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Linear Orbit Parameters for the Exact Equations of Motion

George Parzen
January 11, 1994

1. Introduction

This paper defines the beta function and the other linear orbit parameters using the
exact equations of motion. The usual treatment! of the linear orbit parameters is based

on the approximate equation of motion

d*z

— + K = .

1o + K(s)z =0 (1.1)
Approximations are made in obtaining Eq. (1.1) which are usually valid for large acceler-

ators.

The exact linearized equations of motion can be written as

d:
{- = A1z + A12ps
P s (1.2)
;;m = Ag1z + A2aps
3

z and p, are the canonical coordinates in a curvilinear coordinate system based on a
reference orbit and the A;;(s) are periodic in s with period L. The approximate Eq. (1.1)
assumes that Aj; = Age =0, A3 = 1 and Ay = —K(s). The exact values of the A;; are

given in section 2.
A treatment of the linear orbit parameters based on the exact equations, Eqs. (1.2),

rather than the approximate Eq. (1.1) may be desirable in the following situations:

(1) Symplectic long term tracking using a procedure where the magnets are replaced by
a sequence of point magnets and drift spaces. For the tracking to be symplectic, one
has to use the solutions of the exact equations of mtion. The linearized equations of
motion then have the form of Eq. (1.2).

(2) Small accelerators where the approximations made in deriving Eq. (1.1) may not be

valid.

Many of the results found using the apprbximate equations carry over for the exact
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equations. A few of the changed results are the following:

_ 1 ( 1d8
o= 21-2—( 57, +A11ﬂ>
%= /A12 (1.3)
A1z

—_— ds__

27r Jo}

where C is the circumference of the accelerator.

Some unchanged results are

e = vz’ + 2ayp + Bp?

_fcosp+asiny Bsinu
M(S+L’3)—( —ysin p cos,u—asin;u)

v=(1+a%/8
p= (s -+ L) —h(s)

(1.4)

L is the period of the A,-j(s)-. More detailed results are given below. Because of Egs.
(1.4), the usual procedure used in tracking programs to compute v, 3, a, vy and 9, from the

transfer matrix is still valid.

2. Equations of Motion

The exact equations of motion can be written!:? as

dr  14z/p

ds ¢, 1o

dq,; qy

T2t | a/nB, - 2040/,

dy _ 1 +:v/pq (2.1)
ds g

oy _ 1

ds Ef; l:q_x(l + w/P)Bs - (1 + $/P)Bz:|
g =(1—q2—¢2) Y2 Bp=pc/e

In Eq. (2.1), z,s,y are the particle coordinates in a curvilinear coordinate system based
on a reference orbit with the radius curvature p(8). Pz,Ps,py are the components of the
momentum and

9z = pz/p, 9y = py/p, gs = ps/p (2.2)
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For large accelerators, ¢, ~ ' and ¢, ~y'.
To find the linearized equations for the betatron oscillations, one expands Eq. (2.1)

around the closed orbit for a particular momentum, p. This gives the set of linear equations
dz:
d_.; = ZAijfj (2.3&)
J

where T; are the 4 coordinates relative to the closed orbit. The A; j are given by

0 ..
Aij = 5:;;]61 1,1 = 1,4: (23b)

evaluated on the closed orbit and Eqs. (2.1) have been written as

% = fi i=1,4 (2.3¢)

For the case where B, =0, ¢, =0, y = 0 on the closed orbit, the A;; are given by

1¢s (1+z/p) 0 0
P qs qs
B OB 2
oo | Bl /)] ik 0 0 (2.30)
Yo 0 0 0 —“;f/" '
0 0 -g0+z/n%e 0

For large accelerators where ¢, < 1, ¢, < 1, z/p < 1 one has

Ay = A0 =0, Az =1
(2.4)

For the exact equations, A;; and Ag; are not zero, and one does not have Ap =1, A3 = 1.

In particular,

A1 = —As2 = (1/p)(4=/4s)
Az =(1+2/p)/qs (2:5)
Ass = (L +2/p)/gs



3. Eigenfunctions of the Exact Linear Equations of Motion and the Linear Orbit Parameters

The problem now is, given the exact linear equations of motion, Egs. (2.3), how
does one define the linear orbit parameters 8, a, v, v, v and the emittance €, and what are
the relationships that hold between them. To do this, one has to repeat the well known
treatment of the linear orbit parameters, and see where the definitions and relationships
change for the exact equations. The treatment given below is believed to reduce the amount
of algebraic manipulation required, and makes few assumptions about the 4;; coefficients
in the linear equations.

