
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC)

Collider Accelerator Department

June 1994

V. Paxson

The GLISH 2.4 User Manual

BNL-102141-2014-TECH

RHIC/AP/30;BNL-102141-2013-IR

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical
note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for
United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

RHIC AP Note 29
June, 1994

The Glish 2.4 User Manual

Vern Paxson
Lawrence Berkeley Laboratory

1 Cyclotron Rd.
Berkeley, CA 94720

vern@ee.lbl.gov

October 12, 1993

Contents

1 Introduction 8

2 An Example of Using Glish 11

3 Values, Types, and Constants 18
3.1 Overview 18

3.1.1 Glish Types 18
3.1.2 Dynamic Typing 19
3.1.3 Type Conversions 19
3.1.4 Arrays 20

3.2 Numeric Types 23
3.2.1 Numeric Constants 23
3.2.2 Mixing Numeric Types 24
3.2.3 Arithmetic Operators 24
3.2.4 Logical Operators 25
3.2.5 Comparison Operators 26
3.2.6 Indexing With Numeric Types 26

3.3 Strings 27
3.3.1 String Constants 27
3.3.2 String Operators 28

3.4 Records 28
3.4.1 Record Constants 28
3.4.2 Accessing Fields Using “.” 28
3.4.3 Accessing Fields Using [] 29
3.4.4 Accessing Fields Using Numeric Subscripts 30

3.5 References 31
3.6 Opaque Values 33
3.7 Multi-Element Indexing 33

3.7.1 Integer Indices 33
3.7.2 Boolean Indices 36
3.7.3 Assigning Multiple Elements 37
3.7.4 Accessing and Modifying Multiple Record Fields 37

1

4 Expressions 39
4.1 Atomic Expressions 39
4.2 Unary Operators 39
4.3 Arithmetic Expressions 40
4.4 Relational Expressions 40
4.5 Logical Expressions 40
4.6 Assignment Expressions 41

4.6.1 Assignment Syntax 41
4.6.2 Assigning reference Values 41
4.6.3 Restrictions on Assignment 42
4.6.4 Cascaded Assignments 43
4.6.5 Compound Assignment 43

4.7 Indexing 44
4.8 Integer Sequence Expressions 44
4.9 Functions and Function Calls 44
4.10 Reference Expressions 45
4.11 Request/Reply Expressions 45
4.12 Event-Attribute Expressions 45
4.13 Precedence 45

5 Statements 47
5.1 Expressions as Statements 47
5.2 Empty Statement 47
5.3 Printing 48
5.4 Conditionals 48
5.5 Loops 49

5.5.1 While Loops 49
5.5.2 For Loops 49
5.5.3 Controlling Loop Execution 50

5.6 return Statement 50
5.7 exit Statement 51
5.8 local “Statement” 51
5.9 Sending and Receiving Events 51

5.9.1 Sending Events 52
5.9.2 Receiving Events 52
5.9.3 activate and deactive Statements 53
5.9.4 link and unlink Statements 53

5.10 Leaving Out the Statement Terminator 53
5.11 include Directive 54

2

6 Functions 55
6.1 Simple Examples 55
6.2 Function Definitions 56
6.3 Function Names 57
6.4 Function Parameters 57

6.4.1 Parameter Names 57
6.4.2 Parameter Defaults 58
6.4.3 Parameter Types 59
6.4.4 Extra Arguments 60

6.5 The Function Body 62
6.5.1 Scoping 62
6.5.2 Persistent Local Variables 64

7 Events 66
7.1 What is an “Event”? 66
7.2 Agents 67

7.2.1 The agent Type 67
7.2.2 Agent Records 68

7.3 Some Simple Examples 68
7.3.1 Examples of Sending Events 68
7.3.2 Examples of Receiving Events 69
7.3.3 Examples of Request/Reply Events 71

7.4 Sending Events 71
7.5 Receiving Events 73

7.5.1 Event Syntax 73
7.5.2 Execution of whenever 74
7.5.3 $agent, $name, and $value 75

7.6 Request/Reply Events 75
7.7 The await Statement 76
7.8 Activating and Deactivating “whenever” Statements 79
7.9 Point-to-Point Communication 80
7.10 Creating Clients 81

7.10.1 The client Function 81
7.10.2 The shell Function 83

7.11 Script Clients 85
7.12 Predefined Events 86
7.13 Subsequences 87

8 The Glish Client Library 89
8.1 An Overview of the Value Class 89
8.2 An Overview of the Client Class 90
8.3 The GlishEvent Class 91
8.4 An Example of a Client 92
8.5 The Client Class 92

3

8.5.1 Standard Client Member Functions 94
8.5.2 Multiplexing Input Sources 95

8.6 The Value Class 97
8.6.1 Constructing Value Objects 97
8.6.2 Basic Value Operations 98
8.6.3 Type Conversions 100
8.6.4 Manipulating Records 101
8.6.5 Accessing and Assigning Elements 104

8.7 Available Glish Clients 105

9 Predefined Functions and Variables 107
9.1 Type Identification 107
9.2 Type Conversion 109

9.2.1 Boolean Conversions 109
9.2.2 Integer Conversions 110
9.2.3 Float and Double Conversions 110
9.2.4 String Conversions 110

9.3 Manipulating Arrays 110
9.4 String Functions 113
9.5 Manipulating Variable Argument Lists 115
9.6 Reading and Writing Values 115
9.7 Manipulating Agents 116
9.8 Global Variables 119
9.9 Function Summary by Category 121

9.9.1 Type Identification 121
9.9.2 Type Conversion 122
9.9.3 Array Manipulation 122
9.9.4 String Functions 123
9.9.5 Manipulating Variable Arguments 123
9.9.6 Reading and Writing Values 123
9.9.7 Manipulating Agents 124
9.9.8 Global Variables 125

9.10 Alphabetic Summary of Functions 125

10 Using Glish 128
10.1 The Glish Interpreter 128

10.1.1 Using Glish Interactively 129
10.1.2 How Glish Executes a Script 129

10.2 Debugging Glish Scripts and Clients 132
10.2.1 Debugging Clients 132
10.2.2 The Event Monitor 133

4

11 Internals 134
11.1 Encoding Event Values 134
11.2 Creating and Controlling Remote Clients 135
11.3 Transmitting Events 136
11.4 Suppressing Stand-Alone Client Behavior 137
11.5 The “Shell” Client 137
11.6 Initializing the Interpreter 138
11.7 Installing and Porting Glish 138

12 Changes Between Glish Releases 140
12.1 Release 2.4 140
12.2 Release 2.3 141
12.3 Release 2.2 142

13 Bugs 143

14 Future Directions 145

15 Acknowledgments 150

A Glish Syntax and Grammar 152

Index 155

5

List of Figures

2.1 Simple Two-Program Distributed System 11
2.2 Three-Program Distributed System 13
2.3 Conceptual Event Flows vs. Actual Flows 14

8.1 Glish Wrapper for FFT Client 93

6

List of Tables

4.1 Operator Precedence and Associativity, Highest to Lowest 46

7

Chapter 1

Introduction

Glish is a system for building loosely-coupled distributed systems. “Loosely-coupled”
means that the programs in a Glish system communicate with one another at fairly
low rates (perhaps a hundred times a second). “Distributed systems” means that the
programs in the system can run on different computers, communicating transparently
over a network.

