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I. Motivation and Problems

To efficiently install and control a large system such as an accelerator or transfer line,
the relationships between its various elements must be defined in a clear and consistent
manner. One particular problem for RHIC, both from an optics/electrical bus viewpoint
and a controls viewpoint, has been the relationship between magnets and power supplies —
which power supplies control which magnets? This is a trivial question to answer for
correctors and trim magnets, but the wireup issue is nontrivial for complicated buswork
such as that for the interaction region quadrupoles. This paper describes a scheme which
handles arbitrary wireup problems with a relational database — this scheme is also shown
to be extensible to a general description of design, including data flow in control applications
as well as physical installation of complex buswork.

The quadrupole power supply busing for four of the RHIC interaction regions is shown
in Figure 1, as taken directly from the RHIC design manual.[1] A natural way to view this
or any other connection schematic is as a set of boxes (devices) with lines (also devices)
drawn between them. Devices (magnets, power supplies and busing in this figure) have
general attributes such as the name and type of device and the numbers of incoming and
outgoing attachments for connections (spigots). Connections, the links between the spigots
on devices, also have general attributes such as type (a hardware or software connection

type). Devices and connections, and their connectivity relationships, can be generally
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Figure 1: Power supply busing for quadrupoles in the RHIC interaction regions (IRs) at
2, 6, 8 and 12 o’clock. Triangles represent 150 amp cryogenic penetrations. This figure is
from Bob Lambiase.

described by entries in a relational database.

The wiring diagram of IR quadrupoles in RHIC, like most of the wiring in most complex
systems, is highly regular and duplicitous. There are six identical quad trims in Figure 1
(itself applicable to four of the six RHIC IRs), and this trim wiring scheme is duplicated
hundreds of times throughout RHIC. A general hierarchical description of this diagram
avoids the consistency issues that plague the update of many copies of this information.

To address these issues we have designed a database which can handle arbitrary wireup
diagrams, such as that of Figure 1. This database is designed to be as flexible as possible,
and includes generic templates for common connection schemes.

It must be stressed that these tables are engineered for one specific purpose — to
describe connection and containment schemes for generic objects. They are not meant
to provide a repository for information specific to physical instances of things, and their
generality is lost if attributes are added for discrimination of physical instances. Other

databases (such as inventory tables) should contain this information, along with references



Magnet Description Power Supply Description

Slot SWN* | Serial Name | Type Supply SWN* | Supply Serial Name
char[20] char[20] char[10] char[20] char[20]

uqb ATRQSLO008 | quad psugb ATRPS032

uqb ATRQSS013 | quad psug6 ATRPS033

uq? ATRQSL007 | quad psuq? ATRPS034

Power Supply Wireup

Magnet Slot SWN | Power Supply SWN | Polarity
char[20] char[20] int

ugh psugh 1

uqb psuq6 1

uq? psuq7 1

Table 1: Three example tables showing magnet busing. The acronym SWN stands for
SiteWide Name and an asterisk indicates a primary key. Three rows are shown for each
table.

into this database that show how these devices fit into the general wireup scheme. This is

demonstrated by examples in later sections.
IT. A Fundamentalist Approach to Entity-Relationship (ER) Diagrams

A database is comprised of tables, where each table consists of columns (and associated
data types) into which data are placed. Data grouped by rows in a table are called table
entries.

Three simple database tables are shown in Table 1. The Magnet Description table has
three columns: the Magnet Slot SiteWide Name (SWN), which is a unique name for the
lattice position of the magnet, the Magnet Serial Name, which is a unique identifier for the
physical magnet which is installed in that slot, and the Magnet Type. The Power Supply
Description table includes an SWN and Serial Name for power supplies. The Power Supply
Wireup table associates entries in the previous two tables, providing design information on
how magnets and power supplies are bused together.

There is sometimes a single column or group of columns in each table which is a “key”,
a unique identifier for any single table entry, or row. Some tables have no keys, while others

may have several which key the same table in different ways. In the Magnet Description
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Figure 2: An entity-relationship (ER) diagram of the example tables from Table 1.

and Power Supply Description tables above, the SWN entries are declared as primary keys;
during data entry any new entry in a table that duplicates a primary key is automatically
rejected.

In the course of database design, tables naturally fall into two categories. One category
is for entities or instances of things — magnets, magnet slots, power supplies, wires, cables,
cards, people and so forth. Tables that describe these instances are called entity tables.
The other type of table is a relationship table, which associates entities, the entries in
entity tables.

