¢ Brookhaven

National Laboratory
BNL-102146-2014-TECH
RHIC/AP/35;BNL-102146-2013-IR

User Commands Sun Release 4.1

W. MacKay

August 1994

Collider Accelerator Department
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical
note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for
United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

RHIC/AP/35
8/194
W. MacKay

User Commands

Sun Release 4.1

August 1, 1994

dbtools (1) TUSER COMMANDS dbtools (1)

dbtools
Several tools are available for manipulating Sybase tables and for copying tables between a database
and SDS files.

Utilities from Sybase which are useful are:

bep -- a bulk copy utility for copying data between Sybase tables and disk files.
dwb -~ a GUI inferface for scaning, editing, and messing around with databases.
isqgl -- a command line interface which uses the Transact SQL language. This can be used with

script files. The editor emacs has an SQL mode (sql.el) which can be used with isql.

defncopy
-- a utility for copying out or in definitions of rules, defaults, views, procedures, and triggers.

More about the above programs may be found in the Sybase documentation or by using the syman util-
ity.

Other programs and scripts:

db2sds -- a program to copy data out of the database into an SDS file. This program accepts a limited
version of the SQL "select" query.

sds2db -- a program to copy dafa from an SDS object into a database table.

db2gh -~ a program to create *.h files for groups of tables and views defined in the “header_info"
tables: "header _groups" and "header_tables". It also generates two functions for each group,
* in_sds() and *_out_sds() where * refers to the group name.

dbg2sds -- a program to copy data from a group of tables and views into an SDS file with one object
per table or view.

sds2dbg -- a shell script which copies SDS objects into Sybase tables for tables in a group using
sds2db. 1t does not try to copy views back into the database; if this is required (and possible),
individual views may be copied using sds2db.

gselp - a shell script which grants the select privilege to public for all user defined tables and views
within a database.

add_header_info
-- a shell script for adding the "header_info" tables, "header_groups" and "header_tables” to a

database.

bepout -~ a shell script fo bulk copy all user defined tables in a database into ASCII files.

SEE ALSO
db2sds, sds2db, db2gh, dbg2sds, sds2dbg, gselp, add_header_info, bepout, dblogins, dbgroups

Sun Release 4.1 Last change: 26 July 1994 1

dblogins () MISC. REFERENCE MANUAL PAGES dblogins ()

.dblogins file
Many of the database tools and scripts read the ".dblogins" file from the $HOME/ dirctory in order to
find Sybase login information (especially passwords). In order to use some of the programs and many
of the scripts you must have a ".dblogins" file in your $HOME directory. This is a file which super-
cedes the old ".dblogin” file for most of the scripts.

Since the “.dblogins" file contains passwords, read/write protection should be restricted to the user (-
TWemmmnem). Each line of the file should have 4 fields separated by white space as follows:

<dbname> <user> <pwd> <server>

where <dbname> is the name of a database,
<user> is the Sybase username to log into <dbname>,
<pwd> is the password for user <user>, and
<server> is the name of the Sybase server containing
the database.

If the name of a database does not occur in the file, then information on the first line will usually be
used as the default information.

By having different login parameters for databases, one person may easily log into several databases as
different users. This allows having databases owned by virtual users (e.g. "atr_gddb" is owned by
"atr_dude"), so that multiple people (Todd and Waldo) may login as "atr_dude" to create and drop
tables, without having to give such access to their private databases to each other.

An example of the file might be:

babcom5 garibaldi peekaboo RHICSYB
waldo mackay peekaboo RHICSYB
atr_gddb atr_dude Iseeyou RHICSYB
ags_to_rhic mackay secretsRus SYBASE491

Here garibaldi’s default database would be babcom3 on RHICSYB with the password "peekaboo”.

