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Symplectic Tracking Using Point Magnets

in the Presence of a Longitudinal Magnetic Field

G. Parzen

RHIC Project
Brookhaven National Laboratory
August 1993

1. Introduction

In the absence of a longitudinal magnetic field, symplectic tracking can be achieved
by replacing the magnets! by a series of point magnets and drift spaces. To treat the
case when a longitudinal magnetic field is also present, this procedure is modified in this
paper by replacing the drift space by a solenoidal drift, which is defined as the motion of a
particle in a uniform longitudinal magnetic field. A symplectic integrator can be obtained
by subdividing each magnet into pieces and replacing each magnet piece by point magnets,
with only transverse fields, and solenoidal drift spaces. The reference orbit used here is
made up of arcs of circles and straight lines? which join smoothly with each other. For this
choice of reference orbit, the required results are obtained to track particles, which are the
transfer functions, and the transfer time for the different elements. It is shown that these
results provide a symplectic integrator, and they are exact in the sense that as the number
of magnet pieces is increased, the particle motion will converge to the particle motion of

the exact equations of motion.

2. The Approximate Lattice

In the absence of a longitudinal magnetic field, one procedure for symplectic integration
is to replace each magnet in the given lattice by a series of point magnets and drift spaces.
The equations of motion for the approximate lattice which has only point magnets and
drifts can be integrated exactly, which gives a symplectic second order integrator? for the

case where the longitudinal magnetic field, By, is absent.
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2 The Equations of Motion

For the case where a longitudinal magnetic field is present, B, # 0, the following
approximate lattice is proposed. FEach magnet is broken into a number of pieces. A
magnet piece of length h is replaced by point magnets, at each end of the piece with only
transverse fields By, By, and a solenoidal drift which is defined as the particle motion in a
uniform longitudinal magnetic field. The point magnets at the ends of the piece, kick the
values of p; and p, at each end of the piece. In between the point magnets, the particle
performs a solenoidal drift; the particle coordinates change as they would in a uniform
longitudinal magnetic field.

It will be shown below that the above proposed approximate lattice for the case when
B; +# 0 gives a symplectic integrator. This integrator is correct to first order in h, using
the simplest procedure for specifying the longitudinal field in the solenoidal drift. More
complicated procedures for specifying the longitudinal field may improve the accuracy.
However first order in A accuracy may be sufficient as the effects due to the longitudinal
fields are often small. As one increases the number of magnet pieces, decreasing h, the
result obtained by integrating this approximate lattice will converge to the actual motion

for the given lattice.

3. The Equations of Motion

The equations of motion for the transverse coordinates may be written as®

dz l4+z/p
d_' = Pz
8 Ps
dps ps _ Dy
B 2y [0 4o/) By~ (14 0/p) B,
gig 1+ w/p Py (3.1a)

dpy [ (1+3/p) B~ (1+2/) B

ps = (p* — p’ —zf)y)l/2

z,y are the transverse coordinates in a coordinate system based on a reference orbit with

the radius of curvature p(s). As the longitudinal coordinates one can use ¢, the particle

time of arrival at s, and E the particle energy. The longitudinal coordinates obey the
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equations
dt _l+z/pp
cg ps (3.1b)
= —e(l+e/p)&

In Eq. (3.1) it has been assumed that the electric field has only the longitudinal

component, &. One can show that the equation for dt/ds is equivalent to

at =%
v (3.1c)
2 2 2]1/2
de = [(1+2/p)* + (du/ds)* + (dy/ds)’| " ds
where df is the path length over ds.
The equations of motion from Egs. (3.1) may be derived from the hamiltonian?
1/2
H=-(1+z/p) [Ez/c2 —m2 + (I, — edy/c)* — (I, — eAy/c)z] (3.2a)
where II;, I, the coordinates canonical to z,y are
I, =p, +eA;/c
(3.2b)

IIy = py +edy/c

The fields are related to the vector potential A;, 4, Ay by

Br= | 2y - 5 (@ e/ )

T 1+a/p
&=§&—§@
Y 2 , (3.3)
1
By= | (el A - ]
104,
T ¢ Ot

It then follows that transfer functions found by integrating Eqs. (3.1) exactly are
symplectic transfer functions. The phrase transfer functions is used here to indicate the
set of functions that relate the final coordinates to the initial coordinates.

