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1 Crossing angles

If a total crossing angle of « is required, then the absolute bend angles of DX and
DO, 0x () and fp(e), need to be adjusted so that the closed orbit perturbation
1s localized between the two outer D0 magnets. Localization is guaranteed (to
a very good approximation) as the crossing angle is varied if [1]

Ox(a) = HX(O)—%SOiOSX = 18.861—1.047c [mrad] (1)
bo(a) = 60(0)—%803_’(8)( = 15.186—0.547a [mrad] (2)

where sx and sg are the bending center locations listed in Table 1. Note that
the absolute bend angles and fields decrease with increasing crossing angle.

Quantity Symbol  Units DX DO
Magnetic length [m] 3.70 3.60
Bending radius [m] 196.17 237.06
Bend angle g [mrad] 18.86 15.19
Bend center (from IP) s [m] 11.65  22.30
Bend “leverage” s0 [m] 0.2197 0.3387

Table 1: DX and DO dipole parameters, when the crossing angle is zero. Bend
center locations are measured in meters from the IP.

Although the DX magnet has a coil ID of 180 mm, the available bore radius
is only 69.85 mm due to the presence of the warm vacuum pipe. The maximum
crossing angle at the IP is limited by the aperture at the D0 end of the DX dipole,
at a distance seng = 13.76 m from the IP, as shown in Fig. 1. For example, a
crossing angle of a = 1 mrad moves each beam approximately senqa/2 = 6.88
mm closer to the vacuum pipe. This is to be compared with the beam size of
o = 3.42 mm that applies when feng = 190 m in 8* = 1 m optics with a gold
beam emittance of 40 # mm mrad at top energy.

The physical aperture of the triplet quadrupoles also constrains the beam,
when the maximum beta B, in the triplet is large in low * optics. For
example, Bmas = 1354 m when B* = 1 m, resulting in a physical aperture
in the triplet of +6.20. If the same aperture of +£6.2¢ is used as a limiting
factor at the end of the DX magnet, the maximum possible crossing angle is
Omaz = 2¢2 = 1.31 mrad, as drawn in Fig. 1.
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Figure 1: Maximum crossing angle defined by the limiting aperture at the end

of the DX magnet.



In practice the amount of DX aperture available for use by a non-zero cross-
ing angle will vary with emittance, 8*, energy, and ion species [2]. Also, it can
be argued that the maximum crossing angle derived in the previous paragraph
1s a lower bound, since the “equal aperture” assumption is rather conservative -
beam is much more sensitive to field errors in the triplet quadrupoles (where the
p values are much higher) than at the end of DX. It may therefore prove possi-
ble to decrease the DX field by 10% or more. Since the DX magnets may well
limit RHIC performance, this could translate into the possibility of increasing
the top energy by 10%.

1.1 “Gold” and “brass” DX magnets

Assuming that DX magnets limit the maximum operating energy, it is desirable
to locate the weakest “brass” magnets near IPs where crossing angles are al-
lowed, placing “gold” magnets where the total angle o must be kept zero. The
decision to label a DX magnet “gold” also depends partly on its field quality
performance. Table 2 classifies the IPs from these perspectives.

IP  Contents f*[m] G/B Comments

2 BRAHMS 2 B

4 RF 10 G Center beam in 200 MHz cavities

6 STAR 1-2 G

8 PHENIX 152 @
10 PHOBOS 2—5 B Abort aperture: 51 x 76 mm near Q3
12 vacant 10 B

Table 2: Classification of IPs by their need or tolerance for “Gold” (G) or
“Brass” (B) DX magnets.

The BRAHMS experiment at 2:00 can operate with a non-zero crossing
angle, and will be run with a modest value of §* & 2 m, allowing the allocation
of “brass” DX magnets. Synchrobetatron resonances may be generated if the
beams do not pass through the center of the common 200 MHz RF cavities,
which are located at the 4:00 straight. This leads to the need for zero crossing
angle, and “gold” DX magnets. Operation with zero crossing angle and with
the lowest possible beta value (§* ~ 1 m) is foreseen at the major experiments,
STAR and PHENIX, requiring “gold” DX magnets. The extraction kickers of
the abort system are close to the Q3 magnets on either side of the PHOBOS
experiment. These kickers have a full aperture of 51 x 76 mm, which only allows
B* to be reduced to about 2 m. This, and the fact that PHOBOS can sustain



a non-zero crossing angle, allows the DX magnets at 10:00 to be “brass”.