Aliases can be made for the Sybase utilities (dwb, isql, ...) using awk to read the ".dblogins" file. The
following alias may be inseried into your .cshrc file to read the ".dblogins" file and log into the correct
account with the "dwb" command, although neither "dwb" or "isql" allow you to specify the database
on the command line.

alias dwb dwb \awk """ /NI$/{print " -U " $2 " -P " $3"\
*U.S " $4) " $HOME/.dblogins\'

SEE ALSO
dbtools, dbgroups, add_header_info, db2gh, dbg2sds, sds2dbg, db2sds, sds2db, bepout, gselp

Sun Release 4.1 Last change: 1

bepout () MISC. REFERENCE MANUAL PAGES bepout ()

NAME
bepout -- does a bulk copy of all user defined tables into ASCII files.

SYNOPSIS
bepout dbname

DESCRIPTION
This shell script uses isql to query the database table "sysobjects” in dbname for user defined tables and
then executes the bep command to bulk copy them info ASCII files in the current directory. Each file
is named dbname..tablename where fablename is the name of the table in dbrname. A comma is used for
a column separafor.

The user must have select privilege on each of the tables to be copied, as well as on the "sysobjects”
table. It requires that the login information for the user is defined in $HOME/.dblogins

SEE ALSO
dbtools, Sybase documentation for bep

Sun Release 4.1 Last change: 1

gselp () MISC. REFERENCE MANUAL PAGES gselp ()

NAME
gselp -- grants select privilege to all user defined tables and views in a Sybase database.

SYNOPSIS
gselp dbname

DESCRIPTION
This shell script uses "isql" to query the database table "sysobjects” in dbname for database objects with
type= "U" or "V" and then grants the select privilege to public on each of these objects. It requires that
the user have select access to the "sysobjects" table and that he have grant select privilege on the tables.
This is typically only useful for the database owner. It also requires that the login information for the
database is defined in $HOME/.dblogins

SEE ALSO
dblogins, dbtools

Sun Release 4.1 Last change: 1

dbgroups () MISC. REFERENCE MANUAL PAGES dbgroups ()

Definition of groups of tables and views in a Sybase database.

Groups of tables within Sybase may be formed with the help two user defined tables: header_groups
and header_tables,

Both these tables may be created by the database owner with the following command:
add_header_info <dbname>

where <dbname> ¢orresponds fo the name of the database.

The table header_groups lists the defined groups by name, with extra columns for the name of a C
header (+.h) file for the group and a comment containing a description of the group. The comment is
written into the header file. The SQL create command definition of the header_groups table is given
by:

create table header_groups
(
groupname char(30) primary key,
filename varchar(40) not null,
comment varchar(255) defanlt

)

The "filename" column should contain the valid name for the header file (e.g. "header_info.h"). The
program dbg2sds will copy a group of tables and views into an SDS file, with an SDS object
corresponding to each table or view in the group. The program db2gh will generate the C header files
for each defined group, as well as input and output functions for for reading and writing the SDS files.
The script sds2dbg will copy fables from a group in an SDS file into the database; views will not be
copied back in, since there may not be enough information in a view to specify how to fill the tables.

"

The tables and views contained in a given group are specified in the header_tables table, which is con-
structed with the following create command in SQL:

create table header_tables
(
groupname char(30) references header_groups(groupname),
sequence int not null,
tablename char(30) not null,
dbname char(30) default °$1™",
host char(30) default *"${dbserv}’",
prefix varchar(1Q) default ",
unique clustered (groupname, sequence)

)

where '$1° is the current database name, and
*${dbserv}’ is the current server name.

The column "groupname" specifies a row entry for entering a table or view in a given group. The
name of the table or view should be eniered into the "tablename" column. For each group, the tables
must be ordered by the “sequence” number entry, given in an order which the tables must be filled with
respect to referential integrity constraints. The combination of (groupname, sequence) must form a
unique entry for each row. The “dbname" entry should be the name of the database containing the
table; at present tables should reside within the same database as the group; however, this may change

Sun Release 4.1 Last change: 1

dbgroups () MISC. REFERENCE MANUAL PAGES dbgroups ()

in the future. The "host" entry should specify which Sybase host should be accessed to read the table
(e.g., RHICSYB or SYBASE491); at present, this should be the same as the database of the group (i.e.,
the current database). The "prefix" entry defaults to a null string, but may be filled with a string which
will be prefixed onto the structure definitions in the C header file in order to resolve clashes with simi-
larly named tables in other databases. If two such tables fables with identical names in different data-
bases have the identical structure, then it is not necessary to use the "prefix” entry, since the structure
definitions will be identical.