The main thrust of the Glish system is that individual programs in the system should
be wholly modular, with no knowledge of other programs or data types that might exist
in the system. Glish supplies a uniform way for programs to communicate without
knowing about one another. This is done by writing the programs in terms of events,
which are name/value pairs. In the usual case, programs receive an event, perform
some sort of action in response to the event, and possibly generate one or more new
events associated with the response. An example is an FFT “server”, which might
be sent an event with the name “please-FFT-this” and an associated value of an array
of double precision data, to which the server in turn generates an “FFT-done” event
whose value is two arrays, the Fourier components of the original data. More generally,
programs can also spontaneously create events in response to external actions, such as
a piece of hardware signalling that some condition has changed, a timer going off, or a
person interacting with a graphical interface.

Glish has three parts:

the Glish language, used for writing scripts specifying what programs to run and
how to interconnect them;

a C++ class library that programs (Glish clients) link with so they can generate
and receive events and manipulate structured data;

an interpreter process for executing Glish scripts and acting as a central “clear-
inghouse” for forwarding events between processes.

The Glish system is very flexible:

8

existing programs can be turned into Glish clients either by writing event-
oriented, C++ “wrappers” around them or by encapsulating their filter behavior
using stdin and stdout events;

clients in a Glish script can run on different computers, which can have hetero-
geneous architectures;

Glish provides a full programming language for manipulating the events and data
generated by and sent to clients.

Overviews of the Glish system can be found in the papers “Glish: A User-Level
Software Bus for Loosely-Coupled Distributed Systems,”, by Vern Paxson and Chris
Saltmarsh, Proceedings of the 1993 Winter USENIX Technical Conference, and in
“Glish: A Software Bus for High-Level Control,” by Vern Paxson, Proceedings of
the 1993 International Conference on Accelerator and Large Experimental Physics
Control Systems, to appear in Nuclear Instruments and Methods in Physics Research.
PostScript for these papers is also distributed with Glish, in the files doc/USENIX-93.ps
and doc/ICALPECS-93.ps. Hardcopy is also available from the author of this manual.

This manual is intended to provide full documentation for users of the Glish system,
both those who simply wish to write Glish scripts for creating applications from existing
Glish clients, and those who wish to write new Glish clients. The main emphasis is
on the Glish script language, which is very powerful and can often be used to avoid
having to write lengthier programs in C or C++.

First, to convey the feel of using Glish, the next chapter presents examples illus-
trating how Glish could be used to build a fairly simple distributed system.

The next chapter begins discussion of the Glish language with a look at the different
types of values that can be manipulated in a Glish script. Glish is an array-oriented lan-
guage, and provides many operators for succinctly manipulating arrays of numeric and
string-valued data. The chapter covers the Glish type system, the array manipulation
operators, and the ways in which Glish values are created from constants.

Chapter 4 covers the different ways of creating values from other values using
expressions.

Chapter 5 then looks at the different statements available in the Glish language for
assigning values to variables, print values, testing conditions, looping, and sending and
receiving events.

Chapter 6 discusses how to create and use functions.
Chapter 7 discusses Glish events in full detail, and the following chapter presents

the Glish Client Library, which is used by programs to connect to the Glish system.
Chapter 9 details the functions and variables that are predefined by Glish for use in

Glish scripts; an index is given at the end of the chapter.
Chapter 10 discusses how to use the Glish interpreter, and how to debug Glish

clients.
Chapter 11 looks “under the hood” at how the Glish system works from a systems

programmer’s point-of-view.

9

Finally, Chapter 12 documents the changes between the various Glish releases,
Chapter 13 lists all of the known Glish bugs, and Chapter 14 discusses those areas
where Glish is likely to change in the future. Chapter 15 lists acknowledgments for
Glish’s development, and Appendix A gives the Glish syntax and grammar.

10

Chapter 2

An Example of Using Glish

For an idea of the sorts of problems Glish is meant for and how it’s used to solve them,
consider a simple example where we want to repeatedly view readings generated by an
instrument attached to a remote computer called “mon”. Suppose we have a program
measure that reads values from the special hardware device and converts them into
two floating-point arrays, x and y. measure needs to run on the remote host “mon”
because that’s where the special hardware resides. We have another program, display,
for plotting the x/y data, which we want to run on our local workstation. display also
has a “Take Measurements” button that we can click on to instruct the hardware to take
a new set of measurements.

Measure Display

take data

new data

Figure 2.1: Simple Two-Program Distributed System

The first problem we’re interested in is simply to connect together measure and
display so that when measure produces new values they’re shown by display, and
when we click the display’s button measure goes off and reads new values. Figure 2.1
illustrates the flow of control and data: display tells measure to take measurements,
and measure informs display when new measurements are available.

To implement even this simple system under Unix requires constructing a session-
layer protocol which then has to be implemented on top of sockets or RPC. When using
Glish, though, the protocol and the communication mechanism are built-in. Every
program in a Glish system communicates by generating events, messages with a name
and a value. For our simple system we might write measure so that whenever it has

11

new readings available it generates an event called “new data”. The value of the
event will be a record with two elements, x and y, the two arrays of numbers it has
computed from the raw measurements. We would write display so that when it receives
a new data event it expects the value of the event to be a record with at least x and y
fields; it then plots those values. Similarly, when we push the “Take Measurements”
button display will generate a take data event, and whenever measure receives a
take data event it will get a new set of readings and generate a new new data
event.

Here is a Glish script that when executed creates the two processes, one remotely,
and conveys their messages to each other:

m := client("measure", host="mon")
d := client("display")

whenever m->new_data do
send d->new_data($value)

whenever d->take_data do
send m->take_data($value)

When Glish executes the first two lines of this script it creates instances of measure
(running on the host “mon”) and display (running locally) and assigns to the variables
m and d values corresponding to these Glish clients. Executing the next line:

whenever m->new_data do

specifies that whenever the client associated with m generates a new data event,
execute the following statement:

send d->new_data($value)

This statement says to send a new event to the client associated with d. The event’s
name will be new data and the event’s value is specified by whatever comes inside
the parentheses; in this case, the special expression $value, indicating the value of
the most recently received event (measure’s new data event).

The last two lines of the script are analogous; they say that whenever display
generates a take data event an event with the same name and value should be sent
to measure.

Our system could easily be a bit more complicated. Suppose that prior to viewing
the measurements with display, we first want to perform some transformation on them.
The transformation might for example calibrate the values and scale them into different
units, filter out part of the values, or FFT the values to convert them into frequency
spectra. Rather than building the transformation into measure, we would like our
system to be modular, so we use a separate program called transform.