1.2 Unequal species

When unequal species collide it is usually assumed that Blue and Yellow bearms
have identical speeds, so that synchronized beams go down the center of the
beam tubes in the arcs [3]. Table 3 lists the angular strengths of DX and DO
magnets for various combinations of equal speed species [4].

2 Common mode DX and DO errors

In general, a dipole error Az’ at a single DX or D0 magnet generates a closed
orbit perturbation wave

Ad|— Q)

o(s) = Az’ cos(|A¢| — @) 3
o) = Ad' VARl 2 (3
where fp is the beta function at the dipole, A¢ is the phase advance from
the dipole to the observation point s, and @Q is the tune. Differentiating with
respect to s, and assuming for convenience that a(s) = 0, the angular closed
orbit perturbation is found to be

) _ 4y [Bo sin(rQ = [Ag)
¥ = A ﬁ 2sin(rQ) )

where the positive sign holds if A¢ > 0, and vice versa. For example, the
angular error at the nearby IP is

2 N ;Ax’,/g—f%——ﬂm (5)

since A¢ =5 m/2. The minus sign applies if the dipole error precedes the IP in s.

Pairs of dipole errors are more relevant to the present discussion, since there
is a common shunt power supply across each pair of DX or D0 magnets at all the
IPs except 10:00 (where there is one shunt per dipole) [5]. This arrangement,
illustrated in Figure 2, allows the crossing angle to be varied in accordance
with equations 1 and 2. It is important to note that only a local angle bump is
possible using DX and DO shunt power supplies. A local displacement bump -
moving the collision point transversely - requires the use of IR dipole correctors.
When the transfer function of a pair of insertion dipoles has an average error
(perhaps due to hysteresis), when there is shunt power supply noise, or when
the shunt supplies are simply not set correctly, a significant closed orbit wave
can circulate.

<t



Blue  Yellow DO(Blue) DO(Yellow) DX(Blue) DX(Yellow)
species  species [mrad] [mrad] [mrad] [mrad]
same same  15.186252  15.186252 18.860790  18.860790
p d 18.468090 11.904159  25.143578  12.577749
p 0O 18.435882  11.936373  25.081917  12.639416
P Si 18.4336568  11.938597  25.077659  12.643674
p Cu 18.790474 11.581723  25.760766  11.960509
p I 19.202725 11.169399  26.550002  11.171199
P Aun 19.367477  11.004615  26.865414  10.855755
d P 11.904159  18.468090 12.577749  25.143578
d 0O 15.150063  15.222440 18.791512  18.930068
d Si 15.147568  15.224935 18.786735  18.934846
d Cu 15.553416 14.819084 19.563682  18.157895
d I 16.036428 14.336058  20.488355  17.233209
d Au 16.233847 14.138631  20.866293  16.855262
O P 11.936373  18.435882  12.639416  25.081917
) d 15.222440  15.150063  18.930068  18.791512
0 Si 15.183756  15.188747 18.856013  18.865568
) Cu 15.589549  14.782951  19.632854  18.088723
0 1 16.072335  14.300150  20.557095  17.164468
0 Au 16.269611  14.102865 20.934760  16.786793
Si p 11.938597 18.433658 12.643674  25.077659
Si d 15.224935  15.147568  18.934846  18.786735
Si 0 15.188747 15.183756  18.865568  18.856013
Si Cu 15.592040 14.780459  19.637623  18.083953
Si I 16.074810 14.297675 20.561833  17.159729
Si Au 16.272076  14.100399  20.939479  16.782074
Cu P 11.581728  18.790474  11.960509  25.760766
Cu d 14.819084 15.553416  18.157895  19.563682
Cu 0 14.782951  15.589549  18.088723  19.632854
Cu Si 14.780459  15.592040 18.083953  19.637623
Cu I 15.670827 14.701671  19.788451  17.933124
Cu Au 15.869396  14.503096  20.168591  17.552979
Au P 11.004615 19.367477  10.855755  26.865414
Au d 14.138631  16.233847  16.855262  20.866293
Au 0O 14.102865 16.269611  16.786793  20.934760
Au Si 14.100399  16.272076 16.782074  20.939479
Au Cu 14.503096  15.869396  17.552979  20.168591
Au I 14.986999  15.385503  18.479347  19.242233

Table 3: DX and DO angles for various equal speed species, with zero crossing
angle.
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Figure 2: DX and D0 power supply shunts (except 10:00).