EXAMPLE
Executing the script

add_header_info waldo

also builds the group "header info" in the database "waldo" and defines the table entries for the
"header_info" group:

header_groups:
groupname, filename, comment:
“header_info", "Dbapps/header_info.h", "comment blah"

header_tables:
groupname, sequence, tablename, dbname, host, prefix:
“header_info", 1, "header_tables", "waldo", "RHICSYB", "
“header_info", 2, "header_groups", "waldo”, "RHICSYB", "

If the command
db2gh waldo header_info

is then given in a directory with the subdirectory "Dbapps/', a header file will be written with the file

specification "Dbapps/header_info.h"; if the subdirectory is not there, then a bunch of error messages

will appear, and the header file will not be written. Two other files besides the _.h file will be created:
"header_info_in_sds.c" containing the function

"header_info_in_sds(sds_handle,
struct header_info_ptrs #)"
and
“header_info_out_sds.c” confaining the function

"int header_info_out_sds(sds_handle, char *,
struct header_info_pirs)"

SEE ALSO
add_header_info, db2gh, dbg2sds, sds2dbg, dbtools, dblogins

Sun Release 4.1 Last change: 2

add_header_info (1) USER COMMANDS add_header_info (1)

NAME
add_header_info - adds the "header_info" group definition tables to a database.

SYNOPSIS
add_header_info <dbname>
where <dbname> is the name of a database

DESCRIPTION
This shell script generates two tables in the given database for defining "groups" of tables and views.
This command should be run by the database owner to create and initialize the tables: "header_groups”
and "header_tables".

SEE ALSO
dbgroups, dblogins, dbtools, db2gh, dbg2sds, sds2dbg

DEFICIENCIES

Sun Release 4.1 Last change: 26 Jul 1994 1

db2gh (1) USER COMMANDS db2gh (1)

NAME
db2gh - generate C header files (+.h) for "groups” of tables within a SYBASE database.

SYNOPSIS
db2gh <dbname> [<groupname> | -]
where <dbname> is the name of a database
<groupname> is the name of a group defined in the
table "header_groups"

DESCRIPTION

This program generates C header files for groups of SYBASE tables and views as defined in the tables
"header_groups" and "header_tables" of a database. If these tables do not exist, then db2gh will not
work correctly, db2gh addmomlly creates two files for each group: *_in_sds.c and *_out_sds.c, where
* is the group name. These files are useful for reading and writting an y SDS file with the table data
from the groups. The commands dbg2sds and sds2dbg may be used for copying groups between the
database and an SDS file. (Nofe that sds2dbg only copies tables from the SDS file into the database,
NOT views.)

If no groupname is given, then header files and functions are written for all groups within the database.
An additional header file is written which contains #include statements for all the other header files; the
name of this file is

<dbname>_hi.h
where <dbname> is again the database name. (Note that there should be subdirectories in the current
directory for any groups which have specified directories in the "“filename" column of the
“header_groups" table, e.g. the "header_info" group requires the subdirectory "Dbapps”.)
If a minus (-) sign is given as the groupname, then a special header file is written containing structures
for all tables not yet defined in groups. This feature is intended for helping the database designer
develop groups.

