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Abstract *

This report investigates the derivation of the Fokker-Planck equation which is com-
monly used to evaluate the evolution with time of an ensemble of particles under the effect
of external rf forces, cooling and forces of stochastic nature like intrabeam scattering. The
conventional approach based on the classical work by Chandrasekhar is first exposed,
where the phase delay and the momentum error of the particle are used. The method is
then extended to the case the distribution function is expressed in terms of the amplitude
of motion instead of the original rectilinear variables. The new Fokker-Planck equation is
obtained with an averaging process over the phase distribution instead of the time-averag-

ing as it was usually performed earlier, to avoid the appearance of a singularity behavior.

The solution of the Fokker-Planck equation is chosen in the proper form which
makes easier the evaluation of the beam lifétime in the presence of the separatrix of the rf
buckets. Finally the numerical applications apply the Relativistic Heavy Ion Collider
(RHIC).

* Work performed under the auspices of the U.S. Department of Energy



1. Introduction

The Fokker-Planck equation is a useful tool to describe the evolution with time of the
distribution of an ensemble of particles that move under the effect of stochastic forces,
which are forces that change rapidly and discontinuously. The method for solving a sto-
chastic differential equation, that is a Langevin equation [1], requires that some conditions
are satisfied: first, the fluctuations have to take both positive and negative values with a
zero average; second, the distribution of the errors is a Maxwell-Boltzmann distribution of
assigned width which depends on the rate of damping and of diffusion. The major ingredi-
ent is the distribution function of the probability of finding a particle occupying a given
location in the phase-space of canonically conjugated variables. Statistically this is also
the distribution of an ensemble of a large number of particles in the same phase-space.
Usually the variables involved assign the actual location in space and the associated veloc-
ity components. Both of these variables can take positive and negative values and have
typically zero average.

An important problem, where the solution in terms of a Fokker-Planck equation is
desired, is the case of a bunched beam of electrically charged particles circulating in a
storage ring. The motion of the particles may be determined by the presence of external 1f
accelerating and focussing forces, stochastic cooling and particle-particle interaction by
Coulomb scattering, that is intrabeam scattering. An important issue is also the determina-
tion of the beam lifetime, or conversely the rate of beam loss due to the counteracting
effects of diffusion of the motion of the particles to large amplitudes and of damping
which brings the motion toward lower amplitudes. The beam loss is caused by the pres-
ence of an aperture limitation, like the separatrix of the rf buckets, since there is always a
finite chance of traversing it. '

In the case of a bunched beam, the distribution changes over periods of time consider-
ably longer than a synchrotron oscillation period. In this case, it is desired to develop a
transport equation which involves only the distribution of the amplitude of the particle
motion. This creates some difficulties since with the new variable the requirements above
are no longer satisfied. In previous work [2-5] a Fokker-Planck equation was derived by
performing a time-averaging over a synchrotron oscillation period. Unfortunately this
operation introduces a singularity; in correspondence of the separatrix, the synchrotron
oscillation period diverges violating the averaging procedure itself and invalidating the
evaluated behavior of the beam in proximity of the separatrix. We propose here an
approach which takes the Fokker-Planck equation with the original variables and trans-
forms it to the one for the distribution of the amplitude variable. Moreover the time aver-
age is replaced by an average over the phase distribution, avoiding the singularity. The
result is an equation which has a form quite different from the one previously adopted.

In the following Section 2 we review the approach by Chandrasekhar [1] to evaluate a
correct Fokker-Planck equation in terms of the original rectilinear coordinates. Section 3
discusses the analytical transformation to angle-action variables. The modified Fokker-
Planck equation in terms in the new variables is derived in Section 4. The discussion of the
result and the application to the Relativistic Heavy Ion Collider [7] is finally done in sec-
tion 5.