For the case when B, = By = 0, one can find an equation for dps/ds,

dps _ Dz
=2 (3.4)




4 Transfer Functions when By = 0

which follows from
dps _ _Padps _ pydpy
ds ps ds  ps ds

and using Eq. (3.1a) for dp,/ds and dp,/ds.
In the region of the lattice outside the rf cavities where the particle velocity is constant

it is convenient to use the coordinates g, gy instead of p;, py

9z = pz/p, Gy = Py/P

(3.5)
1/2
6s=01-a2 )" =p./p
For large accelerators g, ~ dz/ds, g, ~ dy/ds. Eqs. (3.1) can then be written as
de 14z/p
PP
s qs
ds p Bp g
dy _ 14 x/pq
dS gds y (36)
dgy 1

= Bp[ (1+2/p) B; —(1+x/p)B}

dgs
%z_% when By = B, =0
Bp = pc/e

4. Transfer Functions when B; =0

This case was treated in Ref. 2. The results are summarized here. All the results given
in this paper use a reference orbit made up of smoothly joining circular arcs and straight
lines.

For the point magnets at each end of the magnet pieces of length &

L2 = 71, 2=y

1 sinf/2
dzy = qg; T+ (1 + xl/P) 9/2/ ——F—0B ($131y1)

. 072 (4.1)
002 = 00 = 55 (1 21/0) 5728 (sroa)

0="h/p
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T1Y151 4z, qy; are the coordinates just before the point magnet. The sin(8/2)/(6/2) is
included so that in the case where the dipoles are uniform field dipoles, the central closed
orbit in the dipoles is the chord that connects the end points on the reference orbit in that
magnet piece. The sin (8/2) /(0/2) factor changes the transfer function by terms of order
h®. Thus the transfer function is the same up to terms of order A%, with or without this
factor.

For the drift space between the point magnets the transfer functions are given by
QZZ == q.’E]_ COs 6 + qSl Sin9

Qsy = —(z,; SIn6 + g5, cos b

6/2
2 =2z1+ (1 +z1/p) 2psin9/2M
dsy
9z (0/2) = gy, cos0/2 + g5, sin 6/2
(4.2)
Y2 = Y1 + qy L12
Lnz = (1+z1/p) psinb/gs,
Ty2 = Gy
8=nh/p
Ly is the path length between s1 and so.
In regions of the lattice where 1/p = 0, Eqs. (4.2) become
9zy = 415 GQyg = Qy1y Gsy = EN
T3 =1+ ¢z L12, y2=y1+qy L2 (4.3)

Ly = (sg — 1) /s,

5. Transfer Function when B; # 0 and 1/p =0

When a longitudinal field is present, Bs s 0, then for the approximate lattice each
magnet is broken in pieces of length h. Each magnet piece is replaced by point magnets
at each end having only transverse fields B, By, and a solenoidal drift between the point

magnets. The solenoidal drift is the motion of a particle in a uniform longitudinal field.



6 Transfer Function when Bs # 0 and 1/p = 0

The effect of the point magnets at the ends of each piece are given by the transfer

functions, Eqs. (4.1)

I =11, Ya2=m
1k,

G = Gt 5500 (5.1)
1h,

Qyy = Gy — ‘B‘Eng

The strength of the fields B’y, B, to be used in the point magnet transfer functions will
be given below, and will be specified by the requirement that the transfer functions be
symplectic.

For the solenoidal drift from s; to sy, B, = By = 0 and assuming a region where

1/p =0, then the equations of motion become from Egs. (3.6)

& W _w

dS q,s, dS 93

d Bs1 d B;s 1

M e My _ T (5.2)
ds Bp qs ds Bpgs

dgs

e

In Eq. (5.1) B; is constant from s; to s3 and parallel to the reference orbit which
is a straight line when 1/p = 0. The simplest assumption is to put B; equal to the
value of Bs at beginning of the piece at z1s1y;. This will result in a integrator which
is correct only to first order in h. This may be acceptable as in large accelerators, the
longitudinal orbit effects are small compared to the orbit effects due to the transverse
fields. More complicated and more accurate ways of specifying B, for the solenoidal drift
may be constructed.