DATA Conversions

The following table gives the mapping of types for each piece of data in the Sybase database, SDS file,
and C-program structures:

Sybase type SDS type C struct type
char(#) SDS_STRING char ...[#+1]
varchar() SDS_STRING char ...[#+1]
binary(#) SDS_ BYTE char ...[#]
varbinary(#) SDS_BYTE char ...[#]
tinyint SDS_BYTE char
smallint SDS_WORD short

int SDS_LONG long

real SDS_REAL float

double precision SDS_DOUBLE double

float SDS_DOUBLE double
datetime SDS_TIME long ...[2]
smalldatetime SDS_UNIX_TIME long

The character string types "char(#)" and "varchar(#)" define strings which are not null terminated within
Sybase. In order to keep C-programs from having segmentation faults when a user tries to print one of
these strings from the SDS file with the usual assumption that strings are null terminated, we have
added an extra character to the length of the char* in the corresponding C-structure. This extra charac-
ter is always null. Additionally, any excess whitespace at the end of the string is truncated; this should
simplify tests such as used in functions like stremp(). When copying the string back into the database,
any excess string length will be truncated at the limit of the column’s length.

Sun Release 4.1 Last change: 26 Jul 1994 1

db2gh (1) USER COMMANDS db2gh (1)

The time formats of the database and SDS files are different. The SDS_TIME format is assumed to be
like the usual “struct timeval" definition of two long integers with the first element containing the
number of seconds since 1 Jan 1970, and the second long containing the fraction of a second in
microseconds, i.e., Unix time given in Universal Coordinated Time (UTC). The SDS_UNIX TIME a
single long integer which has the same definition as the first part of the SDS TIME (See “the man
pages for the C-function "localfime” for useful time functions.)

The Sybase "datetime" is two long integers: the first being the number of days since 1 Jan 1900, and
the second being the number of 1/300’s of a second from midnight. The time is assumed to be in the
local time zone of the database server. This means that any true conversion will be screwed up at least
twice a year, if the server resides in a part of the world where daylight savings time is used during part
of the year.

The Sybase "smalldatetime” is stored as two short integers: the first being the number of days since 1
Jan 1900 in local time, and the second being the number of minutes since midnight.

DEFICIENCIES

Support for the following Sybase types does not (yet?) exist
bit
text
image
numeric(p.s)
decimal(p,s)
smallmoney
money
Some of these will be addressed in the future, but they are not high priority items.

I’'m not sure what happens with the types:
nchar
nvarchar
Unless somebody loads a different character set, these should be useless anyway.

Just as a note of warning: the "float" datatype may be 4 or 8 bytes, depending on the server. The data-
type "real" is 4 bytes long, and "double precision" is 8 bytes long. Both the CCD (SYBASEA491) and
RHIC (RHICSYB) servers seein {o treat "float" as 8 bytes.

Currently, the program sds2db copies SDS objects into database tables via the SQL "insert” command.
There are two drawbacks to this: {ransfers are rather slow, and transactions are logged causing the tran-
saction log to fill up rather quickly. In the future, we may try to either convert sds2db or make a
parallel program which will use bulk copying.

Conversions of dates and times may be slightly off by an hour for a few hours around the time of tran-
sition between standard and daylight savings times,

Precision of the Sybase "datetime" is limited to 1/300’s of a second.

SEE ALSO

NAME

dbgroups, dblogins, dbtools, add_header_info, dbg2sds, sds2dbg
TH dbg2sds 1 "27 Jul 1994"

dbg2sds - copies a group of tables and views from a database to an SDS file. database.

Sun Release 4.1 * Last change: 26 Jul 1994 2

db2gh (1) USER COMMANDS db2gh (1)

SYNOPSIS
dbg2sds <dbname> <groupname:>
where
<dbname> is the name of the database
<groupname> is the name of the group to be copied into
an SDS file.
DESCRIPTION

This program copies the group <groupname> of tables and views from a Sybase database <dbname> to
an SDS file. Each table or view becomes an SDS object within the SDS file. The object name is ident-
ical to the corresponding table or view name. It searches the "$HOME/.dblogins" file for login infor-
mation to the database.

Groups are defined by the two tables: "header_groups" and "header_tables", which can be created by
the add_header_info command.