2. Chandrasekhar’s Approach to Langevin Equation

The longitudinal component of the motion of a charged particle in a storage ring is
described by a pair of canonically conjugated variables: the rf phase angle ¢, which mea-
sures the angular displacement around the closed reference orbit with respect to the syn-
chronous particle, and the angular momentum w, related to the energy error AE by
w = AE / hwg where wy is the angular revolution frequency, generally a function of w
itself. In absence of external rf forces, stochastic cooling and particle-particle interaction,
the equations of motion are very simply

d¢/dt = aw 2.1
dw/dt = 0 (2.2)
where

a = nwy?h?/B2E (2.3)

with E the total energy of the particle, B, v the relativistic velocity and energy factors, v,
the value of the storage ring transition energy, h the rf harmonic number which at this
moment is unspecified, andn = 7 - ¥ 2. In the following we shall assume that

’ t . g Y > Y tha
is the case above the transition energy when m >0 and a > 0.

When stochastic cooling and intrabeam scattering are included, the second equation is
modified as follows

dw/dt = —-Aw + DA® (2.4)

where A is the cooling rate and D the diffusion parameter, both of which can generally
include a weak and smooth dependence on time and w. In absence of rf forces, both A and
D do not depend on the angle ¢. A(t) is a dimensionless, time-dependent stochastic func-
tion which changes rapidly and discontinuously.

Eq. (2.4) is called the Langevin equation. It is a stochastic differential equation sub-
ject to the restrictions on A(t) stated above. The method for solving such equation is dis-
cussed in the work by Chandrasekhar [1] which we review briefly here.

In the following At is a time sample short enough, during which the angular momen-
tum w does not vary appreciably. Yet At is large enough to include a large number of fluc-
tuations of the stochastic function A(t). Eq. (2.4) can then be formally integrated as
follows

Aw = -—-A wAt + DB() . 2.5)
where

Bt = LA A@madt (2.6)
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represents the net change of w which a particle may suffer on a given occasion during an
interval of time At around the instant t. This parameter is subject to statistical fluctuations
described by a probability distribution function given by the following Maxwell-Boltz-
mann equation

W(BIAL]) = exp( - IBADI?/4qAt)/ (4 q At)2 2.7

where q is a parameter which defines the width of the equilibrium distribution and is
related directly to the cooling rate A and the diffusion parameter D. It is to be noticed that
B(At) can take positive as well as negative values, that the average value expected is zero
and that the distribution of the fluctuations has an rms width given by (2q At)Y2, that i
the larger the sample period At the larger is the uncertainty on the magnitude of B(Av).

The solution of the Langevin equation (2.4) can be described by the distribution func-
tion W(w, t) of the probability of finding the value w at the time t. With Egs. (2.5) and
(2.7) holding, it can be proven that the distribution function satisfies the following Fokker-
Planck equation

OW/dt = IMWW)/dw + 92(qW)/9w> (2.8)
In the limit t — oo this equation reduces to

AWW + 9(qW)/aw = 0 - (2.9)
which has the solution

W(w) = exp( -Aw?/2q)/ Qrq/a)2 (2.10)

The average W of the momentum distribution and the rms width 82 are defined as fol-
lows

Vo= LT wWw) dw 2.11)
and
2 = [ wiWw) dw (2.12)

The corresponding equations are obtained by multiplying both sides of the Fokker-Planck
equation (2.8) by either w or w2 and integrating over the entire range of w from —oo t0 +oo.
One finds

dw/dt = — AW (2.13)
d8%/dt = 2082 + 2¢ (2.14)
which has the following equilibrium value in the limit t — o

8.2 = q/A (2.15)




in agreement with Eq. (2.10). Eq. (2.14) should be compared with the original Eq. (2.4). It
is seen that qzreplaces D. It is the proper diffusion coefficient defined as the average
increase of w* per unit of time.

We want to emphasize that the derivation of the Fokker-Planck equation (2.8) is based
on the assumption of the distribution function (2.7) of the statistical fluctuations, and
applies correctly to a variable w which takes both positive and negative values. In particu-
lar the average value of w is zero.