Figure 2.2 shows the flow of control and data in this new system. measure sends
its values to transform; transform derives some transformed values and sends them to

12

Measure Transform

transformed

DisplayDisplay

take

new data

datadata

Figure 2.2: Three-Program Distributed System

display; and display tells measure when to take more measurements. With Glish it’s
easy to accommodate this change::

m := client("measure", host="mon")
d := client("display")
t := client("transform")

whenever m->new_data do
send t->new_data($value)

whenever t->transformed_data do
send d->new_data($value)

whenever d->take_data do
send m->take_data($value)

The third line runs transform on the local host and assigns a corresponding value to the
variable t. The first whenever forwards new data events from measure to trans-
form; the second whenever effectively forwards transform’s transformed data
events to display, but changes the event name to new data, since that’s what display
expects. The third whenever is the same as before.

An important point in this example is that while conceptually control and data
flow directly from one program to another, in reality all events pass through the Glish
interpreter. Figure 2.3 illustrates the difference. Here solid lines show the paths by
which events actually travel, while dashed lines indicate the conceptual flow. While this
centralized architecture doubles the cost of simple “point-to-point” communication, it
buys enormous flexibility. For example, suppose sometimes we want to use transform
before viewing the data and other times we don’t. We add to display another button that
lets us choose between the two. It generates a set transform event with a boolean
value. If the value is true then we first pass the measurements through transform,
otherwise we don’t.

To accommodate this change in our Glish program we could add a global variable
do transform to control whether or not we use transform:

13

Measure Transform

Display

DisplayDisplay

Glish

Figure 2.3: Conceptual Event Flows vs. Actual Flows

m := client("measure", host="mon")
t := client("transform")
d := client("display")
do_transform := T

whenever m->new_data do
{
if (do_transform)

send t->new_data($value)
else

send d->new_data($value)
}

whenever t->transformed_data do
send d->new_data($value)

whenever d->take_data do
send m->take_data($value)

whenever d->set_transform do
do_transform := $value

We initialize do transform to T, the boolean “true” constant. We change it when-
ever display generates a set transform event (see the last two lines). When mea-
sure generates a new data event we test the variable to determine whether to pass the
event’s value along to transform or directly to display.

Furthermore, if the data transformation done by transform is fairly simple, we
could skip writing a program to do the work and instead just use Glish. For example,

14

suppose the transformation is to find all of the x measurements that are larger than
some threshold, and then to set those x measurements to the threshold value and the
corresponding y measurements to 0. We could do the transformation in Glish using:

m := client("measure", host="mon")
d := client("display")
do_transform := T

if (len(argv) > 0)
thresh := as_double(argv[1])

else
thresh := 1e6

whenever m->new_data do
{
if (do_transform)

{
too_big := $value.x > thresh
$value.x[too_big] := thresh
$value.y[too_big] := 0
}

send d->new_data($value)
}

whenever d->take_data do
send m->take_data($value)

whenever d->set_transform do
do_transform := $value

Here we first check to see whether any arguments were passed to the Glish script and
if so we initialize thresh to be the first argument interpreted as a double precision
value. If no arguments were given then we use a default value of one million.

Now whenever measure generates a new data event and we want to do the trans-
formation, we set too big to a boolean mask selecting those x elements that were
larger than thresh. We then set those x elements to the threshold, zero the corre-
sponding y elements, and pass the result to display as a new data event. We have
eliminated the need for transform.

Finally, for situations in which performance is vital Glish provides point-to-point
links between programs. The link statement connects events generated by one
program directly to another program. The unlink statement suspends such a link
(further events are sent to the central Glish interpreter) until another link. Here is the
last example written to use point-to-point links:

15

m := client("measure", host="mon")
d := client("display")

link m->new_data to d->new_data

if (len(argv) > 0)
thresh := as_double(argv[1])

else
thresh := 1e6

whenever m->new_data do
{
too_big := $value.x > thresh
$value.x[too_big] := thresh
$value.y[too_big] := 0
send d->new_data($value)
}

whenever d->take_data do
send m->take_data($value)

whenever d->set_transform do
{
if ($value)
unlink m->new_data to d->new_data

else
link m->new_data to d->new_data

}

We now no longer need the do transform variable. Instead we initially create a
link for measure’s new data events directly to display. Whenever display sends a
set transform event requesting that the transformation be activated, we break the
direct link between measure and display. Now when measure generates new data
events they will be sent to Glish, which will then transform the data and pass it along
to display.

These examples illustrate the main goals of Glish: making it easy to dynamically
connect together processes in a distributed system, and providing powerful ways to
manipulate the data sent between the processes. One other important point is that
because measure, transform, and display are all written in an event-driven style, each of
them can be easily replaced by a different program that has the same “event interface”.
For our own work (scientific programming) we often want to replace measure with
simulate (a program that simulates the quantity being measured), display with a non-
interactive program once we have ironed out the measurement cycle, and transform
with a variety of different transformations. We also might want to run measure and

16

simulate together, so we can compare simulate’s model with the actual phenomenon
measured by measure. The ability to quickly “plug in” different programs in this
fashion is one of Glish’s main benefits.

17

Chapter 3

Values, Types, and Constants

3.1 Overview

We begin with an overview of the types of values supported by Glish, giving a brief
description of each type and introducing the notions of dynamic typing, type conversion,
and array values. We discuss each type in detail in 3.2– 3.6 below.

3.1.1 Glish Types

There are ten types of values in the Glish type system:

boolean, integer, float, and double types, collectively called numeric,
that can be used for arithmetic, logical operations, and comparisons;

string, character strings, that can be used for comparisons and converted to
numeric types;

record, a collection of values (of possibly different types), each of which has
a name;

function, a function that when called with a list of values (arguments) returns
a value;

agent, an entity that generates and responds to events (an event is a name/value
pair, discussed below in 7, page 66);

reference, a value that is an alias for another value;

and opaque, an uninterpreted value.

Every value in a Glish script has one of these types. The function type name
returns as a string the name of its argument. For example,

18

type_name(2.71828)

returns “double”. type name is more fully described in 9.1, page 107.
For most types there are ways of specifying constants representing values of the

type. In the example above, 2.71828 is a constant of type double. The discussion
of types in 3.2– 3.6 below includes a description of how to specify constants for the
types.

3.1.2 Dynamic Typing

Glish variables are dynamically typed, meaning that their type can change with each
assignment. Before any assignment has been made to a variable its value is F, the
“false” constant, and its type is thus boolean. So in the following:

a := 5
a := 2.71828
a := "hello there"

before the first statement is executed, a’s type is boolean; after the first statement,
its type is integer; after the second, double; and after the third, string.

To see if a value has a particular type X, call the function is X, which will return
true if the value has that type and false otherwise. For example, the function call

is_integer(5)

will return a boolean value of true, while

is_double(5)

returns a value of false. The one exception is that there is no is reference()
function for determining whether a value is a reference type; instead you must use
the type name() function (9.1, page 108). For example,

is_integer(ref 5)

returns true (see below, 3.5, page 31).