DATA Conversions
The following table gives the mapping of types for each piece of data in the Sybase database, SDS file,

and C-program siructures:

Sybase type SDS type C struct type
char(#) SDS_STRING char ...[#+1]
varchar () SDS_STRING char ...[#+1]
binary(#) SDS_BYTE char ...[#]
varbinary(#) SDS_BYTE char ...[#]
tinyint SDS_BYTE char
smallint SDS_WORD short

int SDS_LONG long

real SDS_REAL float

double precision SDS_DOUBLE double

float SDS_DOUBLE double
datetime SDS_TIME long ...[2]
smalldatetime SDS_UNIX_TIME long

The character string types "char(#)" and "varchar(#)" define strings which are not null terminated within
Sybase. In order to keep C-programs from having segmentation faults when a user tries to print one of
these strings from the SDS file with the usual assumption that strings are null terminated, we have
added an extra character to the length of the chart in the corresponding C-structure. This extra charac-
ter is always null. Additionally, any excess whitespace at the end of the string is truncated; this should
simplify tests such as used in functions like stremp(). When copying the string back into the database,
any excess string length will be truncated at the limit of the column’s length.

The time formats of the database and SDS files are different. The SDS_TIME format is assumed to be
like the usual "struct timeval” definition of two long integers with the first element containing the
number of seconds since 1 Jan 1970, and the second long containing the fraction of a second in
microseconds, i.e., Unix time given in Universal Coordinated Time (UTC). The SDS_UNIX_TIME a
single long integer which has the same definition as the first part of the SDS TIME. (See the man
pages for the C-function "localtime” for useful time functions.)

Sun Release 4.1 Last change: 26 Jul 1994 3

db2gh (1) USER COMMANDS db2gh (1)

The Sybase "datetime" is two long integers: the first being the number of days since 1 Jan 1900, and
the second being the number of 1/300°s of a second from midnight. The time is assumed to be in the
local time zone of the database server, This means that any true conversion will be screwed up at least
twice a year, if the server resides in a part of the world where daylight savings time is used during part
of the year.

The Sybase "smalldatetime” is stored as two short integers: the first being the number of days since 1
Jan 1900 in local time, and the second being the number of minutes since midnight.

DEFICIENCIES

Support for the following Sybase types does not (yet?) exist
bit
text
image
numeric(p,s)
decimal(p,s)
smallmoney
money

Some of these will be addressed in the future, but they are not high priority items.

T’'m not sure what happens with (he types:
nchar
nvarchar
Unless somebody loads a different character set, these should be useless anyway.

Just as a note of warning: the "float” datatype may be 4 or 8 bytes, depending on the server. The data-
type “"real" is 4 bytes long, and "double precision” is 8 bytes long. Both the CCD (SYBASE491) and
RHIC (RHICSYB) servers seem to treat "float" as 8 bytes.

Currently, the program sds2db copies SDS objects into database tables via the SQL “insert" command.
There are two drawbacks to this; transfers are rather slow, and transactions are logged causing the tran-
saction log to fill up rather quickly. In the future, we may try to either convert sds2db or make a
parallel program which will use bulk copying.

Conversions of dates and times may be slightly off by an hour for a few hours around the time of tran-
sition between standard and daylight savings fimes,

Precision of the Sybase "datetime" is limited to 1/300°s of a second.

SEE ALSO
dbgroups, dblogins, dbtools, add_header_info, db2gh, sds2dbg
TH sds2dbg 1 "26 Jul 1994"

NAME
sds2dbg - copies tables from a group SDS file back into the database.

SYNOPSIS
sds2dbg <dbname> <groupname> <filename>
where <dbname> is the name of a database
<groupname> is the name of a group
<filename> is the name of the SDS file containing the group.

DESCRIPTION
This shell script queries the database <dbname> for all tables in the given group, <groupname>. It
ignores views. since views usually don’t have enough information to reverse the process of a select
statement. Each table from the SDS file <filename> is copied back into the database with the program

Sun Release 4.1 Last change: 26 Jul 1994 4

db2gh (1) USER COMMANDS db2gh (1)

sds2db.
Each table will be truncated before the copying is done. It has been assumed that the table has already
been created; if not, then the table may be created via the sds2db command.

Each table 1o be copied via sds2dbg should have an SDS object whose name in the SDS file is identical
to the name of the database table.