Entity tables are almost always keyed; they also have other columns which contain
descriptive attributes that all entries in the table may share. It is an important and
difficult design decision to choose a reasonable level of abstraction for a problem such that
the information in entity tables is neither highly duplicitous nor irrelevant. For example,
power supplies and magnets share some attributes (color, weight, manufacturer, serial
name) but not others (magnet type, magnet half-core serial numbers and power supply
limits).

Tables may be related to one another in various ways (hence the term “relational”).
A convenient way of diagraming the relational database references between entity and
relationship tables is with an entity-relationship (ER) diagram.[2]

In an ER diagram, entities are represented by rectangles and relationships are repre-
sented by rhombi; there is usually a one-one correspondence between these symbols and
actual database tables. Directional arcs are drawn between entities and relationships to
indicate reference, or dependence — in implementation the table at the base of the arc
(the table that symbolizes the relationship) contains a column with the same data type
as the primary key of the table at the end of the arc. Interpretation of arcs is sometimes
simplified by using verbs as labels, which allows one to “read along the arcs”. Association
qualifiers (such as “M” for many, “alw” for always, etc.) are also used as arc labels. An

ER diagram of the tables in Table 1 is shown in Figure 2.



Tables which have many arcs pointing to them are “fundamental” tables; their entries
are referenced, by primary key, in many other tables. Fundamental tables are the first
tables filled during data entry. In the next section the DeviceType table is an example
of such a table — it contains a list of all possible DeviceTypes for Device table entries.
The structure of the tables constructed by the ER method should prevent the entry of a
DeviceType in the Device table that is not in the DeviceType table to maintain referential
integrity. On the other hand tables which have many arrows pointing away from them are
generally relationships between the various tables to which they point.

The program erdraw [2], developed at LBL, was used to implement these tables us-
ing ER methods. This program allows graphical editing of ER diagrams, including table
- attributes and fairly sophisticated delete and update rules. Most importantly, erdraw also
produces SQL for table creation, table keying, referential integrity and metatables (tables
containing descriptions of these tables) that can be read by most database SQL interpreters.

ITI. The Generic Device Description Tables

Figure 3 shows the ER layout of the generic device description (GDD) tables. The six
lower tables compose generic instances of devices (including templates of wiring schemes)
while the three top tables represent actual instances of devices that fit into these templates.

This section describes the generic tables in more detail.

ITI.1: The fundamental entity tables

Since we seek to represent connection diagrams similar to Figure 1, it is reasonable
to start with basic entities which represent objects on this diagram. Boxes with external

connection points are called Devices and the connection points on devices are called Spigots:

Device: a hierarchical object which contains zero-many other devices and
which is contained in zero-many other devices. Devices each also
have zero-many “spigots”, and have primary-key Name and Com-

ment and Type attributes.

Spigot: an external connection point on a device. Spigots only have di-
rectionality within the context on a particular device. The only

attribute of Spigots is a primary-key Name.
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Figure 3: The generic device description (GDD) tables in entity-relationship (ER) format.
The top three tables are not part of this description, but show the relationship of physical
instance tables to GDD tables.

I Table Name I Attribute I Type I
DeviceType Type* char[20]
Device Name* char[20]

Purpose char[60]
Spigot Name* char[20]
SpigotOwn Name* char[20]
Direction int
Contains Name* char[20]
Connects
RealDevices Name* char[20]
RealContains
PS_Mag_Wireup Polarity int

Table 2: Attributes of the GDD tables. The order listed is the order in which tables should
be filled for referential integrity. A star indicates a primary key; attributes in boldface are
mandatory for each table entry. Table columns corresponding to arcs in Figure 3 are not
included in this list.
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Figure 4: A closeup of a corrector magnet bus. Arrows show nominal spigot polarity, and
each device has two spigots. The entirety of this diagram is a single generic device template
called “1PS-1Mag”.

The majority of arcs in Figure 3 (as well as most of the tables) are concerned with many-
many relationships between these fundamental entities. A closeup of a quad corrector from
Figure 1 is shown in Figure 4 to clarify this terminology.

There is one more fundamental entity, DeviceType, which lists the acceptable entries
in the Type attribute of each device. This constraint is shown by the “has” arc between
these two tables. Note that this is not an “alw-has” (always-has) arc, so devices may exist

with NULL Type or a Type listed in the DeviceType table, but none other.