3.1.3 Type Conversions

Some types will be automatically converted to other types as needed. For example,
an integer value can always be used where a double value is expected. The
following:

a := 5
b := a * .2

19

assigns the double value 1.0 to b; a’s type remains integer. Automatic conver-
sions are limited to converting between numeric types, and converting a reference
type to the type it refers to.

Other types require explicit conversion. For example, the following expression is
illegal:

5 * "1234foo"

but the string can be explicitly converted to an integer using the function as integer.
The following yields an integer value of 6170:

5 * as_integer("1234foo")

The following functions are available for explicit type conversion:

as_boolean
as_integer
as_float
as_double
as_string

Details on how they do their conversions can be found in 9.2, page 109.
Still other types cannot be converted at all. For example, a function type cannot

be converted to any other type.
Type mismatches result in run-time errors.

3.1.4 Arrays

Most Glish types correspond to an array of values rather than a single value. For
example,

a := [1, 2, 6]

assigns to a an array of three elements, each an integer. An array with only one element
is called a scalar. For example,

[5]

is an integer scalar and is identical in all ways to the constant:

5

Creating Arrays

In general, you create arrays by enclosing a comma-separated list of values within
square brackets ([]). The values must all be automatically convertible to one another
(see 3.1.3, page 19). This means that they must either all be numeric or they must
all be the same type. If they are numeric then they are converted to the “highest” type
among them, as discussed in 3.2.2, page 24.

The individual values inside the []’s are not restricted to scalars; arrays can be
included, too, and will be expanded “in-line”. For example,

20

[1, 7, [3, 2, [[[5]]]], 4]

is equivalent to

[1, 7, 3, 2, 5, 4]

integer arrays can also be created using the built-in : operator, which returns
an array of the integers between its operands. For example,

3:7

yields

[3, 4, 5, 6, 7]

and

3:-2.7

yields

[3, 2, 1, 0, -1, -2]

You don’t have to list any values inside the brackets:

a := []

assigns to a an empty array of type boolean. Note that such empty arrays have the
special property that they can be intermixed with arrays of types that would otherwise
be incompatible. For example,

["foo", "bar", []]

yields a two-element string array, while

["foo", "bar", [T]]

results in an error because the elements of the constructed array do not have compatible
types.

You can also create arrays using the seq function; see 3.7 and 9.3 for a descrip-
tion.

Length of an Array

The length function returns the length of an array. It can be abbreviated as len. For
example,

len([3, 1, 4, 1, 5, 9])

returns the integer value 6, and

1:len(a)

is an array of the integers from 1 to the length of a.

21

Element-by-Element Array Operations

The various arithmetic, logical, and comparison operators all work element-by-element
when given two equal-sized arrays as operands. For example,

[1, 2, 6] + [5, 0, 3]

yields the array

[6, 2, 9]

Single-element arrays are referred to as scalars. If one operand is a multi-element array
and the other a scalar then the scalar is paired with each array element in turn. For
example,

[1, 2, 6] * 3

yields

[3, 6, 18]

If neither operand is a scalar but the two arrays have different sizes then a run-time
error occurs.

Accessing Array Elements

Array elements are accessed using the [] operator. For example,

a[5]

returns the 5th element of a. Here 5 is an array index. The first element is retrieved
using an index of 1 (a[1]; not a[0] as would be the case in C). Indices less than 1
or greater than the size of the array result in run-time errors.

For example,

(5:10)[3]

yields 7. The [] operator has higher precedence than the : operator, so

5:10[3]

results in an error because the array being indexed (the scalar [10]) has only one
element and not three.

22

Modifying Array Elements

You can also set an array element using the [] operator:

a[1] := 3

assigns 3 to the first element of a. The new element value must either be of the same
type as the array, or both the array and the new element must be of numeric type, in
which case the array’s type becomes the “highest” of the two types, as discussed in

3.2.2, page 24. For example, if in the above assignment a’s type was double then
the value of 3 would be converted to 3.0; if a’s type was boolean then a would first
be converted to integer and then its first element set to the integer 3.

It is possible to extend a numeric array by setting an element beyond its end. Any
“holes” between the previous end of the array and its new end are filled with zeroes
(“false” for boolean values). So for example,

a := 1:5
a[8] := 32

results in a having the value [1, 2, 3, 4, 5, 0, 0, 32]. Furthermore, a
previously undefined variable can be set to an array value by setting an element to a
numeric value:

b[4] := 19

sets b to the value [0, 0, 0, 19].
You also can access or modify more than one array element at a time; see 3.7,

page 33, for a description.

3.2 Numeric Types

boolean, integer, float, and double types should be familiar to most pro-
grammers as Boolean, integer, single-precision floating-point, and double-precision
floating-point types. These types are referred to collectively as numeric. Numeric
types can be used in arithmetic and logical operations (see 3.2.3– 3.2.4 below) as
well as in comparisons (3.2.5, page 26).

3.2.1 Numeric Constants

There are two boolean constants: T and F. They represent the values of “true” and
“false”, respectively.

integer constants are just strings of digits, optionally preceded by a + or - sign:
1234, -42, and +5 for example.

You write floating-point constants in the usual ways, a string of digits with perhaps
a decimal point and perhaps a scale-factor written in scientific notation. Optional +
or - signs may be given before the digits or before the scientific notation exponent.

23

Examples are -1234., 3.14159, and .003e-23. All floating-point constants are
of type double.

3.2.2 Mixing Numeric Types

You can freely intermix numeric types in expressions. When intermixed, values are
promoted to the “highest” type in the expression. integer is higher than boolean,
float is higher than integer, and double is highest of them all. When converting
boolean values to integer or floating-point values, “true” is promoted to 1 and false
to 0. Thus the expression 5 + T yields the integer value 6 and 3.2 * 4 yields
the double value 12.8. The type conversion functions can be used to prevent type
promotion. For example,

as_integer(3.2) * 4

yields the integer value 12. See 9.2, page 109, for specifics on how each as X
function works.

3.2.3 Arithmetic Operators

For doing arithmetic, Glish supports +, -, *, /, %, and ˆ. The first four have their usual
meaning. They evaluate their operands after converting them to the higher type of the
two and return a result of that type. Division always converts the operands to double
and yields a double value. + and - can also be as unary operators. For example,

-[3, 5]

yields

[-3, -5]

% computes a modulus, defined in the same way as in the C language. It evaluates
its operands as integer and returns an integer result.