2.1 Inside the dipole pair

Since the second magnet in a DX or DO pair bends in the opposite direction to
its mate, the downstream dipole of a pair will have an error of —Az’. The total
angular displacement at the enclosed IP is therefore

z* ~ — Az ”’g—f cot(7Q) (6)

Since there are no quadrupoles between the IP and a DX or DO magnet, then
2
s
Bp ~ 2 7
T (7)

where sp is the distance from the IP to the dipole. If the dipole error is a
fraction r of the whole, the angular perturbation is

A.’l:/ = 7°9D (8)

The natural angle of the beam is



Putting these last four equations together to compare the closed orbit pertur-
bation with the natural angle of the beam gives

1%
™ spfp

T cot(rQ) (10)

Y
90 20

where the subscript “20” signifies that a standard normalized emittance of ey =
20 mpm is assumed from here on. To put it more succinctly,

1%

x r

o = 0 cot(7Q) (11)
where the “reference error” .
o

rpD = __SD?D (12)

scales like /ey 3*, and is independent of tune. Note that cot(rQ) ~ 1.47 for
the nominal fractional tune of @ = .19 .

Quantity Symbol Units Proton Proton Gold Gold

inject store inject store
Beta function B* [m] 10.0 1.0 100 1.0
RMS bunch size 4o [mm] 1.03 0.11 1.63 0.18
RMS bunch length o, [m] .353 072 467  .206
RMS bunch angle 0"2”5 [mrad] 0.10 0.11 0.16 0.18
Aspect angle 8, [mrad] 2.92 1.63 349 0.87
DX reference error rpx [10-9] 4.69 0.50 7.42 0.82
DO reference error  rpo [103] 3.04 0.32 4.81 0.53

Table 4: DX and D0 common mode error parameters.

Table 4 can be used to gauge whether an error - for example, a power supply
regulation error - is big or not. If r = rp, then there is a pure angle error of
&'* = 1.47¢"* at the IP inside the dipole pair. This is much less dangerous than
a displacement error equal to the beam size at the IP, £* = o*, which would not
only lead to a large luminosity loss, but would also drive strong odd beam-beam
resonances. A pure angle error only becomes similarly threatening when it is
about as large as the aspect ratio angle



0.*

where o, is the RMS bunch length Table 4 shows that 4, is typically an order
of ma,gmtude larger than 020, showing that, so far as effects inside the dipole
pair are concerned, common mode dipole errors as large as r & rp are tolerable.
The situation in the rest of the ring, outside the dipole pair, is not so benign.

2.2 Outside the dipole pair

Outside the dipole pair, the total effect is given simply by multiplying equation 3
by 2, to give

z = Az'\/Bpf W (14)
= ay cos(|A¢|— Q) (15)

where A¢ is the phase advance measured from the first dipole. The quantity
of concern here is a;, the closed orbit wave amplitude. Comparing it with the
beam size and proceeding as before, it is easy to show that, at an arbitrary
location,

ag r 1
o = 75 an(aQ) (16)

Except for the numerical factor 1/sin(mQ) a2 1.78, this equation is almost iden-
tical in form to equation 11.

If the phase advance from the dipole pair is unfortunate, an error of r = rp
can produce an unacceptable closed orbit shift of order ¢aq at a remote IP.
While “slow” transfer function and setting errors of order rp can be observed
and removed by closed orbit correction, “fast” regulatlon (ripple) errors at this
level must be avoided. Crudely speaklng, since 6 pairs of each kind of dipole
affect each ring, it is necessary to ensure that the total current in each DX and
D0 pair is correct at the level

D
r L G (1n)
where < implies an order of magnitude reduction, and the rp values are those
listed in Table 4. However, since rp varies like 1/* from one IP to the next,
the tightest regulation need only be applied at IPs with the smallest 8* values.
At least at some locations the ripple must be held below 105, corresponding
to .05 A out of a total of 5 kA.