It is also to be noticed that the angle coordinate ¢ does not enter the Fokker-Planck
equation, and remains as a “spectator” variable. Indeed the action of stochastic cooling
and of particle-particle interaction affects only the momentum variable w. It is, neverthe-
less, possible to modify the Fokker-Planck equation to include formally also the depen-
dence on the variable ¢. If the distribution function is W = W( ¢, w, t ) the corresponding
equation is

AW/t + awdW/3d = dAwWW)/dw + 0°(qW)/ow? (2.16)

It is also possible to include an external, rf restoring force which modifies Eq.(2.4) as fol-
lows »

dw/dt = -Aw = bsind + DA() (2.17)
where, for the case of non-accelerating, stationary rf buckets,
b = QeV/2nhA (2.18)

with Q the charge state, A the mass number of the particle and V the peak rf voltage. For
this case the Fokker-Planck equation modifies as follows

OW/0t + awodW/dd — bsingodW/odw = a(?»wW)/aw+82(qW)/aw2 (2.19)
which is the generalization of the Liouville’s theorem according to Chandrasekhar.

Eq. (2.19) is the correct representation of the evolution of a bunch of charged particles
moving in a storage ring under the action of the external tf forces, stochastic cooling and
intrabeam scattering. It can be expected that the cooling rate A and the diffusion coeffi-
cient proper q have also a dependence on the azimuthal angle ¢, since they depend on the
actual location of the test particle within the bunch.

3. Transformation to Angle-Action Variables

The unperturbed equations of motion in the presence of the external rf forces

do/dt = aw (B.1)

dw/dt = -—bsind (3.2)




can be derived from the Hamiltonian

H =aw?/2 + 2bsin?¢/2 : (3.3)
through the Hamilton’s equations

d¢/dt = o0H/dw (3.4)
dw/dt = —3H /30 | | (3.5)

Since the Hamiltonian does not depend explicitly on time, it is more convenient to
operate a canonical transformation from the pair of variables (¢, w) to the pair (Q, J) also
of canonically conjugated variables, through the generating function

S= 86,0 =% dx (2/a)[] ~ 2 b sin® (x/ 2)] (3.6)

which gives

w = 3S/3¢ 3.7

Q = 05/3J (3.8)
The variable J is identified with the Hamiltonian itself, that is

T =aw?/2 + 2bsin /2 (3.9)

and |

Q=% dx {(2a)[J - 2bsin? (x/2)]) ~12 (3.10)

Jis the amplitude of the particle oscillatory motion and the variable Q is the time required
to travel around the trajectory of amplitude J. To complete one oscillation, it takes a period
T = 27 /Q which is a function of J. The phase oscillation angular frequency is given by

Q = nQ,/2KK) (3.11)
where
Q, = (ab)2 (3.12)

is the frequency in the limit of small oscillations and K(k) is the complete elliptical inte-
gral of the first kind [8] with

k = (J/2b)12 (3.13)
The unperturbed equations of motion (3.4) and (3.5) are now replaced by

dQ/dt = 1 _ 3.14)




dJj/dt = 0 (3.15)

The variable J is a non-negative quantity which takes the value zero in correspondence to
the center of the beam bunch and increases in value with increasing trajectory size until it
reaches the value J§ = 2b in correspondence of the separatrix. Beyond the separatrix the
motion is unstable. At the center of the bunchk =0, K =7/ 2 and the angular frequency of
the phase oscillations €2 = £,. At the separatrix, k=1, K — o= and Q =0, as it is well
known.

4. Fokker-Planck Equation in the Action Variable

It is desirable to express the Fokker-Planck equation (2.19) in terms of the new trans-
formed variables Q and J through a probability distribution function W(Q, I, t). Since J is
a non-negative quantity, and its statistical fluctuations do not satisfy the Maxwell-Boltz-
mann distribution (2.7), one cannot derive the corresponding Fokker-Planck equation.ab
initio as done for the distribution W (¢, w, t) in terms of the variables ¢ and w. We pro-
pose here the following approach.