For the z motion, the linear equations are written as

dz
5 Anz + Aizp,
p s (3.1)
CIZ% = A21ps + Az
s
The A;; are given by Egs. (2.3).
The transfer matrix M(s, s ) obeys
x = M(s,s0)zo
s ®
T \ps (3.2)
d
%M =AM

One may note that the symbol z is used in 2 different ways. The meaning of z should
be clear from the context. The matrix M is symplectic as the equations of motions are

derived from a hamiltonian.!'2 Thus

M

I
SM S (3.3)

(50) =6 3)

S is the transverse of S. Also |M| =1; M| is the determinant of M.
The one period transfer matrix is defined by

“ IEI N
l

M(s)= M(s +L,s) (3.4a)

where L is the period of the 4;, in Eq. (3.1). One can show that M (s) and M (s0) are
related by
M(s) = M(s,s0)M(s0)M(sq, 5) (3.4b)
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The eigenfunctions and eigenvalues of M(s) are defined by
M (s)z = Az,
|M - )| =0, (3.5)
/\2 - (mu —I— m22)/\ + 1= 0

where m;; are the elements of M, and using | M |=1.
Eqgs. (3.5) shows that the two eigenvalues A1, Ay obey

My =1, (3.6a)
and for stable motion, |\| =1 and Ay = )}, and we can write
A1 = exp(ip) (3.6Db)

Given the eigenfunction at sg, z1(so) one can find the eigenfunction or any other point

s using

:El(S) = M(S,So)ml(SQ), (37&)

and z1(s) has the same eigenvalue A;. This follows from Eq. (3.5), using Eq. (3.4b) to
relate M(s) and M(so). Also z1(s) obeys the linear equations of motion,

d .
-C-l;.'vl = A:L'l, (37b)
which follows from Eq. (3.7a) and Eq. (3.2). One can show that
s/l _
z1(s)/ N = fi(s), (3.8a)

where fi(s + L) = fi(s). This follows from

fi(s+L)==z1(s+ L)//\f/L'I_1
= M(s)za()/ AT = m(s)/ 0/
Thus, one can write
z1(s) = exp(ipus/L)fi(s)

fi(s+ L) = fi(s)
Eq. (3.8b) can be rewritten as

z1(s) = B(s)'/? exp(i1))

$(s) = us/L+ g1(s) (3.9)
91(s + L) = g1(s), B(s+ L) = f(s)

5
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Eq. (3.9) defines the beta functions, 8(s), except for a normalization multiplyer, for the
eigenfunction z1(s). The normalization multiplyer will be defined below. It will be shown

first that ¢ and B are related. To find this relation, one uses the Lagrange invariant!
W =3 Sz, (3.10)

where 71, 22 are two solutions of the equations of motion. Eq. (3.10) corresponds to the
Wronskian in the treatment of the approximate equations of motion. For z; and z,, we

use the two eigenfunctions z; and z5 = z7.

Ty = (;:) (3.11)

For z; one uses Eq. (3.9) and for p,; one finds from the equations of motion

1 d:Ul
Pzl = A (‘E - Alﬂ) (3.12)

W = T2Pz1 — Po2l

W= dz;y B z1dzo| 1
e dS dS A12 (313)
2t _diy
W=1.54

The beta function § is normalized by normalizing the eigenfunctions so that

W =2, Szq = 2 (3.14)
which gives
dyp Ay
PR (3.15)

Eq. (3.15) replaces the familiar result diy/ds = 1/ which is obtained when A; = 1. From
Eq. (3.15) one can find a result for the tune. Using 27v = %(C) — 1(0) where C is the

circumference of the accelerator, one finds

1 (9 A

From Eq. (3.12) we now find for p,1,

Pr1 = #(i — a)exp(i) (3.17a)
1 ([ 1dp
o= ™ (_Ed—s + A11,5> (3.17b)
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Eqgs. (38.17) provide the new definition for the a parameter, which replaces the familiar
result o = —%dﬁ /ds. At this point the definition of a may seem arbitrary. It will be seen
to be the convenient definition of & when the emittance and transfer matrix are considered
below.
The eigenfunctions can now be written as, using Eq. (3.9) and Eq. (3.17),
1