DATA Conversions
The following table gives the mapping of types for each piece of data in the Sybase database, SDS file,

and C-program structures:

Sybase type SDS type C struct type
char(#) SDS_STRING char ...[#+1]
varchar() SDS_STRING char ...[#+1]
binary(#) SDS_BYTE char ...[#]
varbinary(#) SDS_BYTE char ...[#]
tinyint SDS_BYTE char
smallint SDS_WORD short

int SDS_IONG long

real SDS_REAL float

double precision SDS_DOUBLE double

float SDS_DOUBLE double
daletime SDS_TIME long ...[2]
smalldatetime SDS_UNIX_TIME long

The character string types "char(#)" and "varchar(#)" define strings which are not null terminated within
Sybase. In order to keep C-programs from having segmentation faults when a user tries to print one of
these strings from the SDS file with the usual assumption that strings are null terminated, we have
added an extra character to the length of the charx in the corresponding C-structure. This extra charac-
ter is always null. Additionally, any excess whitespace at the end of the string is truncated; this should
simplify tests such as used in functions like stremp(). When copying the string back into the database,
any excess string length will be truncated at the limit of the column’s length.

The time formats of the database and SDS files are different. The SDS_TIME format is assumed to be
like the usual "struct timeval" definition of two long integers with the first element containing the
number of seconds since 1 Jan 1970, and the second long containing the fraction of a second in
microseconds, i.e., Unix time given in Universal Coordinated Time (UTC). The SDS_UNIX TIME a
single long integer which has the same definition as the first part of the SDS_TIME. (See the man
pages for the C-function "localtime" for useful time functions.)

The Sybase “datetime” is two long integers: the first being the number of days since 1 Jan 1900, and
the second being the number of 1/300°s of a second from midnight. The time is assumed to be in the
local time zone of the database server. This means that any true conversion will be screwed up at least
twice a year, if the server resides in a part of the world where daylight savings time is used during part
of the year.

The Sybase “smalldatetime” is stored as two short integers: the first being the number of days since 1
Jan 1900 in local time, and the second being the number of minutes since midnight.

DEFICIENCIES
Support for the following Sybase types does not (yet?) exist

Sun Release 4.1 Last change: 26 Jul 1994 5

db2gh (1) USER COMMANDS db2gh (1)

bit
text
image
numeric(p.s)
decimal(p.s)
smallmoney
money
Some of these will be addressed in the future, but they are not high priority items.

I'm not sure what happens with the types:
nchar
nvarchar
Unless somebody loads a different character set, these should be useless anyway.

Just as a note of waming: the "float” datatype may be 4 or 8 bytes, depending on the server. The data-
type "real" is 4 bytes long, and "double precision” is 8 bytes long. Both the CCD (SYBASE491) and
RHIC (RHICSYB) servers seem fo treat "float" as 8 bytes.

Currently, the program sds2db copies SDS objects into database tables via the SQL "insert" command.
There are two drawbacks 1o this: transfers are rather slow, and transactions are logged causing the tran-
saction log to fill up rather quickly, In the future, we may try to either convert sds2db or make a
parallel program which will use bulk copying.

Conversions of dates and times may be slightly off by an hour for a few hours around the time of tran-
sition between standard and daylight savings times.

Precision of the Sybase "datetime” is limited to 1/300’s of a second.

SEE ALSO
dbgroups, dblogins, dbtools, add_header_info, db2gh, dbg2sds, sds2db
TH db2sds 1 "26 July 1994"

NAME
db2sds - creates an SDS file from a database via an SQL select statement.
SYNOPSIS
db2sds [-i] [-h <host>] [-u <user>] {-p <pwd>] <dbname> [<sql_filename>]
where
i: generate insert sds template (header file)
u: log in as <user>
p: log in with passowrd <pwd>
h: log in to dataserver <host>
DESCRIPTION

This copies data from the database <dbname> using an SQL statement, which is either typed in interac-
tively, or specified in the file <sql_filename>,