3 Closed orbit correction strategy

It is a common practice in existing accelerators to occasionally remove an av-
erage offset in horizontal arc dipole correctors by adjusting the main arc dipole
supply. Similarly, in RHIC, dipole correctors can be used to trade-off with DX
and DO magnets in each IR. This is complicated by the fact that the optimal
strengths of three magnet pairs - DX, D0(Blue), and D0(Yellow) - are interre-
lated. Before returning to discus this two ring coupling further, first assume
that the closed orbit in one ring is to be corrected with no consideration for the
other ring. This might be the case, for example, when single ring injection is
being tuned up.

The controls application Orbit will measure the closed orbit in a single ring by
reading Beam Position Monitors (BPMs), before adjusting the dipole correctors
to move the closed orbit closer to the goal trajectory. Orbit will be able to do
this globally, or locally - for example, at a single IR. The hysteresis backlash on
the DX and DO dipoles is much larger than in dipole correctors, so that their
routine adjustment is discouraged. Hence, in routine operation Orbit will not
adjust any of the main dipole power supply strengths - neither the arc dipoles,
nor the DX or DO magnets.

includes V(H) includes H(V)

dipole corrector dipole corrector

] N i
DO ~— Ql = Clf Q2 (=C2| Q3 |C3l-

L L. LV

P 0T T

1 1 1
DO 4 Q1 — Cll Q2 —:CZ Q3 |G+

1 ' e

3 - b - —l 1

dual-plane BPM N L 7 ____________________________ i _____ H

Cryostat

i includes H(V) includes V(H)
dipole corrector dipole corrector

Figure 3: Schematic layout of Beam Position Monitors and dipole correctors.

Figure 3 shows that each IR has two dual plane BPMs in between each pair
of DX magnets, which independently measure the angle and displacement of
each beam. Since crossing angle adjustment is a specialized activity, and since
it is conceptually useful to decouple the two closed orbits, it is desirable for Orbit
to leave the horizontal crossing angle untouched in routine operation. Thus it
may be appropriate to impose a “horizontal crossing angle override” on the
horizontal goal values in the two inner BPMs, so that their difference maintains
a constant value during repeated Orbit corrections. Such an implementation
would not interfere with horizontal displacement corrections at the IP.
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After the two closed orbits have been independently corrected in this fashion,
the largest remaining errors will be in DX, DO(Blue), and D0(Yellow) pairs at
each IP. Insofar as a D0 pair in one ring is not properly matched with its
nearby DX pair (deviating from equations 1 and 2), there will be a closed orbit
disturbance outside the DO pair. This disturbance will be damped in about
one betatron period by the closed orbit correctors, to disappear well before it
reaches the neighboring IRs. Since it is easy for Orbit to calculate the dipole
corrector response to a DO pair error, it is also easy to invert this problem,
calculating the required change in D0 strength to properly match the DX pair.

When DO pairs in both rings at a single IP have been corrected in this way, all
three DX and DO pairs are simultaneously tuned in accordance with equations 1
and 2, to adjust the difference mode crossing angle to its desired value. Closed
orbit differences should only be visible to the inner pair of BPMs during this
operation. It may still be necessary to independently correct a common mode
horizontal crossing angle in each ring. If so, the “horizontal crossing angle
override” applied to the inner BPMs needs to be temporarily removed.

4 Vernier scans

Precise orbit control is required at each IP in order to optimize the luminosity,
and to calibrate the luminosity monitors with high accuracy. This includes
localized control of both the displacement and the slope of the closed orbit.

A complete analysis of luminosity monitor calibration must consider mul-
tiple bunches with differing populations and sizes, non-Gaussian bunches, and
longitudinal issues such as crossing angles and the “hourglass” effect [6, 7, 8, 9].
However, since the emphasis here is on the implementation of local displacement
bumps to perform horizontal and vertical “Vernier scans” at a single IP, it is
appropriate to adopt a simple collision scenario. Assume, therefore, that there
is only a single Gaussian bunch in each beam, and that longitudinal effects can
be ignored (3* > 0, a =0, et cetera). In this case the luminosity is given by

fNBNY 1 Amz Ayz
= —_— _—— — _— 1
L dnogoy X P\ T3 20% + 202 (18)

where f is the revolution frequency, Ng and Ny are the bunch populations, and
the beam size parameters oy and oy are derived from different size Blue and
Yellow bunches through

ou V050 + 03 ) (19)
oy = 0.5(c%y + o2y) (20)