Ty = zj

(3.18)

4. The Transfer Matrix, the Emittance and the Linear Orbit Parameters

The particle motion can be written as a linear combination of the eigenfunction given

by Eq. (3.18)

z =azr1 + c.c

z = 2[a|ﬁ1/2 cos(tp + &)

_az  2|a|sin(y + 6) (4.1)
bz = B8 B1/2
a = |a] exp(ié)

Egs. (4.1) suggest the new variables 7, p,

(n)=9(;)

4.2
G= [ Bi 0 } 2
affz Bz
for then ] cos( 1 8)
n = 2|ajcos(y +
) (4.3)
Pr = —2|a|sin(y + §)
one obtains the emittance invariant from Eq. (4.3)
N’ +py=ec
2|a| = /2 (4.4)
1=/ cos(+6), py=—/2sin(y +5)
Replacing 1, py, by, z, p, using Eq. (4.2), one gets
2 2
e = 72® + 2a0p, + Bpl
! (4.5)

v=(1+a)/p
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It will be shown below that € is the phase spéce area, divided by =, inside the ellipse
defined by Eq. (4.5).

Since |G| = 1, @ is a symplectic matrix and 7, Py are symplected variables with the

(2)-sem(z)

U = G(s)M(s,0)G(s0)

. 1/2
G=G"'= (_aﬂ/ﬂl/z ﬂ—01/2>

U= U(s + L, s) has the same eigenvalues as M, and the eigenfunction of U, 71 and

transfer matrix U(s, so) and

n2 = n} are related to the eigenfunctions of M, z; and z5 = z3, by

= G.’El
m = [1] ' (+7)

where Eq. (3.18) was used for z;.
One sees from Eqs. (4.3) that p, = dn/di and thus Eq. (4.3) can be rewritten as

1 = 1o cos(p — o) + pyo sin(1) — 1bo)

(4.8)
Py = —1o sin(y — 1) + pyo cos(vp — 1ho)

Eq. (4.8) gives a result for U(s, s¢)

_ | cos(¥p —1hg)  sin(yp —1ho)
U(s,s0) = [—sin(z,b “y)  cos(th — ¢0)] . (4.9)

One can then find M(s, s) using M = G(s)UG(sg),

M(s, 50) (%)1/2 [cos(t — o) + a0 sin(s) —tho)] (BBo)M/? sin(h — 1bo)
? 0 = . / w
~(1+ a) G — (o= o) B (%) loos(y — o) — arsin(yp ~ )] |
(4.10) i
One then finds

R

—ysinp cos ft — asin i (4.11)
0= IP(S +L) - ¢(3)



The results for M and M are unchanged from those found for the approximate equations of
motion. These results and the result for the emittance Eq. (4.5) justify the new definition
for «, Eq. (3.17).

The connection between the emittance, defined by Eq. (4.5), and the phase space area
inside the ellipse area defined by Eq. (4.5), is given by

/dmdpx = /dndpn = Te (4.12)

where we have used |G| = 1 and Eq. (4.4) for the ellipse in 7, p, space.
The relationship between the parameters 8, a,v at s and 8, «,v at s¢ is unchanged.

To see this, write
M =TIcosu+4 Jsinu

. ( o B ) (4.13)

Using Eq. (3.4b) that connects M(s) and M(sq) one finds
J = M(s,30)J(s0)M~(s,50) (4.14)

Eq. (4.13) gives the desired result

g m?; —2m;m; m?, Ba
ol = —moimy; 14 2mjyomo; —mjomas Qg (4.15)
Y m3; —2myomy; m3, Yo

5. Differential Equations for the Linear Orbit Parameter

This section finds differential equations for 8,7 and 4, o, .

5.1 Second Order Differential Equation for z

From the first order differential equation for z,p,, Eq. (3.1), one can eliminate p, to

find a second order equation for z. From Eq. (3.1)

1 ds
p= i, (d_ - Auiv)

dp dl 1 [dz Ay [dz
ZZTS_ = IS' [—A—; (ds Au:)))] A21$ -+ 2:; (E - A11$> (51)

d 1 dz d (An A11 _
ds (Alzds)—l_x( Az = ds <A12> A1z =0
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It has been assumed that Aj; = —Aj,.