The phase oscillation period T, = 2r/ €, in the center of the bunch is considerably
larger than the sampling time At we take to measure the net change due to the statistical
fluctuations. Moreover the effects due to stochastic cooling and intrabeam scattering
evolve over periods of time that, though comparable to each other, are both longer than
T,. Therefore it is reasonable to assume that the bunch distribution is continuously
matched to the shape of the trajectories in the (¢ ,w)-phase plane and that the distribution
function depends explicitly only on J and not on Q, thatis W = W(J, t). This simplifies
considerably the left-hand side of Eq. (2.19) since, from Egs. (3.3-3.5) and (3.9)

awdW/d¢ —bsin¢dW/dw =
= {(d¢/d)@T/odp)+ (dw/dt)(@I/dw)} @W/3]) =0 - 4.1

The right-hand side of Eq. (2.19) can also be readily transformed in terms of the vari-
able J. The two quantities A and q may include a dependence on w, but weak enough so
that they can be taken in and out of the differential operator d / dw without altering the
result considerably. Moreover, they have a dependence on ¢, mostly through the actual
location within the bunch. Their values have at very most a factor of 2 difference between
the center of the bunch and the outer edge where particles sweep through the center twice
each phase oscillation. Thus, since we are interested in the overall behavior of the distribu-
tion and not in that of a single particle, it is a good approximation to replace A and q with
about half the peak value they take at ¢ = 0. Finally the differential operator d / dw can be
easily transformed to the operator d / dJ

D(AWW)/dw ~ AW + A(@awd)@W/aJ) (4.2)
2 (qW)/aw? ~ qa@W/3l) + qa@aw?) @PW/a1 (4.3)

where




With the same arguments as before, the last equation is to be evaluated at the center of the
bunch and reduced by a factor of 2. In conclusion

OW/dt = O {J[AW + 3(qaW)/9T]}/aJ 4.5)

which is, in our opinion, a more valid Fokker-Planck equation for the distribution function
W(J, t) given in terms of the amplitude of motion J. Qur procedure, which is based on the
averaging over phases, avoids the averaging over time, that is over synchrotron oscillation
periods, that would introduce a singularity behavior around the separatrix [2-3,5].

Eq. (4.5) involves only coherent and stochastic variation AJ with At through the cool-
ing rate A and the diffusion coefficient proper q. The nature of the physical problem being
investigated does not require introducing the average variation of <AJ?> over At.

For the case of debunched beam, in absence of rf external forces, i. e. b = 0, we have
derived the correct Fokker-Planck equation (2.16). There is no dependence of this equa-
tion with the phase angle ¢; thus, the transformation procedure from the angular momen-
tum w to the invariant J= aw2/2 is more rigorous and gives exactly the transformed
Fokker-Planck equation (4.5).

In the limit t — e Eq. (4.5) exhibits the following equilibrium behavior
AW + 9(@W)/9] = 0 (4.6)

which has the stationary solution

WE) = exp (- 1/T.) /1, A.7)
where
T. = qalh 4.8)

is the median value of the distribution at the equilibrium. We can also define the average
I = [, Tw@,ndl : (4.9)

The equation for T is obtained by multiplying both sides of Eq. (4.5) by J and integrating
over the range of J from 0 to oo

dT/dt = - AT + qa (4.10)

which exhibits the asymptotic value ] = T, in agreement with Egs. (4.7) and (4.8). Fur-
thermore, reminding the relation between J and w, it is seen that Eq. (4.10) can be identi-
fied with Eq. (2.14), and that both equations yield the same equilibrium value for the
width of the distribution.




5. Integration of the Fokker-Planck Equation. Beam Lifetime.

In principle, the Fokker-Planck equation (4.5) is to be solved by assigning an initial
distribution W(J) at t =0, when the initial number of particles is N, and integrating by
requiring that at the separatrix the distribution is zero at all times, that is

Wa=I) =0 (5.1)

reminding that J; = 2b and that b is given by Eq. (2.18). Integration of W(J, t) over all
values of J, from 0 to J, gives the fraction N/N,, of particles surviving at the time t.

We shall attempt here an analytical solution of Eq. (4.5) by representing the solution
as the sum over fundamental modes, that is by choosing

WU, = X Cq exp (—Bst) Ug (D) (5.2)

where Cgand B are integration constants that describe the fundamental modes and the
initial distribution at t = 0. The eigenmodes are described by the function Uy (J) which are
chosen so to satisfy the boundary condition

U@ = 0 at J=J (5.3)

Inserting the series expansion Eq. (5.2) in the Fokker-Planck Eq. (4.5) gives the fol-
lowing equation for the eigenfunction Uy (J)

ochzUS/dJ2+(J+0c.)dUS/dJ+(1+fS)US =0 (5.4)
where

o =qal/\ (5.5)
and

£ = B2 | (5.6)