One sees from Eq. (5.2) that for the solenoidal drift Whén 1/p =0, g5 is constant and
4z, qy Totates through the angle @ = —B,L;5/Bp,

Qzy = g, COS O+ @y, SID
Qy» = —(oy SIN A + gy, cOS @
a=—BsL13/Bp, Liz=(s2—51)/¢s

so = 43
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L1, is the path length in going from s; to sq,

Lo ='/d31+$/p = 27451 (5.3)
qs Qsl
The results for x4, y3 can be found from the invariants
gz + &——y = constant
Bpygs
(5.4)
B 1 constant
——— =
Y Bpgs
which follows from Eq. (5.2). Thus one finds
sin & l1—-cosa
x9 = z1 + L1g [le + qy, ]
a o
N 1 —cosa + sin &

L1z = (s2 ~51) /45

a=—B;Lia/Bp
The transfer functions for the solenoidal drift Eqs. (5.2) and Eqgs. (5.5) can be rewritten

to make more obvious the contribution due to the solenoidal field B;

Ty =214+ gy, Lo+ a1

y2 =y1+ gy, L1z + g3

Gzy = qzy + 92

Qyo = Qy; T 94

G5y = G5,

01 =Ly qzlsi—n%—_—a +ay lﬂ] (5.6)

92 = ¢z, (cosa — 1) + ¢, sina

1 —cosa sina — «
g3 = Lo B — + gy,

g4 = —q-"l'l sinOl + le (COS a— ]‘)
o= —Bsle/BP, Bs = B; ($181y1)

L1z = (s2 = s1) /g5,
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Egs. (5.6) separate the effects of the solenoidal field and the effects due to a simple drift
as given by Eq. (4.3). Since the longitudinal effects are often small, « is small and one can
evaluate the g; (o) by expanding cos o and sin a in powers of a. One has to keep enough
powers of a to achieve an accuracy of about one point in 10 in the transfer function, as
this is the accuracy of computers often used in long term tracking. An accuracy of one
point in 10! may be achievable by keeping terms up to order o or o® for large accelerators.

We will now treat the question of whether the transfer functions for a magnet piece
given by Eq. (5.6), the solenoidal drift, and Eq. (5.1), the point magnets, are symplectic.
The transfer functions are symplectic if they are shown to be the exact solution of the
equations of motion which can be derived from a hamiltonian. A hamiltonian will exist
if the magnetic fields for the approximate lattice can be described by a vector potential,
B = curl A, for then Eq. (3.2) will give the hamiltonian.

It is instructive to reconsider the case where the longitudinal field is absent, Bs; = 0.
In this case, it is often assumed that the fields are described by just the longitudinal

component of the vector potential
0
Bz == _—aZAS
1 0
By = 1+z/pdz [

This is achieved in large accelerators where usually it is the integrated fields that are

(5.7)
(1+z/p) As]

measured in each magnet. The integrated ficlds are defined by

— 1 52
By ($7y) = / dsB; (x'sy)

82 — 381 St

— 1 sz
By (z,y) = / dsBy (zsy)

S2 — 81 S1

(5.8)

s1 to s is the entire length of the magnet along the reference orbit. It can then be shown
that for the usual acceleration magnet, By, By satisfy divB = 0 and can be derived from
a vector potential A (z,y) according to Eq. (5.7), also B, = 0. One may note that the
actual field in each magnet is replaced by Fx,—gy distributed uniformly in s along the
magnet. For the approximate lattice using point magnets, the vector potential for each
magnet piece is given by A

~

A, = —;-th [6(5 — 1) + 6 (5 — 52)] (5.9)
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This vector potential for the approximate lattice using point magnets, shows the transfer
functions found from the corresponding hamiltonian and equations of motion are symplec-
tic. Also Bz,By the fields used in the transfer functions for the point magnets are the
integrated fields,