ˆ does exponentiation. It evaluates its operands as double and returns a double
result. Thus

3ˆ5

returns the double value 243.0.
As discussed above in 3.1.4, page 22, the arithmetic operators all operate element-

by-element when given two equal-sized arrays. For example,

a := [1, 3, 5]
b := a * 2:4

assigns to b

[2, 9, 20]

24

If one of the arrays is a scalar then the scalar is paired with each element in turn:

1:5 ˆ 2

yields the double array

[1.0, 4.0, 9.0, 16.0, 25.0]

Operations on arrays of different sizes, such as

1:5 ˆ [2, 3]

result in run-time errors.
Binary + and - have the lowest precedence, *, /, and % have equal and next highest

precedence, and ˆ has highest precedence of the binary operators. The precedence of
ˆ is just below that of the : operator discussed in 3.1.4, page 20. The unary +
and - operators have precedence just above :. See 4.13, page 45, for a table of the
precedence of all Glish operators.

All arithmetic operators associate from left-to-right except for ˆ, which associates
from right-to-left.

Finally, a number of arithmetic functions are also available, most of which operate
element-by-element on their operands. See 9.3, page 110, for descriptions.

3.2.4 Logical Operators

Glish supports three logical operators: &, |, and !, are Boolean “and”, “or”, and “not”,
respectively.

The &, | operators require boolean operands, and other numeric types are not
automatically converted to boolean in this case. As with the arithmetic operators, these
operate on multi-element arrays element by element. For example,

[T, F, F, T] & [F, F, T, T]

yields

[F, F, F, T]

while

[T, F, F, T] | T

yields

[T, T, T, T]

See 4.5, page 40, for a discussion of the related && and || operators.
The unary ! operator negates its operand. It first converts any numeric operand

to boolean by treating a value of 0 (zero) as false and any other value as true. For
example,

25

! [T, F, F, T]

yields

[F, T, T, F]

and

! 5e-238

yields true.
The logical operators are left-associative. The | operator has precedence just below

&, which in turn is just below that of the comparison operators (see 3.2.5, page 26). The
! operator has very high precedence, the same as unary + and -; see 3.2.3 and 4.13.

9.3, page 110, discusses the predefined functions for operating on logical values.

3.2.5 Comparison Operators

Glish provides the usual comparison operators: ==, !=, <, <=, >, and >=. They each
take two operands, which they convert to the higher of the two types (see 3.2.2,
page 24). They return a boolean array corresponding to the element-by-element
comparison of the operands. For example,

3 < 3.000001

yields true, and

1:4 == [3,2,3,2]

yields

[F, T, T, F]

The boolean value “true” is considered greater than “false”. For example,

F < T

yields true.
You can also use the == and != operators to compare non-numeric values. See

4.4, page 40 for details.
The comparison operators are all non-associative and have equal precedence, just

below that of binary + and - (see 3.2.3, page 24) and just above that of the logical
& operator (see 3.2.4, page 25). See 4.13, page 45, for a general discussion of
precedence.

3.2.6 Indexing With Numeric Types

You can use numeric values to index arrays in two different ways. boolean values
serve as masks for picking out array elements for some condition is true, and non-
boolean values (converted to integer) serve as indices for specifying a particular
set of elements in an array. See 3.7, page 33, for a discussion of these different ways
of indexing.

26

3.3 Strings

The string type holds character-string values, used to represent and manipulate text.

3.3.1 String Constants

You create string constants by enclosing text within either single (’) or double (")
quotes.

Glish treats text within single quotes as a single string value; these constants are
scalars. For example,

’hello there’

yields a string value of one element. That element has 11 characters.
Glish breaks up text within double quotes into words at each block of whitespace

(blanks, tabs, or newlines). The whitespace is removed from the result. Thus

"hello there"

yields a two-element string value, the first element of which is the character string
hello and the second element the string there. Leading and trailing whitespace is
ignored, so

" hello there "

is equivalent to

"hello there"

In both kinds of string constants, a backslash character (\) introduces an escape
sequence. Currently four escape sequences are recognized: \n yields a newline char-
acter, \t a tab character, \r a carriage-return, and \f a formfeed. Any other character
following a \ is passed along literally. For example,

"hello \"there\" how \
are\nyou?"

yields the string

hello "there" how are you?

(recall that the \n newline is treated as whitespace and removed from the string), while

’hello \’there\’ how \
are\nyou?’

yields the single-element string

hello ’there’ how are
you?

27

3.3.2 String Operators

Currently the only string operators provided are the comparison operators discussed in
3.2.5, page 26.

Some functions for manipulating strings are also available. See 9.4, page 113.

3.4 Records

A record is a collection of values. Each value has a name, and is referred to as one
of the record’s fields. The values do not need to have the same type, and there is no
restriction on the allowed types (i.e., each field can be any type).

3.4.1 Record Constants

You create record constants in a manner similar to array constants, by enclosing values
within square brackets ([]). Unlike with arrays, though, each value must be preceded
with a name and an equal sign (=). For example:

r := [foo=1, bar=[3.0, 5.3, 7], bletch="hello there"]

creates a record r with three fields, named “foo”, “bar”, and “bletch”. These fields
have types integer, double, and string, respectively. Empty records can be created
using [=]:

empty := [=]

As explained in 3.1.4, page 20, if [] were used instead of [=] then empty would
have type boolean instead of record.

3.4.2 Accessing Fields Using “.”

You access record fields using the “.” (dot or period) operator, as in many programming
languages. Continuing our example for the record r above,

r.bar

denotes the three-element double array

[3.0, 5.3, 7]

and

r.bar[2]

is the double value 5.3. Field names specified with “.” must follow the same
syntax as that for Glish variable names (see 4.1, page 39), namely they must begin
with a letter or and underscore (“ ”) followed by zero or more letters, underscores, or
digits. Unlike with variable names, Glish reserved words such as if or whenever
are legal for field names. Field names are case-sensitive.

You can assign to a record field using the “.” operator, too. After executing

28

r.date := "30Jan92"

r will now have four fields, the fourth being named date.
The length (or len) function returns the number of fields in a record. For our

running example,

len(r)

will now return the integer value 4.
The field names function returns a string array whose elements are the

names of the fields of its argument, in the order in which the fields were created.
For example, at this point

field_names(r)

would yield the array

["foo", "bar", "bletch", "date"]

3.4.3 Accessing Fields Using []

In addition to using the “.” operator to access fields, records can also be indexed
using []’s with string-valued indices. For example,

r["bar"]

is equivalent to r.bar. Furthermore, the index does not need to be a constant; any
string-valued expression will do:

b := "I’ll meet you at the bar"
print r[b[6]]

will print r’s bar field.
Just as the “.” operator can be used to assign record fields, so can []:

r["date"] := "30Jan92"

is equivalent to the example using r.date above.
When accessing fields using [], any string can be used, not just those conforming

to the field names allowed with the “.” operator (see above). For example,

expletive[’&)#% (&%!’] := T

is legal. Field names with embedded asterisks (“*”), though, are reserved for internal
use by Glish.

There are also mechanisms for accessing or modifying more than one field at a
time; see 3.7, page 33, for a description.

29

3.4.4 Accessing Fields Using Numeric Subscripts

You can also index records using []with numeric subscripts, much as with arrays. For
example,

r[3]

refers to the third field assigned to r; for our running example this is bletch, a 2-
element string array. As with arrays, all indexing operations are checked to make
sure the index is within bounds (between 1 and the length of the record).