Eq. (5.4) is Kummer’s equation [8] which has as independent solutions the two Kummer’s
functions M and U, of which though only the first can be accepted since the second has a
singularity behavior at the origin J = 0. Thus

U () = M(-f,1,]/0) exp(-=T/ ) (5.7)

The Kummer’s function M has the s-th positive zero which in good approximation [8]
is given by

Xg = W2 (s — 1/4)2/(2 + 4f,) (5.8)

The eigenmodes are determined by imposing the boundary condition given by Eq. (5.3),
that is




By = nzqa(s—1/4)2/(4Js)'- A2 (5.9)

This is made of two terms: a contribution from the diffusion rate (a q) which is positive,
and a contribution from the cooling rate A which is negative. As expected, the former
causes a decrease of the density of the core of the distribution and the latter an increase.

The several modes which appear in Eq. (5.2) can be used to evaluate the evolution of
the distribution from its initial configuration. In absence of cooling (A = 0), after an initial
. period of time where the distribution widens and reaches the separatrix of the rf buckets,
the overall behavior is essentially determined by the lowest eigenmode corresponding to
s = 1, since all the other modes will have in the meantime decayed very quickly. Corre-
spondingly the beam lifetime Ty itself can be identified with the inverse of the growth
rate By, that is

T = 128b/(9n?qa) | (5.10)

This is verified with the numerical integration of the Fokker-Planck equation itself that in
absence of cooling (A = 0), can also be written as

OW/3T = OdW/3u + ud’*wW/au? (5.11)

where we have introduced the reduced variables u = J/J; and T = t/ T, with

Ts = 2b/qa. The condition (5.1) translates to W(1) = 0. The result of the numerical inte-
gration is shown in Figure 1 which displays the distribution. function W(u) versus u in the
range between 0 and 1. The top curve is the initial distribution at T = 0 and the one at the
bottom corresponds to T = 1. The other curves are at instants in between taken at T = 0.1
apart. The vertical scale is in arbitrary linear units. Integration and normalization of the
distribution W(u) over the range 0 <u < 1 at a given instant T gives the number of parti-
cles survived at the same instant which is plotted in Figure 2 versus T between 0 and 1. It
is seen that beam lifetime is about 0.7 T, in agreement with Eq. (5.10).

W(u) =
TV

Fig. 1. Evolution of the Distribution Function W(u) vs. time in absence of Cooling
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Fig. 2. Beam Survival vs. Time in absence of Cooling

If stochastic cooling is added at the rate A, a reasonable criterion is to adjust the cool-
ing rate so to obtain the required beam width T... From Eq. (4.8)

A = qall, (5.12)

In this case the beam lifetime, which we shall denote Ty, after the initial transition period,
is determined again by the lowest mode s = 1, which gives, in good approximation,

Toe = Tpo/(1l - 03673/7,) (5.13)

If the cooling rate is adjusted so that J,, > 0.36 J, the diffusion process will dominate
resulting in a lowering and widening of the distribution and of beam particle loss at the
rate given by 'cbc‘l. If on the contrary J,, < 0.36 Jg, the cooling process will dominate,
causing an increase and narrowing of the distribution at the rate | Ty |‘1. There are also no
beam losses, and the beam lifetime is infinite. This case is also verified with the numerical
integration of the Fokker-Planck equation that can be written also as follows

OW/3T = W + (u+a)dW/ou + oud’W/ou? (5.14)

where u=17J/Jgas before, now o = J,/J and T = A t. The result of the.numerical inte-
gration of Eq. (5.14) is shown in Figure 3 for o = 0.1. The lower curve is the initial distri-
bution at T = 0 and the top one corresponds to T = 1. All the others in between are taken
at T =0.1 apart. By numerically integrating the distribution functions it has been deter-
mined that indeed the beam intensity is constant versus time.