The parameters Az and Ay represent horizontal and vertical collision displace-
ments. For example, a relative offset of A, = 0.50g leads to a 6% luminosity
reduction.
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The beam sizes o and oy may be measured by making relative luminos-
ity measurements during a Vernier scan of the collision displacements Az and
Ay [?]. Then, if N and Ny are accurately known, Equation 18 leads directly
to an absolute calibration of the luminosity monitor. Thus, the absolute cali-
bration of each luminosity monitor is possible given only the availability of:

1. accurate measurements of the single bunch populations, Ng and Ny
2. accurate local displacement bumps at each IP,

Current measurements of the single bunch populations Ng and Ny using a
DCCT are expected to have errors of less than 1%, provided that unwanted
beam (in other buckets, or unbunched) is carefully removed. Therefore, it is
likely that (preliminary) efforts to calibrate the luminosity monitors will be
limited by the calibration accuracy of localized closed orbit bumps at the IPs.

4.1 Displacement and angle 4-bumps

Since the horizontal and vertical bumps used for Vernier scanning should not
introduce a crossing angle, they should be “displacement 4-bumps”, using four
dipole correctors. With different relative strengths, the same four correctors
can also create “angle 4-bumps” which do not modify the displacement at the
IP. Two of the 4-bump correctors are in the triplets - each triplet contains one
horizontal and one vertical dipole corrector, as shown in Figure 3. The outer
two 4-bump correctors are near the Q4 quadrupole on one side of the IP, and
near the Q5 quadrupole on the other side. Dipole correctors in the triplet have
an ID of 13 cm, while those at Q4 and Q5 have an ID of 8 cm.

It is relatively straightforward to derive the ratios of the four dipole corrector
strengths, in the absence of optical errors. Because of the anti-symmetry of the
IR optics, the same set of corrector ratios works for both vertical and horizontal
4-bumps of the same kind. The correctors to be used for a bump in a given
plane (horizontal or vertical) are located near quadrupoles which focus in that
plane. The corrector strengths necessary to create a 1 mm displacement 4-bump
at the top RHIC energy (Bp = 839.5 Tm) at an IP with #* = 1 m and 10 m
are given in Table 5. Similarly, the corrector strengths for a 0.1 mrad angle
4-bump are given in Table 6. The displacement and angle 4-bumps themselves
are shown in Figures 4 and 5 for * = 1 m. There is little difference in the
B* = 10 m case. The maximum field integral measured in both 13 cm and 8 cm
correctors at 50 A is about 0.281 Tm, corresponding to a maximum angle of
0.335 mrad [10]. The largest displacement bump at top energy is therefore 9.4
mm, and the largest angle bump is 0.43 mrad.

It is a demanding task to step a displacement bump in precise increments
which are much less than the beam size, in order to calibrate the luminosity
monitors during a Vernier scan. Accurate estimations of the possible sources of
beam orbit error are necessary.

12



corr. pf*=1m

Kick (10~° rad) | Integral (10~% Tm) | Current (A)
Q5 8.14 6.834 1.199
Q3 25.85 21.701 3.807
Q2 35.38 29.701 9.211
Q4 28.15 23.632 4.146
COIT. B* = 10m

Kick (10~° rad) [ Integral (10~2 Tm) | Current (A)
Q5 10.72 8.999 1.579
Q3 22.85 19.183 3.365
Q2 35.50 29.802 5.228
Q4 24.70 20.736 3.638

Table 5: Corrector strengths for a 1 mm displacement 4-bump, when 8* = 1 m

(top) and when £* = 10 m (bottom).