5.2 Differential Equation for

To find a differential equation for f, into Eq. (5.1) for z put the eigenfunction

r=0> exp(w)
b= gif2 (5.2)
We find then,
dx _ db iA12 .
ads (—cﬁ b )eXP(“/’) (5.3)
using dip /ds = A1z /b2, Eq. (3.15)
4 (Lde)_[d (L dY ]
ds \ Az ds) ~ |ds \Appds) ~ B2 ds| "0V
db A 1 A .
*’[EE'* ;2] i 77 exp(irh) (5.4)
d 1 db A
| (i) - 5] =t
Putting Eq. (5.4) into Eq. (5.1), one gets
d (1 db\ A d (An\ 4% _
i () - F o (e (52)-22) =0 ©9)

Eq. (5.5) is a second order differential equation for b = /2. It can be compared to
the result found when A15 =1 and A;; =0,

d*b Ay,

5.3 Differential Equation for n

n and z are related by Eq. (4.2) which can be written as
r=bny, b=pg"? (5.7)

In the differential equation for 7 the independent variable is 1 or § which are related to s
by

d
dp = Amg
C ds (5.8)
Cle = Alz%



We find dz/ds and d(A7, dz/ds)/ds which are then substituted into Eq. (5.1) to get the

equation for 7, using Eq. (5.5) to eliminate derivatives of b.

_ db d?] A12

=" T wTy

d 1 dz _d 1 db 1 dbdn Ags
ds <Z;;E;> T ds (ZI—Z—E;) T Ay ds dip B2
d2n A12 dn 1 db

dp? BB dp b2 ds

dz

5.9)
B Aqs d [(An A% (
_{113 +b[A21+dS<A12)+A_12 "
d27] A12
o
d (A A2,
= A — | == —2
77{ 21+d3 <A12)+A12
Thus the equation for 7 is
d?n
dap?
) (5.10)
d n 2 0
a TV

The differential equation for n is unchanged.

5.4 Differential Equations for 8, a, v

The differential equation for 8, a,7, v = (1 + «?)/B can be found starting from Eq.
(4.13) and (4.14) which we write as

M = Icos i +sin (5.11a)
J = ( a P > (5.11b)

J(8) = M(s,30)J(s0)M(s0,5)

We note that p
-ZS-M(S,S()) = A(s)M(s, s0)

J (5.12)
EEM(SO’ s) = —M(so,3)A(s)
The last equation follows from M(s,so)M(sg,s) = I. Thus we find that
dJ
e AJ—-JA (5.13)
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Replacing J using Eq. (5.11b) in Eq. (5.13) we find

d

98— (411 — 4228 — 24120

d

;% = —Asf — Aray (5.14)
d

?‘% = —24s10 — (A11 — A )y

6. Perturbation Theory Using the Differential Equation for n

The equation for 7, Eq. (5.10) is often used as a starting point in finding the effects
of a perturbing field. The particle coordinates are measured relative to a reference orbit
which is the particle motion in a known magnetic field with components B;. The exact

equations of motion can then be written as

d:z:,

ZA,,Q:J + £ i=1,4,7=1,4 (6.1a)

where the f; includes all the terms not included in ) A;;z;. These include terms due to
fields not included in the reference field B;, which may be referred as AB;, and nonlinear
terms due to the terms in the exact equations of motion that do not depend on B;.

One can see from the exact equations of motion, Eqgs. (2.1) that the contribution to

fi which depend explicitly on AB;, when AB,; = 0, are given by

1
fo=—(1+z/p)AB
B”l ’ (6.1b)
fo= —’B—p(l +z/p)AB;

Repeating the above derivation of Eq. (5.10) for 7, including the f; terms, one finds the 5

equation for the z-motion

d2 ﬂ3/2
dez + Va:n A12 f.’t
A2, f
= 6.2
fo=fat 7= f+ds <A12> (6.2)
ds
46 = Arn VP
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A similar equation can be found for the y motion,

. 3/2
%9—2— o Aﬁ“ fy (6.3)
Ty =f4+ f3+ = (j§4)
For the case of a gradient perturbation
ABy = -Gz (6.4)
one can use Eq. (6.2) to find the change in v;, Av,. One finds
Avy = — / dsBy 2 5 (6.5)

This well known result for Av, is not changed by using the exact linear equations.
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