B,=B,, B,=B, (5.10)

Now let us consider the case where the longitudinal field is present, B; = 0. In order
to see the effects of the longitudinal field, it is not sufficient to measure just the integrated
field. One has to measure, to some degree, the magnetic field all along the magnet,
Bg, Bs, By which can be derived from a vector potential A;, A, A, according to Eq. (3.3).
For the approximate lattice, which in this case uses point magnets separated by solenoidal

drifts, the vector potential for each magnet may be chosen as

As= Au(asy) 5 16 (s = 1) +6 (s~ s2)]

. 1 h
Ay = §Bs (z1s1y1) y + Az (z18y1) 3 [6(s—s1)46(s — s2)] (5.11)
. 1 h

Ay = -§Bs (z181y1) = + Ay (z15y1) 3 [6(s—s1)+6(s— s2)]

A, fiy include the vector potential for a uniform longitudinal field, B; (z1s1y1), that does
not depend on s.

One may note in A, and fiy, the first term proportional to Bs does not contribute to
B, and 3,, as s is fixed at s = s1, the second term proportional to A, or A, does not
contribute to By as z,y are fixed at z; and y;.

This vector potential for the approximate lattice describes a lattice where each magnet
piece is represented by point magnets at each end of the piece separated by a drift in a
uniform longitudinal field, B; (z1s1y1). Ex, By the field used in the point magnet transfer

functions are then given by

. 9 0
B, = —-a—yAs (zsy) + ax‘ly (z1591)

0

, (5.12)
By = 'a—xAs (m’sy) - aAz (xlslyl)

One sees that at s = 53 éx,By are just the fields By, By at s = s1. However, at s = s9

Ex,éy differ from the fields B;, By at s = s3 by a term which is of order h. With this
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choice of EI,By and with B, (z15191), Eqs. (5.1) and (5.6) are a symplectic integrator,

and it will be seen in Section 8 that it is correct to first order in h.

6. Transfer Functions when B; #0 and 1/p#£0

In this paper the reference orbit is assumed to be made up of smoothly joining circular
arcs and straight lines. At the locations of the dipoles, the reference orbit will have a
radius of curvature 1/p # 0. This allows us to construct a reference orbit which has a
continuous slope and is fairly close to the central closed orbit of the accelerator. It also
allows the calculation of the tune and other linear parameters by multiplying the transfer
matrices of each magnet piece.

As in the case where 1/p = 0, Section 5, for the approximate lattice each magnet is
broken into pieces of length h along the reference orbit and each magnet piece is replaced
by point magnets at each end having only transverse fields and a solenoidal drift in a
uniform longitudinal field between the point magnets.

The effect of the point magnets at the ends of each magnet piece are given by the

transfer functions
T2 =21 , Y=

1 sin@/2h .
Gy = qz, + B—pT/2_—§By

1 sin8/2h 4
Qyy = qy1 — B—p‘m—g T

0=n/p
The strength of the B, By will be chosen below.

(6.1)

For the solenoidal drift between the point magnets, one has to define it so that the
B for the solenoidal drift approaches the actual B, as h goes to zero, and for which the
equations of motion are exactly solvable. One possible procedure for defining the solenoidal
drift is to have the longitudinal field be uniform in a Cartesian coordinate system based
on the chord or straight line that joins the end prints of the magnet piece which are on
the reference orbit. In this cartesian CS, the coordinates will be labeled Z,3,Y, 45, q5. The

field along 3, Bs is defined to be uniform in the solenoidal drift and

Bz = B (z151y1) cos 6/2 (6.2)
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The cos 8/2 factor in Eq. (6.2) may be omitted as it differs from 1 by term of order A2. Tt
may be useful in cases where the magnet pieces are relatively large. In the cartesian CS,

the motion of the particle in the solenoidal drift is given by Eq. (5.6). Thus
Ty =71+ gsiliz + g1
Ly =(52~31) /qn