COIT. B =1m
Kick (10~° rad) | Integral (10=2 Tm) | Current (A)
Q5 -33.55 29.844 -5.236
Q3 8.46 7.102 1.246
Q2 11.84 9.940 1.744
Q4 77.96 65.447 11.482
COTT. B* =10m
Kick (107° rad) | Integral (10~° Tm) | Current (A)
Q5 -43.68 36.669 -6.433
Q3 18.17 15.254 2.676
Q2 11.79 9.898 1.736
Q4 68.46 57.472 10.083

Table 6: Corrector strengths for a 0.1 mrad angle 4-bump, when §* =

and when G*

10 m (bottom).
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In practice it will be necessary to adjust the 4-bump corrector strength
ratios empirically in order to ensure that the closed orbit perturbation is indeed
localized, and to ensure that no crossing angle is generated by the displacement
4-bump, and vice versa. Note that all of these constraints are null conditions -
it is not necessary to depend on absolute BPM calibration. When the 4-bumps
have been closed empirically, calibration uncertainties and errors depend only
on optical errors inside the 4-bump. Although optical errors come in principle
from uncertainties in both geometry and strength, in practice only the strength
E€ITOrS are a COoncern.

5 IR dipole corrector transfer function

The transfer function of a dipole corrector is the integrated field divided by the
excitation current: Bdl
= f— (21)

I

Note that this is not the derivative of the field integral with respect to current,
a quantity with the same dimensions that is used by some authors.

Two problems arise in using measured transfer functions to make an absolute
determination of beam motion:

1. Magnet to magnet variation in transfer function

2. Hysteresis through field variations produced by superconductor magneti-
zation.

The transfer functions of all 13 cm dipole correctors are being measured warm
(at low current), but not all are being measured cold. Individual information
will be embedded by the ramp manager in the Wave Form Generator card
that controls each IR dipole corrector power supply. For those correctors only
measured warm, this will require the “warm-to-cold” correlation of transfer
functions. In practice this is accurate enough to capture most of the individual
characteristics of a particular dipole corrector.

5.1 Transfer function variation

Fig. 6 shows the variation of dipole transfer functions at a current of 30 A for all
the 13 cm correctors that have so far been measured cold. There is no apparent
difference between different model types. Fig. 7 shows a histogram of these
values. The mean transfer function at an excitation of 30 A is 56.24 Gm/A,
with a standard deviation of 0.15 Gm/A.

From Table 7, it appears that the variation in transfer function measure-
ments is larger for lower currents. What is actually being seen is the approx-
imately constant field uncertainty due to superconductor magnetization being
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Figure 6: Transfer function data for the 5 different models of 13 cm dipole
correctors, at 30 Amps.

divided by a smaller current. If one uses the average value of the transfer func-
tion for a specific magnet, one introduces an uncertainty of ~ 0.2 Gm/A. This
is due mainly to uncertainties in the magnetization history rather than to errors
in the measurement technique.

5.2 Superconductor magnetization

In a Type II superconductor, with a transport current less than short sample,
a magnetization current is induced by any change in magnetic field. This is a
change produced effect. It is not the Meisner Effect seen in Type I supercon-
ductors. Further changes in the field do not erase these currents but rather
add new ones until the total of transport current and magnetization currents
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Figure 7: A histogram of transfer function data for all 13 cm dipole correctors,
at 30 Amps.

equals the short sample current. The conductor thus retains a memory of field
changes. This memory may be cleared by increasing the transport current to
short sample (impossible to do throughout a magnet) or warming the conductor
above T,.

In measuring the field integral produced by the dipole correctors a “virgin”
magnet is ramped up to 470 A, taking measurements in 10 amp increments.
The magnet is then ramped back down to —70 A and back to 0 A. Normally only
one such cycle is measured. Fig. 8 shows the transfer function variation around
such a cycle. The effects of magnetization are better understood by plotting the
field integral versus current, as shown in Fig. 9. For clarity, we subtract a linear
field integral (in current) of 56.170 Gm/A. Immediately apparent in this figure
is the ~ 3 Gm hysteresis produced by history dependent fields. Reversing the
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Current Transfer Function

[A] [Gm/A]

10 56.09 4- 0.390
-10 56.33 & 0.361
20 56.21 + 0.203
-20 56.33 £ 0.191
30 56.24 + 0.140
-30 56.33 4- 0.143
40 56.26 4 0.108
-40 56.32 4+ 0.120
50 56.26 + 0.090
-50 56.31 4 0.109
60 56.25 & 0.079
-60 56.29 £ 0.105

Table 7: Transfer function statistics for 13 cm dipole correctors.

direction of current change can result in a field integral offset of this amount.
For practical currents (less than 50 A) this effect is approximately constant.
The relative effect of hysteresis is minimized by running at the highest possible
current, and sweeping in only one direction.