It is seen that the optimum from the beam lifetime point of view is obtained by letting
By =0, that is by setting the cooling rate so that

J. = 032J; = 0.64b (5.15)
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which requires

A = 156qa/b | (5.16)

W(u) k

NN

0 u 1
Fig. 3. Evolution of the Distribution Function W(u) vs. Time with Cooling

It is to be observed that all the major results of this section involve the constant b, which is
given by Eq. (2.18), and that therefore depend on the peak 1f voltage V and on the if har-
monic number h. The other important parameter is the kinematic constant a given by Eq.

(2.3). The diffusion rate q is defined through Eq.s (3.9) and (4.10) and is related to the rms
increase of w? per unit of time, thatis 2q = d <w?>/dt or 2 h2m02q = d <AE?%>/ dt.

6. Application to RHIC

The performance of the Relativistic Heavy Ion Collider [7] is greatly influenced by the
phenomena of Intrabeam Scattering which is the one made of a sequence of events with
stochastic behavior and which gives rise to a diffusion process at the rate we have denoted
before by q. This phenomena nevertheless evolves over very long periods of time, involv-
ing several synchrotron oscillations before ari appreciable effect of the beam can be
noticed which is consistent with the assumption we have made in the paper. Similarly, sto-
chastic cooling of the bunched beam can be added but also with comparatively long cool-
ing periods. In this mode of operation, which requires relatively low electronic gain, the
diffusion effects due to both Schottky and thermal noise can be neglected with respect to
the stochastic effects of the particle-particle scattering [4]. Thus the all process can very
well be described only by a cooling rate A and a diffusion rate q which at the limit can be
taken constant or very slowly varying. The cooling rate A is proper of the longitudinal sto-

chastic cooling system, and the diffusion rate q is proper of the intrabeam scattering phe-
nomena.

1



The diffusion rate q depends on the beam betatron emittance €, on the beam intensity
N, and on the bunch length and momentum spread. Thus there is to some degree also a
dependence on the rf parameters, like rf peak voltage V, the rf harmonic number h and the
compaction parameter 1 of the storage ring.

The reference is given by the case of a bunched beam of fully stripped ions of gold
(Au). The main parameters are reported below

Mass Number, A 197

Charge State, Q 79

Rest Energy, Eg 093113 GeV/u
Kinetic Energy 100

B 0.99996

Y 108.4

Transition Energy, y; 24.7

n 0.001554
Circumference 3833.852 m
Revolution Frequency, o,/ 2% 78.193 kHz
f Harmonic Number, h 2052

rf Peak Voltage, V 4.5 MV
Number of Ions / Bunch, N, 1x 109

From which a = 15,650 (eV/u)‘1 s‘z, b = 140 eV/u and J§ = 280 eV/u. The rf bucket
full heightis Ap/p = 4.0 x 107>, If the normalized betatron emittance &g = €y is
enlarged at the beginning of the storage to the full value of 60 * mm-mrad, and the longi-
tudinal area of the bunch has a full value of 0.3 eV/u - s at the start, then the betatron emit-
tance grows very little during a 10-hour long storage: up to about 70 ©# mm-mrad. At the
same time the beam momentum spread increases at about a constant rate which corre-
spondstoq=1x 1077 (eV/u)2/ s. The result of the computation of the growth [6], from
which the value of the diffusion rate q can be inferred, is displayed in Figure 4 which plots
the square of the bunch momentum spread versus time in the period between 2 and 10
hours of a typical storage.

1.3

3

1.2
(Ap/p)? in 1076

1.1

1
0.9 /
0_8 /
0.7 )r
0.6 :
’/ hours

0.5 Y
2 3 4 5 6 7 8 9 10

Fig. 4. The square of the Bunch Momentum Spread vs. Time during a Storage
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It is immediately derived that qa= 0.0016 (eV/u)/s. In absence of stochastic cooling
(A =0) the beam lifetime is t,p = 0.7 Ty = 34 hour. After a storage which is 10 hours
long only about 75% of the beam survives.

Stochastic cooling can be added to lengthen the beam lifetime, essentlally to infinite.
According to Eq. (5.15) the cooling time required is Teooling = Al =032 Ty = 15.6 hrs.
More generally if one requires reducing the bunch d1men81ons to the ratio o = T,/ J
then the required cooling time is Tgoping = (48.6 hrs) o For instance, the cooling t1me
required for oo = 0.1 is about 4.9 hrs.
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