You can then alter a record field by assigning to them in the same fashion:

r[3] := F

changes the bletch field to be a scalar boolean value. New fields can be created
by assigning to r using an index one greater than the number of fields in r. For our
running example r has at this point 4 elements, so

r[5] := [real=0.5, imag=2.0]

adds a new field to rwhose value is itself a record with two fields. The field is given an
arbitrary, internal name, guaranteed not to conflict with other fields in r and containing
an embedded ‘*’ character.

It is not legal to add a new field to a record at a position greater than one more than
the number of fields. For example,

r[7] := [1, 4, 7]

would be illegal since len(r) is 5.
An important point is that array-style indexing of records allows the creation of

“arrays” whose elements have different types. For example,

a := [=]
a[1] := 32
a[2] := "hello there"
a[3] := [field1=T, field2="the more the merrier"]

creates what is for most purposes (see 3.7.4, page 37, for exceptions) an “array” a
whose first element is an integer, second a string, and third a record. While
a number of Glish types (record, function, agent, and reference) are not
“array types” in the sense that each value of the type is implicitly an array, arrays of these
types can be created using records in the above fashion. Similarly, multi-dimensional
arrays can be created:

id3 := [=]
id3[1] := [1, 0, 0]
id3[2] := [0, 1, 0]
id3[3] := [0, 0, 1]

creates a three-by-three identity matrix; id3[2][2] is 1, the “middle element”, and
id3[2][3] is 0, the element just to its right.

30

3.5 References

Areference is an alias for a variable or a record field; it provides a way for variables
or record fields to share a common value. In the following we use “variable” to stand
for “variable or a record field”.

References are created using the ref or const operators. You can use ref
references to both access and modify the variable; with const references you can
only access the variable.

For example,

a := 1:5
b := ref a
b[2] := 9
print a

prints [1 9 3 4 5] and not [1 2 3 4 5]. If we then executed:

a[3] := 121

then b would now equal [1 9 121 4 5] (as would a).
An important point, though, is that while a and b refer to the same underlying

value, assigning either of them to another value breaks the connection between the
two. If we do:

a := 1:5

then a will go back to equaling [1 2 3 4 5] while b will remain equal to [1 9
121 3 4 5]. Subsequent changes to elements of a or b will not be reflected in the
other variable’s value.

The reference connection can be maintained, however, by explicitly stating that
you want to do so by using the val operator. For example, after executing:

c := [1, 3, 7, 12]
d := const c
val c := "hello there"

the value of d (and of course c) will be the two-element string "hello there". If d
were a ref reference and not a const one then assigning to val d would similarly
have changed the value of c, too.

As mentioned above, all of this applies to record fields, too:

r := [foo = 1:3, bar = "hello there"]

s := [a = ref r.foo, b = ref r.bar]

s.a[2] := -4 # changes r.foo[2], too
s.a := [T, T, T, T, T] # doesn’t change r.foo

31

val r.bar := 1:7 ˆ 2 # changes s.b, too

print r.foo[2], s.b[5]

prints -4 followed by 25.
The second assignment makes s a record with two fields, a and b, which are

references to r.foo and r.bar.
The third assignment changes s.a[2] and r.foo[2] to be -4.
The fourth assignment breaks the link between s.a and r.foo, since we’re as-

signing to the entire variable s.a and not just some of its elements.
The fifth assignment modifies both r.bar and s.b to be an array of the first 7

squares. Without the val operator only r.bar would have been changed, and the
link between r.bar and s.b broken.

In this last example we could have used

s := [a = ref r.foo, b = const r.bar]

instead of b = ref r.bar, since we did not use s.b to modify r.bar. But we had
to use a = ref r.foo, since we used s.a to modify r.foo (when we assigned
s.a[2] := 4.

Any use of a reference value is equivalent to a use of the original variable. For
example, after executing

x := 1
y := ref x
z := y
val x := 2

x and y have the value 2, but z has the value 1, since that was the value of y when
z := y was executed. Had we instead used;

x := 1
y := ref x
z := ref y
val x := 2

then all three variables would equal 2 after the final assignment. If we now executed:

y := 3
val x := 4

then ywould equal 3 (its connection with x’s value was broken by the first assignment)
andx andzwould equal4; z is still a reference tox’s value; the statementz := ref y
was equivalent to z := ref x, since y was a reference to x at that point.

While it’s an error to use a const reference to modify a value using a val . . . :=
assignment, such errors are caught at run-time, not compile-time (they actually generate
warnings and not errors).

32

The primary reason for having references in Glish is to provide an efficient way
for passing large values to functions, as described in Chapter 6, page 55. The current
design is new and may have problems; I’m interested in hearing of difficulties in either
understanding or using references, and the user is warned that the semantics are in flux.
In particular, it seems potentially error-prone that:

a := ref b

. . .

a := 9

does not modify b but instead severs the connection between a and b. This potential
flaw is somewhat ameliorated by the fact that using b to modify elements of a does
not require a val assignment. It’s my hope that the latter usage will prove much more
common than the former.

3.6 Opaque Values

Glish provides a type called opaque for values that Glish itself does not interpret.
Such values can be created and interpreted only by Glish client programs (see 8.5,
page 92), not by statements inside Glish scripts. The only manipulation of opaque
values allowed within Glish scripts is to assign them to variables or record fields
(such assignment results in a “shallow” copy; the underlying data represented by the
opaque value remains unchanged), and to apply generic predefined functions (Chap-
ter 9, page 107) to them, such as type name() (9.1, page 108). opaque values
may also be written to files using write value(value,file) (9.6, page 115),
though presently if read back using read value(value,file) (9.6, page 116)
they will either be converted to a non-opaque Glish value, or result in an error.

The use of opaque values is discouraged.

3.7 Multi-Element Indexing

While Glish supports the “usual” form of single-element array access familiar to C and
FORTRAN programmers, it also provides ways for accessing or modifying more than
one array element at a time.

Glish array indices needn’t be scalar values; the indices can also be multi-element ar-
rays. The indices have different meanings depending on whether their type isinteger
or boolean. We discuss each of these in turn below.

