vy, and the slope of the v vs.
vy curve is vertical at vy = v,.

To find v in the stable region outside the stopband, where vy — ¢/2| > |Av/|, one goes
back to the derivation given in section 3 for v inside the stopband, starting with Eq. (3-12).
Eq. (3-15) shows that for |vg — ¢/2| > |Av/| the only acceptable solution is ¢ = 0, and Eq.
(3-12) can be written as

(v — o) (lv — ¢l — v0) = |Avf? (5-2)
where we have put v; = v.

Assuming that v is just below the stopband edge ve = ¢/2 — [Av|, put vp = ve — ¢
and v = ¢/2 — § into Eq. (5-2), where € and § both approach zero as vy approaches the
stopband edge. We find

§ = {e(e+2|Av)}? (5-3)
The top edge of the stopband can be treated in the same way and both results can be

combined into the one result
v — q/2] = {lvo — ve| (Ivo — ve| + 2| Av|)}'/*

(5-4)
ve = q/2 £ |Av|
Very close to the stopband edge, |vo — ve| < |Av|, one finds
[v = a/2 = {2|Av]lvo — vel}'* (5-5)

Thus, as vy approaches a stopband edge, v approaches ¢/2, and dv/dvy become infinite

like 1/|vo — ve|'/2.
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6. The beta function near the edge of the stopband

In this section, a result will be found for the beta function in the stable region outside
the stopband, but close to one of the edges of the stopband. It will be shown that close to
edge of a stopband

[(B = Bo0) / Bolmax = [21AV|/|vo — ve[]/* (6-1)

Ve is the edge of the stopband,.v, = ¢/2 £ |Av|. |Av]| is the half-width of the stopband. vy,
Bo are the unperturbed tune and beta function. Eq. (6-1) shows that when 1y approaches
the edge of the stopband, (8 — B0)/fBs becomes infinite like 1/|vy — v/

The beta function § can be found from the solution for the 5 function which has the

form given by Eq. (2-5). It will be shown below that f is given by
B _ v, g/ 1
5= )

1 1 [ 1
(p=ae ) @ 7p

v, B and vy, fp are the perturbed and unperturbed values of the tune and the beta function.

(6-2)

Thus B can be determined from the 5 function, if the perturbed tune is known, and in this

case the tune was found in section 5.

To derive Eq. (6-2) one notes that
T = (}/2777 (6-3)
and thus

B =D By |n|*

where D is some constant. The constant D can be determined using the relationship

v 1 [ Bo
Yo [ e (6-4
v 2w Jy B (6-4)

which when written in this form, will hold also for small accelerators! when the perturba-

tion does not change the closed orbit (see section 7). This gives

D =2(1/lnf)

(6-5)
(B/60) = (vo/v) Inl*(1/Inl?)
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One now proceeds to find the 7 function in the stable region near an edge of the stopband.

To lowest order, 7 is given by Eq. (3-7) as

n = Asexp (iv,0) + Azexp (1vs6)

(6-6)
Vg=Vsg— (¢
Az is given by Eq. (3-9) which can be written as
|Av|exp (—16; )
A" - s
lvs — gl — o (6-7)
=ph(Av)

Assuming g is below the edge of the stopband one puts v = ¢/2 — 6 and vy = v, — ¢,
Ve = q/2 — |Av|. Then
_ |Av|exp (—iéy)

TS + e+ |Av] (6-8)

The 7 functions is then given to lowest order by

_ , |Av| :
n = Agexp (ivs6) [1 + Av| T ets exp [t (—¢f — 61)]

€= |vo — vel, ve = q/2 % |Av| (6-9)
5= lv = a/21 = {Ivo — el (o el + 2180) }

Eq. (6-9) has been written so that it holds both above and below the stopband, and Eq.
(5-4) was used to replace §.

One then finds
In|? = |As|? (1+2C cos (g8 + &1) + C?)

~ Av| (6-10)

Av] 4 v — vel + [v — ¢/2]

<_1_>____1 i/zwdg 1
In|? |As|? 27 Jo 14+2Ccos(¢b+ 61) + C? (6-11)

1 1
One can now use Eq. (6-2) to find g

,Z) (1 + C% 4-2C cos (¢f + 51)) 02 (6-12)

One may note that when vy is at the edge of a stopband, ve — g = 0, v — ¢/2 = 0 and
C = 1. Since one is interested here in the rather large effects due to the 1/(1 — C?) factor
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near the edge of the stopband, one can put vy/v = 1 with only a small error. One finds

for g

(8- o) 1o = 2010 H e a0+ 01)
((B = Bo) /Bo)max = IZ—% (6-13)
2|Av|

((B—Bo) /Bo)max = [0 — ve| + v — ¢/2]
using the result |v — ¢/2| = {(v0 — ve)(|vo — ve| + 2|Av|)}1/2 one gets
2|Av|

(= B s = o T o~ wel (o — vl w282 &9
Very close to the stopband, |1 — v, < |Av|, one finds
[ 2anf \M?
(8= ) oY = { o} (619

Eq. (6-15) shows that as vy approaches the edge of a stopband ((8 — So)/5o)max becomes
infinite like {|vp — ve|}~1/2.