Further inspection of Fig. 9 reveals an average vertical offset of 2 Gm. If cy-
cling is continued, the whole pattern may “walk” down by part of this amount on
cycle 2, and a smaller amount on cycle 3, et cetera. This process does converge.
Without the capability to run the coil at much higher currents (approximately
120 A) there is an uncertainty of ~ 2 Gm in the field integral at a given current,
in addition to the hysteresis spread of ~ 3 Gm. At the time of writing it has
not been determined how data such as those in Fig. 9 will be represented in the
Wave Form Generator card, except that it will be possible to include multiple
transfer function values at multiple excitations. Hysteresis will not be modeled.

For present purposes it is reasonable to assume a maximum absolute error of
~ 3 Gm, corresponding to an angle of ~ 0.36 urad at top energy, to be compared
with the 50 A maximum of 335 prad. The differential field errors produced
during a unidirectional sweep are much smaller than this. A reasonable estimate
for the uncertainty in the change in field integral, working in the region 10-
30 A and given perfect knowledge of the current, is less than 0.4 Gm. This
corresponds to an angle of 0.048 prad at storage.
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5.3 Summary

1. The basic uncertainty in the transfer function is §x & 0.1 Gm/A. This is
the approximate value that applies to both hysteresis effects in a single
magnet, and to the variation across the dipole corrector population, at 30

A.

2. Accurate sweeps must be unidirectional. If possible, it is highly desirable
to “reset” each magnet by running the current up and down through a
standard loop between sweeps.

3. The absolute field integral error is less than 3 Gm, or 0.36 urad at stor-
age. The uncertainty in the differential field integral produced during a
unidirectional sweep is less than 0.4 Gm, or 0.048 prad.

4. Further measurements of the differential field integral are desirable, under
these conditions.

5. Bench measurements of the transfer function of the dipole layer of a 13
cm corrector are usually made with the other corrector layers off. The
transfer function will in general be larger with the other layers powered.
Again, further measurements are desirable to better determine the size of
this effect, which could be significant.

6 Orbit bump errors

First let us estimate the errors coming from the dipole correctors used in the
displacement bump. These are due to:

1. transfer function errors
2. uncertainties in the current provided by the power supplies.

Assume that the 4-bump ratios have been empirically adjusted to ensure that
the closed orbit perturbation is localized, but that each corrector i still has a
residual independent relative strength error €}, so that the net angular kicks are

Az, = Azp(1+¢) (22)

)

These errors lead to a total IP displacement error of dz*, where
dz* = /B > KiAzje, (23)
The response coefficients K; are defined by

. - cos(|Ags| — mQ)
K; = \/EW (24)
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where Ad¢; is the betatron phase advance between the IP and the i-th corrector.
The response coefficients K; are considerably larger for the correctors near Q2
and Q3 quadrupoles which are in the high beta region, than for the correctors
near Q4 and Q5 quads. In consequence, the orbit errors caused by these cor-
rectors are considerably larger. If the bump amplitude in the absence of the
corrector errors (e; = 0) is Az*, the relative displacement error

€z = 6z /Az* (25)

due to a single error ¢; = 1% in the i-th corrector is given in Table 8.

Corrector | €,(%)

Q5 0.02
Q3 0.49
Q2 0.59
Q4 -0.10

Table 8: The relative orbit error due to a single uncorrected 1% error in one
displacement bump dipole corrector.

In the case of four random uncorrected errors, with an RMS strength
oo = <2 (26)
the net RMS displacement error is
oo/ STKATY o

2 Kilzy; V2
where the approximation reflects the fact that the two IP high-beta correctors
generate most of the total error.