3.7.1 Integer Indices

If the index’s type is integer (or float or double, which are first converted to
integer; but notboolean) then the values of the index indicate the desired elements
of the indexed array. For example, if we have

33

a := [5, 9, 0, -3, 7, 1]
b := [4, 2]

then

a[b]

yields the array

[-3, 9]

since -3 is the 4th element of a and 9 is the 2nd element. There’s no special need for
the array index to be a variable; it could just as soon be a constant:

a[[4,2]]

(which is equivalent to a[b]) or an array-valued expression:

a[b+2]

yields

[1, -3]

since those are the 6th and 4th elements of a.
Since the : operator yields an integer array, you can use it to access a contiguous

sequence of elements in an array:

a[3:5]

yields

[0, -3, 7]

since those are the 3rd through 5th elements of a. Similarly,

a[2:1]

yields

[9, 5]

as those are the 2nd and 1st elements of a. If we have an array x that we copy into
rev x in reverse order, we could use:

rev_x := x[len(x):1]

The ind function provides a convenient way for generating a value’s array indices:

ind(x)

is equivalent to:

34

1:len(x)

The seq function provides a somewhat more flexible way to generate array indices.
seq takes one, two, or three arguments. For our purposes here we will limit these
arguments to be integers; see 9.3, page 110, for a complete discussion of seq. If seq
is invoked with just one scalar argument then it returns an array of the integers from 1
to that value:

seq(7)

yields

[1, 2, 3, 4, 5, 6, 7]

for example. If it is invoked with a single non-scalar argument then it returns an array
of the integers from 1 to the length of the argument:

seq([3, 1, 4, 1, 5, 9])

yields

[1, 2, 3, 4, 5, 6]

If seq is invoked with two arguments then it returns the integers between the two,
inclusive:

seq(5,2)

yields

[5, 4, 3, 2]

If the first argument is a non-scalar then its first element is used to determine where the
sequence begins.

If invoked with three arguments then seq returns the integers between the first two
using the third as a stride. It starts with the first value and works its way to the second,
each time incrementing by the stride. It stops when it passes the second argument. So

seq(3,10,2)

yields

[3, 5, 7, 9]

and

seq(20,8,-4)

yields

[20, 16, 12, 8]

35

while

x[seq(1,len(x),2)]

yields every other element of x. Note that in the second example, using

seq(20,8,4)

would result in a run-time error. If a stride is given then it must reflect the direction in
which the sequence will proceed. (This is perhaps a bug.)

3.7.2 Boolean Indices

A boolean array index forms a mask that picks out those elements for which the mask
is true. For example,

a := "hello there, how are you?"
print a[[F,T,T,F,F]]

will print “there, how”. Similarly,

y := x[x > 5 & x < 12]

will assign to y an array of just those elements of x that are greater than 5 and less than
12, since the x > 5 & x < 12 operation returns a boolean mask that is true for those
elements of x greater than 5 and less than 12, and false for the remainder. Another
example:

max(x[x < 10])

will return the largest element of x that is less than 10 (see 9.3, page 110, for a
discussion of max and other related functions).

Often we want to know the indices of those array elements with a certain property,
rather than the values of those elements. The following illustrates the idiom for doing
so:

neg_indices := ind(x)[x < 0]

Here we have assigned to neg_indices the indices of those elements of x that are
less than 0. Thus

x[neg_indices]

and

x[x < 0]

are equivalent expressions.
Boolean indices must have the same number of elements as the indexed array, or

else a run-time error occurs.

36

3.7.3 Assigning Multiple Elements

In addition to using array indices to access multiple array elements, you can also use
them to modify multiple elements.

a[[5,3,7]] := 10:12

assigns to the 5th, 3rd, and 7th values of a the numbers 10, 11, and 12, respectively.
The right-hand-side of the assignment can also be a scalar value:

a[[5,3,7]] := 0

sets those same elements to 0.
The same sorts of operations can be done using masks:

a[a > 7] := 32

changes all elements of a that are greater than 7 to be 32, and

x[x < 0] := -x[x < 0]

is the same as

x := abs(x)

(indeed, this is how abs is implemented; see 9.3, page 110, for a discussion of abs
and other related functions); it converts the negative elements of x to their absolute
value.

As with simple, scalar assignments, the types on both sides of the := operator must
be compatible, as discussed in 3.1.3, page 19.

The right-hand-side must either be a scalar or have the same number of elements
as indicated by the indices or mask used on the left-hand-side. For example,

a[1:3] := [2,4]

is illegal.

3.7.4 Accessing and Modifying Multiple Record Fields

As with arrays, you can access and modify multiple record fields using multi-element
indices. For records the index must be an array of strings. For example,

a := [foo=1, bar=[3.0, 5.3, 7], bletch="hello there"]
b := a[["foo", "bar"]]

assigns to b a record whose foo field is the integer value 1 and whose bar field
is the double array [3.0, 5.3, 7.0]. Because of how double-quoted string literals are
broken up into arrays (see 3.3.1, page 27), the second statement could also have been
written:

37

b := a["foo bar"]

You can assign multiple record fields in a similar fashion:

a["foo bar"] := [x=[9,1], y=T]

will changea’sfoo field to be the integer array[9,1], anda’sbarfield to the boolean
value T (true). You can also make this sort of assignment by accessing multiple-field
elements on the right-hand-side. For example, the following is equivalent:

r := [x=[9,1], y=T, z="ignore me"]
a["foo bar"] := r["x y"]

For the assignment to be legal, the right-hand-side must be a record with the same
number of fields as the left-hand-side (as in the example above). The field names are
ignored but the assignment is done field-by-field, left-to-right.

As discussed in 3.4.4, page 30, you can access records using numeric subscripts,
and just as can be done with array values, you can use multiple numeric subscripts
to access and modify more than one field in the record. For example, the following
reverses the field’s of r:

r := [x=1, y=T, z="hello"]
r[3:1] := r

so that now r.x is "hello", r.y is (still) T, and r.z is 1.

38

Chapter 4

Expressions

As in many programming languages, you create values in Glish by combining variables
and constants using operators to form expressions. In this section we discuss the kinds
of expressions available in Glish and the precedence of the associated operators.

4.1 Atomic Expressions

The simplest type of expression is a variable name or a constant.

You name a variable using a letter or an underscore, followed by zero-or-more
letters, digits, or underscores. All names in Glish are case-sensitive, so “foo 123”
and “Foo 123” are different names. See Appendix A, page 152, for the Glish syntax
and grammar.

Variable names simply evaluate to the present value (and type) of the variable; if
the variable hasn’t been previously set, Glish generates a warning and sets it to F.

See 3.2.1, 3.3.1, and 3.4.1 for creating numeric, string, and record
constants, and 3.1.4, page 20, for creating array constants.

4.2 Unary Operators

Glish provides three unary operators: +, -, and !. The first simply yields the value of
its operand; the second, its arithmetic negation; and the third, its logical negation. All
require numeric operands and yield a numeric or boolean (for “!”) result, and all
work on arrays as well as scalars. 3.2.3, page 24, describes the first two and 3.2.4,
page 25, the third.

39

4.3 Arithmetic Expressions

Glish supports the usual arithmetic operations: addition, subtraction, multiplication,
division, modulus, and exponentiation. The corresponding operators are +, -, *, /, %,
and ˆ. All work element-by-element given two equal-sized arrays, or pair a scalar with
every element in an array in turn given one scalar and one array. All require numeric
operands and yield a numeric result. See 3.2.3, page 24, for details.