Table 1 below shows how the distortion in the beta function depends on how far v is
from the edge of stopband. The table shows that to keep ((8 — 80)/60)max less than 10%,
then vy has to be about 10Av away from the stopband edge.

Table 1: ((8 — Bo)/BPo)max versus |vg — ve|/|Av| as computed from Eq. (6-14).

[vo — vel/|Av| 5 1 2 4 6 8 10

((B = Bo)/Bo)max 1.24 73 41 22 15 12 .095
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7. Comments on the small accelerator results

All the final results found in this paper will also hold for small accelerators where the
exact equations of motions have to be used. The exact linear equations have the form!

dz
——d = A1z + A12q;
S

dgs
—dg— = Anz + A22¢s
S

dz =PZ/P

(7-1)

In the large accelerator approximation, it is assumed that A1; = Ay =0, Aj2 = 1, and

¢z ~ dz/ds. The coefficients A;; are given in reference 1. In particular, Aj2 is given by
1+z/p

(1-g2)""

where the right hand side is evaluated on the closed orbit.

Ay = (7-2)

Although for small accelerators, the differential equations for z and § are different from
those usually used for large accelerators, it has been found! that the linearized differential

equation for n = z/ B1/2 is not much different. One finds

d? 9
gz TN = f
A2 Bp
Bp = pcfe

with the difference that 8 is now defined by!

ds
voBo

where v, fp are the unperturbed tune and beta function. The Ajy is evaluated on the

df = Ay (7-4)

unperturbed closed orbit.
The relationshp between v and f is somewhat different for small accelerators, and is

given byl
1 (€ A
V= — —=ds 7-5
27 0 ﬂ ( )

where C is the circumference of the accelerator. Using Eq. (7-4) this can be written as

v 1 [* Ao
Yo £ 7-6
vo 2m Jo Agg B (7-6)
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where Ajs is the Ayg coefficient evaluated on the unperturbed closed orbit. If the per-
turbation being considered does not change the closed orbit, then Aj2 = Aj9 and one

has

v 1 2% ﬂO
=5 ) T (7-7)

Eq. (7-7) now holds for both large and small accelerators, provided the perturbation does
not change the closed orbit.

The results found in this paper are based on Eq. (7-3) for  and Eq. (7-7) that relates
v and . Although, the perturbation term in Eq. (7-3) now has the extra factor 1/A; for
small accelerators, this factor of 1/A;; disappears in the final result when one goes from
the variable 8 to the variable s according to Eq. (7-4). Thus the result for the stopband
width, Av, as given by Eq. (3-11b) is valid for both large and small accelerators. Keeping
the above equations in mind, one can go through the derivations on the previous pages,

and show that the final results are valid for both large and small accelerators.

8. Comments on the results

Others have worked on this subject and there is some overlap between the contents of
this paper and their work. P.A. Sturrock? obtained results for the stopband width and
the growth parameter g at the center of the stopband. E.D. Courant and H. Snyder?
obtained the result for the width of the stopband. H. Bruck* showed that the solutions
of the equation of motion at the edge of the stopband are stable. He also states that the
real part of v is constant at g/2 across the stopband without giving a proof of this. A.A.
Kolomensky and A.N. Lebedev® obtained results for the stopband width and the growth
parameter ¢ at the center of the stopband. H. Wiedemann® obtained the result for the
width of the stopband using a method similar to that used by Courant and Snyder.

The new results in this paper include the following. The result given for the tune v near
the edge of the stopband, ve, |v — ¢/2| = [2|Av||ve — 10 ]1/2. The result given for the beta
function near the edge of the stopband, [(8 — Bo)/Bolmax = [2|Av|/|ve— vo[]1/2. The result
for the growth parameter g across the entire stopband, g = {|Av|® — |vo — q/ 2|2}1/2. The

proof given showing that the real part of v is constant over the stopband at ¢/2 does not
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depend on perturbation theory, and the result follows from the symplectic properties. The
result that all the results found in this paper will also hold for a small accelerator where
the large accelerator approximation is not used. The result given for the solutions of the
equations of motion when vy is inside the stopband, and the proof that the eigenfunctions

and eigenvalues of the transfer matrix are real inside the stopband.
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