6.3
a = —BgL15/Bp (6:3)

sina — « 1—cosa
91 =Lys |gz " + g

Z,s,y and ¢z, g7, ¢s are the coordinates in the cartesian CS based on the chord of the
reference orbit for the magnet piece. To convert Eq. (6.3) into relationship between z;

and z2, we note the following relationships
Ty =z1c080/2 , Ty =uz9cos6/2
51 =—z1sin0/2 , 3 =2psinf/2+ z55in6/2
3y — 351 = 2psin6/2 [1 -+ -2—]-;(.%1 + xz)}

951 = —q518in0/2 + g1 cos 6/2

(6.4)
971 = ¢z1c0s /2 + g1 sin /2
V1=Y1 > g1 = qyl
—q518in0/2 4G, cos8/2 = —qu1sin 0 + g, cos
0=n/p
One can now relate 3 to z; using Eq. (6.3) to give
Ty = wg") + ki (z2)
) 2psin@/2 (14 z1/p) (gp1cos8/2 + ¢u sin6/2)
Ty’ =21+ :
—gz18in 8 4 g5 cos 6
LlZ-q-sl
Tn) = 6.5
fu (22) —(qz1 5in 6 + ¢s1 cos 991 (6.5)
1 . 0 .
Lig = — |(z2 + z1)sin = + 2psin §/2
g1 2

a=—BsLi3/Bp , 6=h/p



12 Transfer Functions when Bg # 0 and 1/p # 0

Eq. (6.5) is an implicit relationship between 3 and z;. h; depends on z» through Lo
and « which both depend on 9. mgo) is the result for 2, when B, = 0 [see Eq. (4.2)].

Eq. (6.4) cannot be solved analytically for z4. It can be solved by iteration assuming
that the term proportional to Bs, hq (z3), is small. Because of the usual smallness of the

longitudinal effects, a few iterations may give a result for z, which is accurate to 1 part in

104, which is roughly what is required for long term tracking.

The iteration may be done as follows:

)=o) | 1 = L (o)

o = o 4 1y (ng)> , Y =1, (wgl))

(6.6)
o =0 (1) 1) = 1o ()
o) =0 s (1) 1) = s (:59)

In doing the iteration, g; may be computed by expanding cos a, sin a to get

00
g1=> gna"
n=1

(6.7a)
a = —BsLy3/Bp
1 1
n=a13 93=qy1(—1);ﬁ---
-1 1
g2 = qz1 (_Z?,T) ’ g4=q§15...
n+l (6.7b)
n/2 1
9n = 471 (—1) (n n 1)! n even

In computing a:gl) , one case uses the g, for n < 1; for mg“)) use the g, for n < 3, etc. For

large accelerators, it may be sufficient to iterate up to :cgz). Having found z3 and L1, for

the solenoid drift, one can now proceed to find g9, y2, gso. In the cartesian CS, these are
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given by Eq. (5.6)
972 = ¢51 + 92
Yo =Y1+auliz+gs
972 = qg1 + 94

932 = 431
9%2; Y21 G52, 35 are related to gg2, y2, ¢y2 gs2 by

gs QS 2
()

R(6) = [ cosd sinﬁ]

—sinf cosé

Now using Eq. (6.4) which can be written as

() =rem () .
(5), =z (%), +nom ()

gz2 = g1 c0s 0 4 ¢51 5in 0 + g9 cos 6/2

one finds

gs2 = —(qz15in 0 + gs1 cos @ — gosin /2
92 = ¢gz1 (cosa — 1) + gy sina

a = —BsL12/Bp
The results for ys, gy2 follow directly from Eq. (5.6)

Y2 = y1+ gy1L12 + g3

Gy2 = qy1 + g4

1 —cosa sina — «
g3 = Lis |—¢m > + g7

g4 = —gz1 sina + gz (cosa — 1)

13

(6.8)

(6.9a)

(6.9b)

(6.10)

(6.11)

(6.12)

Using the result found for L1, from Eq. (6.8), one can find g2, ¢s2, ya, gy2 using Eqgs.