I11.2: Many-many relationship tables

There are two relationships between the fundamental entities Device and Spigot that
are evident from the example figure: each device “owns” zero-many spigots and each de-
vice contains zero-many devices. Note also that the converse is also true — each spigot
is owned by zero-many devices and each device is contained within zero-many devices.
More succinctly, there are many-many relationships between the Spigot and Device tables
(ownership) and between the Device table and itself (containment). These relationships
are represented by the SpigotOwn and Contains tables in Figure 3.

There are interesting things to note about these two tables. First, even though they are



many-many relationships, they are entities themselves. For connectivity it is important to
be able to distinguish between the same types of spigot on a particular device, as well as
the same types of device contained within a larger composite device. Each of these tables
must therefore have its own primary key; for lack of better nomenclature this is a Name.
With SpigotOwn the context is also established for directionality. It is clear that on
some devices a current spigot is incoming while on others it is outgoing. It is also clear
that on devices where this distinction is not immediately apparent (e.g. magnets, ground
buses), there are still assumptions of polarity that warrant this distinction in all spigot-
device associations. The SpigotOwn entity has a Direction attribute (£1 or 0, indicating

polarity or lack thereof).

II1.3: Connections

Circuits are created by attaching spigots together; this is akin to physically performing
a connection such as attaching a cable to a socket. Using the device/spigot terminology, a
connection is a relationship between a spigot on a contained device (a SpigotOwn entry)
and another spigot on another contained device. Both the SpigotOwn entry (specifying
a device and spigot on that device) and a Contains entry (specifying which instance of a
device within a composite device) are needed for each end of the connection. Different
connections may share the same SpigotOwn or Contains references, but not both.

Connections are implemented as the paired many-many relationship Connects in Fig-
ure 3. Here there are two many-many relationships, the To pairing and the From pairing,
which are associated within a composite device. It is also possible (even preferable) to
create a Sybase view which lists all contained devices and their spigot lists, and associate
entries in this view within the Connects relationship — however the ER methodology does
not appear to implement this approach.

For a circuit tracing program to work with this data, all circuits must be closed. Internal
connections are supported by this framework — if the Contains entry is absent in a Connects
table entry, the Spigot listed is presumed to be a spigot on the internal side of the device
containing the connection. This will be made clearer in the next section by example.

Every entry in the Connects table can now be interpreted, “Within a certain composite
Device, there is a connection from SpigotOwn (an instance of a spigot on a device) on Con-
tains (an instance of a device in the composite device) to another SpigotOwn on Contains”.

Completely general wireup and connection schemes are supported by this design.



IV. Some Specific Examples

Here we consider two examples. The simple case of corrector and trim magnets is meant
to clarify the ER design of the GDD tables. Second, we consider the more complex scenario
of IR quad busing as depicted in Figure 1; this example also depicts how complex device

hierarchies are implemented.

IV.1: Corrector and Trim Magnets

Consider the simple case of corrector and trim magnet busing, Figure 4. This composite
device, generically called “1PS-1Mag” here, is duplicated six times in each IR quad bus
design (Figure 1), as well as hundreds of times for correctors and trims throughout ATR
and RHIC — Figure 4 thus serves as a template for this wireup scheme. Table 3 shows the
entries in the GDD tables for this diagram.

There are three DeviceTypes in Figure 4, a Power Supply, a Magnet and a Bus. The
composite generic device 1PS-1Mag representing the entirety of the figure has a DeviceType
“Template”. There are three other Devices, a one-tap magnet, a one-tap power supply and
a magnet bus; the only Spigot necessary is a “Current”.

The magnet, power supply and magnet bus each have two Current spigots, in and out.
The template here does not have any external currents or control points and thus has
no spigots. The Contains table entries are self-explanatory, but note that there are two
different instances of the Magnet Bus device in 1PS-1Mag.

The Connects table first lists the four connections that are obvious, those that attach
together the four Devices that make up 1PS-1Mag. The last three connections are internal
device connections, and signify that current that comes into the “in” spigots goes out the
“out” spigots. This may seem trivial, but when more realistic descriptions are included
(external control points for power supplies, voltage and thermal taps on a magnet, etc.)
these connections are necessary for a circuit-tracing program to follow current paths within
these devices.

This is still a generic representation; 1PS-1Mag is a simple template for wiring which
holds for all trim magnets and power supplies of this type. Section V explains how physical
instances of magnets and power supplies relate to the GDD tables.

Another way to implement a trim magnet template is to ignore the buses as uninteresting

and simply to join the input and output currents of the magnet and power supply together.