As discussed in section 5, the largest absolute uncertainty in the transfer
function comes from uncertainties in the magnetization history of each indi-
vidual corrector, that is from hysteresis, rather than from measurement errors.
"This absolute uncertainty is at the level of dx & 0.1 Gm/A, while the transfer
function itself is about & & 56 Gm/A. If no attention is being paid to the uni-
directionality of the dipole corrector excitation, and the excitation is about 30
A, one expects the RMS strength error to be

s
ve f ~ 0.2% (28)

€x

(27)

Since the relative displacement error is of order o, dipole corrector hysteresis
appears to be of little importance in routine orbit tuning.
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6.1 Power supply current uncertainty

When a unidirectional Vernier scan is performed with perfect knowledge of the
excitation current, the uncertainty in the change of the field integral corresponds
to an angle of less than 0.048 prad at top energy, according to section 5. Un-
fortunately this perfect knowledge is not practically attainable, and the main
contribution to 4-bump displacement errors during incremental Vernier scanning
comes from the uncertainty of the power supply current.

In the best case, the use of 12 bit DACs in the 50 A corrector power
supplies leads to an RMS current uncertainty of oy = 100/(2* - /12) = 14.1
mA, corresponding to a dipole corrector angular uncertainty of 0.095urad at
top energy. Suppose that we want to use Vernier scan steps of ¢/3, about 40
pm when $* = 1 m and the gold emittance is 40 7um at top energy. In this
case the current uncertainty leads to € ~ 8%, and using (27) the uncertainty of
the displacement step becomes ¢, ~ 6%.

This is the best possible case. At lower operating energies we need to scan
the corrector currents with even smaller steps, and the orbit error grows as
1/y/7. All this argues in favor of decreasing the current uncertainties by using
DACs with 14 or 16 bits.

6.2 Triplet quad errors

To estimate the influence of insertion quadrupole errors on orbit control at the
IP we use the closed orbit equation

o+ (ko+ k)& —h) = g (29)

where §k describes the error in the quadrupole focusing strength, & is the quad
misalignment, and ¢ represents the orbit corrector bending strength for both
global orbit correction and for producing orbit bumps at the IP. All components
are functions of the distance s along the ideal beam orbit. The solution of
Equation 29 can be written

r = zo+dz (30)

where ®g is the deliberate closed orbit offset (for example, during a Vernier
scan), and dz results from the quadrupole errors 6k. If h or 2 is large, and 0k
varies in time (during a Vernier scan, or since the last empirical 4-bump tuning),
then significant values of §x can result.
Substituting Equation 30 into Equation 29 we obtain the following equation
for éz
()" + (ko + 6k)6z = —6k(zo — h) (31)

The term dkdz is much smaller than kodz, and is dropped. Then one can see
that quad errors can be considered as additional dipole kicks, with

5:13; = —-(5ki(xoi~hi)Li (32)
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where L; is the length of the quadrupole. The orbit shift at the IP due to the
quad errors is given by

szt = /B ZK,-ax'qi (33)

using the same response coefficients K; that were introduced in Equation 24

Again we are interested in estimating the relative orbit error ¢, = §z*/Az*
when producing small displacement 4-bumps with an amplitude of Az*. In this
case we express €, through

€z = Z widzy,; (34)

The largest error comes from the Q2 quad located at the highest A-function
position, where both w; and 7; have their largest values. Assuming an orbit
bump amplitude of Az* = 40 pm, we find for Q2 that

VB*\/By /1300
280~ 2.40 F
The orbit deviation #¢ during Vernier scans is of the order of the beam size, so

we can take g — h to be of the order of 100um. The angular kick produced by
the Q2 quad error is then

w &

rad™’ &~ 0.45 prad™? (35)

ok
dxg ~ 19—130— prad (36)
and finally we have 5
k
€z & 8.5 — (37)
ko

Thus, to keep the orbit error at the 1% level one needs to keep the relative
quadrupole error §k/ko below the level of 1.2 - 1073, Note that a 1% orbit
displacement error corresponds here to an absolute orbit displacement of 0.4um.

Taking into account a contribution to orbit displacement error from all 6
triplet gquadrupoles having the RMS 6k/kg error o one can find

& ~ 1304 (38)

where again we assume xg; — h; & 100pm. According to this estimation o &
7.7-10~% for e, = 1%.

Quadrupole errors can come from power supply ripple or hysteresis errors.
Note that if the relative quadrupole misalignment is small, Ah < zo A 100um,
there is a partial cancelation of orbit displacement error in IP due to the lattice
antisymmetry about the interaction point. Also, one can estimate the contri-
bution from a systematic error dk/kq as

ok
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