DATA Conversions
The following table gives the mapping of types for each piece of data in the Sybase database, SDS file,
and C-program structures:
Sybase type SDS type C struct type

char(#) SDS_STRING char ...[#+1]

Sun Release 4.1 Last change: 26 Jul 1994 6

db2gh (1) USER COMMANDS db2gh (1)

varchar(*) SDS_STRING char ...[#+1]
binary(#) SDS_BYTE char ...[#]
varbinary(#) SDS_BYTE char ...[#]
tinyint . SDS_BYTE char
smallint SDS_WORD short

int SDS_LONG long

real SDS_REAL float
double precision SDS_DOUBLE double
float SDS_DOUBLE double
datetime ' SDS_TIME long ...[2]
smalldatetime SDS_UNIX_TIME long

The character siring types "char(#)" and "varchar(#)" define strings which are not null terminated within
Sybase. In order to keep C-programs from having segmentation faults when a user tries to print one of
these strings from the SDS file with the usual assumption that strings are null terminated, we have
added an extra character to the length of the char* in the corresponding C-structure. This extra charac-
ter is always null. Additionally, any excess whitespace at the end of the string is truncated; this should
simplify tests such as used in functions like strcmp(). When copying the string back into the database,
any excess string length will be truncated at the limit of the column’s length.

The time formats of the database and SDS files are different. The SDS_TIME format is assumed to be
like the usual “struct timeval" definition of two long integers with the first element containing the
number of seconds since 1 Jan 1970, and the second long containing the fraction of a second in
microseconds, i.e., Unix time given in Universal Coordinated Time (UTC). The SDS_UNIX_TIME a
single long integer which has the same definition as the first part of the SDS T]ME (See “the man
pages for the C-function "localtime” for useful time functions.)

The Sybase "datetime" is two long integers: the first being the number of days since 1 Jan 1900, and
the second being the number of 1/300’s of a second from midnight. The time is assumed to be in the
local time zone of the database server. This means that any true conversion will be screwed up at least
twice a year, if the server resides in a part of the world where daylight savings time is used during part
of the year.

The Sybase "smalldatetime” is stored as two short integers: the first being the number of days since 1
Jan 1900 in local time, and the second being the number of minutes since midnight.

DEFICIENCIES

Support for the following Sybase types does not (yet?) exist
bit
text
image
numeric(p.s)
decimal(p,s)
smallmoney
money

Some of these will be addressed in the future, but they are not high priority items.

I’'m not sure what happens with the types:
nchar
nvarchar
Unless somebody loads a different character set, these should be useless anyway.

Sun Release 4.1 Last change: 26 Jul 1994 7

db2gh (1) USER COMMANDS db2gh (1)

Just as a note of warning: the “float" datatype may be 4 or 8 bytes, depending on the server. The data-
type "real" is 4 bytes long, and "double precision” is 8 bytes long. Both the CCD (SYBASE491) and
RHIC (RHICSYB) servers secem 1o treat “float" as 8 bytes.

Currently, the program sds2db copies SDS objects into database tables via the SQL "insert” command.
There are two drawbacks to this: transfers are rather slow, and transactions are logged causing the tran-
saction log to fill up rather quickly. In the future, we may try to either convert sds2db or make a
parallel program which will use bulk copying.

Conversions of dafes and times may be slightly off by an hour for a few hours around the time of tran-
sition between standard and daylight savings times.

Precision of the Sybase "datetime” is limited to 1/300’s of a second.

SEE ALSO
sds2dbg, dbgroups, dbg2sds, sds2db, dbtools, dblogins, dbgroups

Sun Release 4.1 Last change: 26 Jul 1994 8

sds2db (1) USER COMMANDS sds2db (1)

NAME
sds2db - copies an SDS object info a Sybase database table.
SYNOPSIS
sds2db [-c][-t]){-0 <object>] [-h <hostname>] [-u <user> -p <password>] \

<input_file> <database_name> <tablename>

where: -¢ will create the table
-h sets a SYBASE dbms called <hostname>
-f sds contains flat arrays,not structure
-s will take input sds from shared memory
-t will truncate the table before copying
-o creates the table from SDS object <object>
rather than the default object, named the same as
the table
-u logs you in as user <user>
-p ...with password <password>

DESCRIPTION
This copies a single SDS object into a database table. The various options allow the creation of new
tables, as well as the truncation of an existing table before the copying begins. If no login information
is specified then the ".dblogins" file will be searched. To maintain compatability with earlier versions,
if the ".dblogins" file does not exist, then it looks older formated file ".dblogin", first in the user’s
HOME directory.