DeviceType Table

Device Table

Spigot Table

Type Name DeviceType Purpose Name
char[20] char[20] char([20] char[60] char[20]
Magnet Magnet1Tap | Magnet One-tap magnet Current
Power Supply Power Supply | Power Supply | One-tap power supply
Bus Magnet Bus Bus
Template 1PS-1Mag Template Device Template. ..
SpigotOwn Table Contains Table
Name DeviceName | SpigotName | Direction Name Parent Child
char[20] char[20] char[20] int char[20] char[20] char[20]
Magllin | MagnetlTap | Current 1 1PS1Mag-Mag | 1PS-1Mag | Magnet1Tap
Magliout | MagnetlTap | Current -1 1PS1Mag-PS 1PS-1Mag | Power Supply
PSIin Power Supply | Current 1 1PS1Mag-Busl | 1PS-1Mag | Magnet Bus
PSIout Power Supply | Current -1 1PS1Mag-Bus2 | 1PS-1Mag | Magnet Bus
Buslin Magnet Bus Current 1
Buslout Magnet Bus Current -1
Connects Table
Device SpigotOwn From | Contains From || SpigotOwn To | Contains To
char[20] char[20] char[20] char[20] char[20]
1PS-1Mag Magllout 1PS1Mag-Mag || Buslin 1PS1Mag-Busl
1PS-1Mag Buslout 1PS1Mag-Busl || PSIin 1PS1Mag-PS
1PS-1Mag PSIout 1PS1Mag-PS Buslin 1PS1Mag-Bus2
1PS-1Mag Buslout 1PS1Mag-Bus2 || Magllin 1PS1Mag-Mag
Magnet1Tap Magllin Magllout
Power Supply || PSlin PSIout
Magnet Bus Buslin Buslout

This

Table 3: GDD table entries for the 1PS-1Mag template.

is feasible, and works if that association is all that is needed, but it ignores the fact

that the busing is real and has properties of interest itself (such as penetration limits).

IV.2: Complex Buswork — RHIC IR Quads

It is natural to view the RHIC IR quadrupole busing of Figure 1 as a single template

that is instantiated four times, once for each of the 2, 6, 8 and 12 o’clock IRs. This template

(unlike the 1PS-1Mag template) has four external spigots for the main quadrupole buses. It

also quite naturally breaks down into eight smaller templates, six that are closed 1PS-1Mag

instances and two that are the main quad focusing and defocusing buses.

The most worrisome aspect of the RHIC IR quad busing is the many-many relationship
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Figure 5: A closeup from Figure 1, showing how current tees are implemented.

between power supplies and magnets — most of the quadrupoles are not on a single bus
dominated by a single power supply. A closeup is shown in Figure 5, showing how this
can be implemented in the GDD tables; basically parallel buses are connected to the same
input and output spigots on magnet Q8.

A bigger problem arises on the focusing bus, where there are both tees and four-bus
junctions. A simple solution is to break the bus between the Q1 magnets into two sections,
and to use the junction between them for feed-ins and returns for the six A-type power
supplies. The directionality labels on spigots indicate polarity of flow, and do not indicate
that this is the only direction that current can flow. This being the case, return paths
for power supply current are not always those listed — a circuit tracing program using
Kirchoff’s laws should use these directions only as polarity references.

To describe the entirety of Figure 1, eight templates are needed — one for the focusing
bus, one for the defocusing bus and six for the quad trim packages. Each quad trim
package uses a single magnet and a single power supply, and implies two internal buses.
The defocusing bus template requires four magnets and three power supplies, and contains
eleven bus connections (two for each power supply and five for the main bus sections). The
focusing bus is most complicated; it requires fourteen magnets, eight power supplies and
thirty-two bus connections. Similar diagrams and table entries can be created for the other
main buses of RHIC.

Once the templates for the IR and arc quad buses are created, a template for the entire
RHIC main quad bus can be created. This main quad bus layout is depicted in Figure
2-3 of the Desigﬁ Manual Magnet Electrical System section. [1] A set of roughly a dozen
main templates are sufficient to cover the entire main bus system (dipole and quadrupole

systems) of RHIC.
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V. How to Implement Real Device Instances

Figure 6 shows the references into the GDD required to resolve a wireup scheme for a
real trim magnet, in this case yo4-tq4, the outer Q4 trim in the yellow ring.