(6.11) and (6.12).
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Let us now treat the question of whether the above transfer functions are symplectic.
The vector potential for the actual magnetic field is given by A,, A, Ay. The vector

potential for the approximate lattice may be written as
A=Apy+Asop (6.13a)

Apyr is the part of the vector potential that describes the point magnets given by its

components in the reference orbit CS

Apy, = gAs (zsy)[6 (s —s1)+6(s— 52)] sir91/92/2
: h sinf/2
Apy, = —2-A,; (z1s y1)[6 (s — 1) + 6 (s — s2)] 572 (6.13b)

i h sinf/2
Apsty = 54y (ers ) 65— s2) + 8 (s — o) 5722

Agoj is the part of the vector potential that describes the solenoidal drift and is given by

its components in the cartesian CS

- 1
Agorz = §B§(w131y1) Yy

p 1
Asorz = ""z-Bg (z1s1y1) = (6.13¢)

B3 = cos 9/2 B, ("El’slyl)

The Bx, By to be used in the point magnets transfer function, Eq. (6.1) are given by

X o d 1
By = [ ay (s y1) — 2 (14 2/p) A (251)

[6; By ; ] Hl—w/p (6.14)
By = |5+ 20) o) - 2o wn)| 157

As was found in Section 5, for the 1/p = 0 case, the By, B%, differ from the actual fields at
the point magnets at s = s3 by a term which is of order A.
7. Accuracy of the Integrator

It will be shown below that the integrator proposed above, using point magnets and

solenoidal drifts, for each magnet piece has an accuracy up to terms of order h, where h
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is the length of magnet piece. The error term is of order A2. This is a contrast to the case
where the longitudinal field is absent, B, = 0, where it was shown? that the integrator,
using point magnets and drifts, has an accuracy of order A%, with an error term of order
k3. However, the error term of order h?, when B; # 0, is proportional to the longitudinal
field and if the longitudinal effects may be considered small, the error term of order A2
may also be correspondingly small.

The treatment given here uses the results found in Ref. 2 for the B, = 0 case. The

equations of motion are written as

dz;

=fz($z) 1 =1,6
d\
s (7.1)
Pk

The f; do not depend on A and a Taylor series result for the z; at the end of the magnet
piece, z42 is of B2
Tp =z +h fu+ Z a_a:;fJE-l_ (7.2)
y=1,6
The z; found at the end of a magnet piece with the integrator, using point magnets and
solenoidal drifts, has to be compared with the exact result Eq. (7.2) to determine the

accuracy of the integrator. Following the procedure used in Ref. 2, we write
fi=gi+ K (7.3a)

where the g; is the part of f; that describes a solenoidal drift. ¢; contains the field free
term in the f; and the field dependent terms corresponding to a uniform B, in the local

cartesian CS. The K; are written as
K; = K; + AK;. (7.3b)

The K; contains the field dependent terms corresponding to the fields B, = B,, By = By,
where B,, By are the field used in the transfer functions for the point magnets. One can
then see that the AKj, evaluate at s = s;, are terms of order A.

For the point magnets at s1, the z; are changed by

Tijo = T4 + %hﬁ’, (7.4)
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Repeating the calculations done in Ref. 2, one finds for the final z; using point magnets

and a solenoidal drift,

af; » 0K K; }
J
T

Tio = Tq1 + hle + Z l: ] am (7 5)
J .

fa=gn+Ki=fin—AKy

Comparing Eq. (7.5) with Eq. (7.2) shows there is an error term of order A%, which is
proportional to the longitudinal field, B;.

8. Summary of the Transfer Functions

It may be useful to summarize in one place the results for the transfer functions for the
symplectic integrator proposed above. These are the results that might be used in writing

a symplectic tracking program when longitudinal fields are present.

For the approximate lattice which is used to generate the integrator, it is assumed
that each magnet is broken up into a number of pieces. Each piece is represented in the
approximate lattice by point magnets at the ends of the piece and a solenoidal drift between

the point magnets. A solenoidal drift is the motion of a particle in a uniform longitudinal

field.

The results are given using a reference orbit made up of circular arcs and straight lines
which join smoothly. Thus there are regions of the lattice where the reference orbit has a
radius of curvalue 1/p = 0, usually at the drifts and quadrupoles, and there are regions
where 1/p = constant, usually at the dipoles. The results can also be used if one chooses
a reference orbit which always uses the local cartesian CS, based on the chord that joins

the end points of each magnet piece on the reference orbit.