DATA Conversions
The following table gives the mapping of types for each piece of data in the Sybase database, SDS file,
and C-program structures:

Sybase type SDS type C struct type
char(#) SDS_STRING char ...[#+1]
varchar(¥) SDS_STRING char ...[#+1]
binary(#) SDS_BYTE char ...[#]
varbinary(#) SDS_BYTE char ...[#]
tinyint SDS_BYTE char
smallint SDS_WORD short

int SDS_LONG long

real SDS_REAL float

double precision SDS_DOUBLE double

float SDS_DOUBLE double
datetime SDS_TIME long ...[2]
smalldatetime SDS_UNIX_TIME long

The character string types "char(#)" and "varchar(#)" define strings which are not null terminated within
Sybase. In order to keep C-programs from having segmentation faults when a user tries to print one of
these strings from the SDS file with the usual assumption that strings are null terminated, we have
added an extra character to the Iength of the char* in the corresponding C-structure. This extra charac-
ter is always null, Additionally, any excess whitespace at the end of the string is truncated; this should
simplify tests such as used in functions like stremp(). When copying the string back into the database,
any excess string length will be truncated at the limit of the column’s length.

The time formats of the database and SDS files are different. The SDS_TIME format is assumed to be
like the usual “struct timeval" definition of two long integers with the first element containing the
number of seconds since 1 Jan 1970, and the second long containing the fraction of a second in

Sun Release 4.1 Last change: 26 Jul 1994 1

sds2db (1) USER COMMANDS sds2db (1)

microseconds, i.e., Unix time given in Universal Coordinated Time (UTC). The SDS_UNIX_TIME a
single long integer which has the same definition as the first part of the SDS TIME (See the man
pages for the C-function "localtime” for useful time functions.)

The Sybase "datetime" is two long integers: the first being the number of days since 1 Jan 1900, and
the second being- the number of 1/300°s of a second from midnight. The time is assumed to be in the
local time zone of the database server. This means that any true conversion will be screwed up at least
twice a year, if the server resides in a part of the world where daylight savings time is used during part
of the year.

The Sybase "smalldatetime” is stored as two short integers: the first being the number of days since 1
Jan 1900 in local time, and the sccond being the number of minutes since midnight.

DEFICIENCIES

Support for the following Sybase types does not (yet?) exist
bit
text
image
numeric(p.s)
decimal(p,s)
smallmoney
money

Some of these will be addressed in the future, but they are not high priority items,

I’m not sure what happens with the types:
nchar
nvarchar
Unless somebody loads a different character set, these should be useless anyway.

Just as a note of warning: the "float" datatype may be 4 or 8 bytes, depending on the server. The data-
type "real" is 4 bytes long, and “"double precision” is 8 bytes long. Both the CCD (SYBASE491) and
RHIC (RHICSYB) servers seem {o treat "float" as 8 bytes.

Currently, the program sds2db copies SDS objects into database tables via the SQL "insert" command.
There are two drawbacks to this: transfers are rather slow, and transactions are logged causing the tran-
saction log to fill up rather quickly. In the future, we may try to either convert sds2db or make a
parallel program which will use bulk copying.

Conversions of dates and times may be slightly off by an hour for a few hours around the time of tran-
sition between standard and daylight savings times.

Precision of the Sybase "datetime” is limited to 1/300°s of a second.

SEE ALSO
sds2dbg, dbgroups, dbg2sds, db2sds, dbtools, dblogins, dbgroups

Sun Release 4.1 Last change: 26 Jul 1994 2