Figure 3 showed three tables not in the GDD. RealDevices entries are actual devices
as referenced by their SWNs or, in the case of Templates, some other unique identifier
such as yo4-tq4-tpl from Figure 6. RealContains associates real devices within a real
template, and references the GDD Contains table to discriminate separate instances of
the same device type in a template. The PS_Mag_Wireup table associates magnets and
power supplies, with polarities — this table is automatically filled by a wireup application
that uses the GDD tables.

To enter another real trim instance, first the power supply and trim magnet should be
entered as real devices in the RealDevices table. The template that represents the “trim
package” must also be entered, and these should all refer to appropriate generic descriptions
in the GDD Device table. (See bold arrows in Figure 6.) The RealContains table should
then be filled with a pair of entries denoting where in the template the magnet and power
supply should go, again with reference into the GDD Contains table.

There are many “generic implications” within a template. A real trim, generically
wired and with an “uninteresting” power supply, can be entered as a real magnet and a
1PS-1Mag template instance, with all other elements implied within the template. Above,
even the instances of the magnet busing are implied, even though they should be expressed
as real instances of busing (with penetration limits, etc) in some other database. Details
of individual elements belong elsewhere — it is the associations between generic
instances that are represented by the GDD tables.

A pair of tables similar to RealDevices and RealContains is sufficient to reference the
GDD structure from any database listing physical instances of devices. Examples that
are currently under construction include ATR and RHIC magnet busing (physical power
supplies and magnets), ATR instrumentation (magnet coil taps, BPMs, etc.) and an in-
strumentation group cable database.

The need to create real instances of all templates is an apparent inconvenience of the
GDD scheme. However templates provide natural encapsulations of connection schemes,
just as slots in the accelerator optics database provide natural encapsulations of removable
beamline equipment. Templates are an organizational tool, and should not be avoided

simply to “streamline” database contents. Also, devices may themselves be templates, and
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Figure 6: GDD references for an actual instance of a generic trim. Note the template
yo4-tq4-tpl, which ties together the magnet and power supply associations.
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imply other generic structures beneath — this actually means that the number of physical
entries of things is minimized in this scheme because duplicate implications can reside
within the GDD.

VI. Implementation for the AGS to RHIC Transfer Line

To test the viability of this scheme, the magnet busing for all magnets in the ATR was
implemented in Sybase tables produced by erdraw from the ER diagram of Figure 3. Table
creation took less than an hour, and data entry for the 147 magnets in these transfer lines
took less than a day.

The vast majority of ATR magnets are individually powered; only the dipoles and
lambertsons are on buses which require any templates other than the 1PS-1Mag template
described above. The dipoles on these buses are also 4-tap magnets, with two internal
coils and two internal return buses. To discriminate between these internal “magnet coil”
and “return bus” devices were used. A “current source” internal device was also used to
connect the input and output current spigots within power supplies. The 4-tap dipoles,
except for xd31 and yd31, were jumpered internally to look like 2-tap dipoles with a single
magnet coil and a single return bus.

The xd31 and yd31 dipoles, and the lambertsons, also have trim power supplies jumpered
across their main buses. This situation was handled the same way as multiple magnet buses
in RHIC IR quad wireup, by simply connecting these power supply buses to the dipole and
lambertson in parallel with the main arc buses.

A program, wireup, goes through the list of all magnet devices in the RealDevice table,
and finds the set of top-level templates which contain all these magnets. For each of these
templates wireup collects information on all internal connections, including recursively
traversing other templates, and assembles a list of devices and connections. It singles out
the “current source” devices from this list, and traces all circuits that originate at this
current source. Both closed circuits (and the magnet coils that reside on them) and open
circuits (indicating there is something wrong) are reported. Wireup is also smart enough
to avoid infinite recursion during template expansion and circuit tracing.

Wireup consists of a 450-line C library of generic routines for traversing the GDD table
structure (basically a software implementation of views), and approximately 700 lines of
highly recursive C code. When run on the ATR table entries, it produced correct magnet

and power supply associations for all magnets in a few seconds of run time. Scaling to
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RHIC gives an estimated wireup time of a few minutes.

VII. Concluding Remarks

This paper concentrates on describing the GDD and its applicability to magnet busing
and wiring schemes. There is, however, nothing specific to this application within the GDD
tables. Connectivity diagrams for control flow and for hierarchical relationships between
objects within a control system, such as RHIC ADOs [3] and high-level controls hierarchies
[4], are quite easily represented within the GDD design. Additional table attributes (such as
a ConnectionType in the Connects relationship) can also lead to more application-specific

GDD tables.
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