8.1 Transfer Functions for the Point Magnets

In the approximate lattice, each magnet piece is represented by point magnets at the
ends of the pieces and a solenoidal drift between the ends. The magnet piece goes from

s = 51 to s = s9 and has a length along the reference orbit of A = s3 — s1. For the point
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magnets, the transfer functions are

L2=21 , Y2=U1

_ +_1_s1n9/2hA
qz2 = qz1 Bp 0/2 St

_ 1 sin/2h
W= T B0 2

0=h/p—(s2—=s1)/p

The fields Bm,By may differ from the actual fields at the point magnet by terms of

(8.1a)

order h and are given by

R o 1
By = | ==Ay(z18 y1) — —((1 +2/p) As (zsy))

[ , ] +f/ ? (8.1b)
By = [ 2 @+ o/p) s os) — e arn)] 157

B$=B,;,l§y=By at s = s1 but not at s = s9.
8.2 Transfer Functions for the Solenoidal Drift

For the solenoidal drift between the point niagnets, the transfer function for z is given

by

) _ 2psinf/2(1 + z1/p) (gr1c0s8/2 + ¢s1 5in 6/2)
Ty =1+ —
ge18in 0 + g4 cos b
b Ly2gs
1 —qz1 8in 0 + g¢s1 cos 9g1
_ sha-—a« 1—cosa
=g + ' (8.2)

a = —BzL12/Bp , By= Bs(z1s1y1)cosf/2

1 .
Lip = oy [14 (z1 4+ z2)/2p] 2psin /2
31

s

¢71 = ¢g1 €05 0/2 + g5 sin 6 /2

g51 = —Qz18in6/2 + g51 cos /2
0

is the transfer function when Bs = 0, hj vanishes when Bs; = 0, and Ljs is the

path length between s; and s3. h; depends on z2 through Lys and «, and Eq. (8.2) is
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an implicit equation for z3 which can be solved by iteration, assuming that 1 can be

considered small. This gives the iteration result

EE N INED
o = e® s (1), 2 = 1o ()
o =el? o (1) 19 = 1 (o)

2i) =2l + by (ngz) ) , L) = Ly ($§3)>

(8.3)

Long term tracking is often done with an accuracy of 1 part in 10'* in the transfer
functions. For large accelerators, where the longitudinal effects are small, the 1 part in
10'* accuracy may be achieved after a few iterations.

In doing the iteration indicated by Eq. (8.3), g1 can be expanded in powers of «,

keeping only up to the power of « as the order of the iteration. Thus

o0
g1 = Zglna’n
n=1

Jin dy1 ((;2_12)—' n odd (8.4)
9in = 471 (— )n/z (n _::_ 1)! n even
Having found z3 and Lj3 by solving Eq. (8.2) one can then find g9, ¥, gy2 using
qz2 = qz1 cos 6 + gg15in 8 + go cos 6/2
gs2 = —qz18in 60 + gs1 cos @ — gasin 6/2
Y2 =y1 + qy1Ll1a+ g3
9y2 = Gy1 + 94 (8.5)

92 = gz1 (cosa — 1) + gy1sina

1 —cosa sina — «
93 = L1z |—qzm Yyt

g4 = —gz1Sina + gy (cosa — 1)
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8.3 Transfer Functions when 1/p =0
In this case no iteration is required as L2 does not depend on z3. The transfer functions
for the solenoidal drift

r2 =1+ ¢e1li2 + 01

9z2 = ¢z1 + 92

Y2 = y1 +qy1Ll12 + g3

ay2 = dy1 + g4 (8.6)
9s2 = 4s1

a=-—~BsL12/Bp , Bs;= Bs(x151y1)

L1z = (s2 — s1) /¢s1
The transfer functions for the point magnets when 1/p = 0 are given by Eqgs. (8.1) if one
puts sin (6/2) /(6/2) = 1.
The problem of tracking symplectically when longitudinal fields are present was treated

in Ref. 4 for the case of hard edge fringe fields.
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