4.4 Relational Expressions

You can compare values using ==, !=, <, <=, >, and <=, which have the usual mean-
ings. For numeric and string values, each operates element-by-element when given
two equal-sized arrays, or pairs a scalar with every element of an array in turn, yielding
a boolean array as the result. (See 3.2.5, page 26.)

Other types (record, function, agent, opaque) of , , values may be
compared for equality (==) and inequality (!=). The values are considered equal if
they refer to exactly the same entity; the comparison yields a scalar boolean value.
For example,

a := [b=1, c=2]
d := [b=1, c=2]
e := ref a
print a == a, a == d, a == e

prints T, F, T. In the future, Glish may support field-by-field comparison of record
values, in which case the second F printed above would instead have been T.

4.5 Logical Expressions

The binary | and & perform boolean “or” and “and” respectively. They require
boolean operands and yield boolean results. They work in the usual fashion
with equal-sized array operands or one array and one scalar. See 3.2.4, page 25.

In addition to| and&, Glish provides the related|| and&& operators, taken from C.
These are “short-circuit” operators; they evaluate their right-hand operand only if when
needed. Unlike most of the other operands, these do not perform element-by-element
array operations. Both operands should be numeric scalars, though presently array
values are allowed, in which case the first element of the array is used.

The || operator evaluates its first operand and returns it if true when considered as
a boolean. Otherwise it evaluates and returns its second operand. The && operator
returns F if its first operand evaluates to false, otherwise it evaluates and returns its
second operand.

40

4.6 Assignment Expressions

An assignment expression assigns a value to a variable and also yields that value as the
overall value of the expression.

4.6.1 Assignment Syntax

An assignment expression has the form:

expression := expression

The left-hand-side must be an lvalue; that is, something that can be assigned to:

a variable name;

an element or group of elements of an array (see 3.1.4, page 23, and 3.7.3,
page 37);

a field or group of fields of a record (see 3.4.2, page 28, and 3.7.4, page 37);

or the val operator followed by an lvalue (3.5, page 31).

If the left-hand-side is a variable name or a record field then the right-hand-side can
be any valid Glish expression. If it’s an array element or group of elements then the
right-hand-side must have a compatible type, and if the right-hand-side’s type is higher
then the array is converted to that type (see 3.1.4, page 23).

If the left-hand-side is a group of record fields then the right-hand-side must be a
record, and the assignment is done field-by-field, left-to-right, as explained in 3.7.4,
page 37.

4.6.2 Assigning reference Values

If the left-hand-side is a val expression then its lvalue is inspected to see whether its
value is either a reference or the target of reference. If so then the underlying
value of the resulting reference is modified (with a const reference generating a
warning). If not then the assignment is done as though val was not present. For
example,

a := 5
val a := 9

is equivalent to

a := 5
a := 9

and after executing

41

a := 5
b := ref a
val a := 9

both a and b are 9, while after executing

a := 5
b := ref a
a := 9

a is 9 but b remains 5 (and the link between a and b is severed). See 3.5, page 31,
for details.

4.6.3 Restrictions on Assignment

There are two restrictions on assignments:

1. agent values cannot be directly assigned. For example,

a := client("demo_client")
b := a

is illegal. Because assignment in Glish always copies a value, such an assignment
would require that the client process be copied. Instead, use ref or const
references for assignments to agent values. For example,

a := client("demo_client")
b := ref a

is perfectly okay. At this point you can use either a or b to send events to the
client or receive events it generates. See Chapter 7, page 66, for a discussion of
agents and how to send and receive events.

2. You can’t create a ref reference from a const reference. For example,

a := 1
b := const a
c := ref b

is illegal, though

a := 1
b := ref a
c := ref b

and

42

a := 1
b := const a
c := ref a

are both legal. The purpose of this restriction is to catch errors of misusing
const references.

4.6.4 Cascaded Assignments

Because assignment expressions yield the assigned expression as their value, and be-
cause assignment is right-associative (see 4.13, page 45), assignments can be naturally
“cascaded”:

a := b := 5

first assigns 5 to b and then also to a. More complicated expressions are possible, too:

a := (b := 5) * 4

assigns 5 to b and 20 to a.

4.6.5 Compound Assignment

Like in C, assignment expressions can include an operator immediately before the :=
token to indicate compound assignment. The general form of a compound assignment
is:

expr1 op:= expr2

where op is any of:

+ - * / % ˆ | & || &&

The assignment is identical to:

expr1 := expr1 op expr2

except perhaps expr1 is only evaluated once (not presently guaranteed by the language).
Thus, for example:

x +:= 5

adds 5 to x, identically to:

x := x + 5

You can cascade compound assignments just like ordinary assignments (4.6.4,
page 43):

a *:= b +:= 4

first increments b by 4, and then multiplies a by the new value of b, storing the result
back into a.

43

4.7 Indexing

The indexing operators are [] and “.”. [] is used to index an array or record with
a numeric subscript, or a record with a string subscript. For an array operand, the
result of the indexing has the same type as the array; for a record, its type is either
that of the specified field, or record if more than one field is specified. See 3.1.4,

3.4.4, 3.4.3, and 3.7 for details.
The “.” operator retrieves a particular field from a record.

a.name

is equivalent to

a["name"]

See 3.4.2, page 28.

4.8 Integer Sequence Expressions

The binary : operator takes two numeric operands and returns an integer array
consisting of those integers between the two operands, inclusive. See 3.1.4, page 20.

4.9 Functions and Function Calls

In Glish a function definition is an expression of type function. As such, it can be
assigned to a variable (or record field):

bump := function(x) x + 1

assigns to bump a function that when calls applies the + operator to its argument and
the constant 1.

The precedence of a function definition’s body is lower than that of any Glish
operator. The example above is interpreted as

bump := (function(x) x + 1)

and not

bump := (function(x) x) + 1

Calls to functions are also expressions; their type is determined by the value of the
given function when evaluated with the given arguments. See Chapter 6, page 55, for
a full discussion.

Glish includes a number of predefined functions; see Chapter 9, page 107, for a dis-
cussion of each. A particularly useful predefined function is shell, which interprets
its arguments as a Bourne shell command line and returns the output from running the
command (optionally on a remote host) as a string value. For example,

44

csh_man := shell("man csh")

assigns to the variable csh_man a string array, each element corresponding to one line
of the “csh” manual page, and

function to_lower(x)
shell("tr A-Z a-z", input=x, host="cruncher")

returns its argument converted to lower-case, doing the work on the remote host
“cruncher”. See 7.10, page 81, for both a discussion of the different options you
can use with shell and how to use shell to turn an ordinary Unix program into a
Glish client.

4.10 Reference Expressions

A reference to a variable or a record field can be created using the unary prefix
operators ref, const, or val (the last does not actually create a reference type
but instead copies its operand). Such references can then be used in an expression
anywhere the operand could appear. See 3.5, page 31.

4.11 Request/Reply Expressions

In addition to being a statement (as described in 5.9.1, page 52), you can send events
to a client using a request/reply expression, in which case the reply to the sent event
becomes the value of the expression.

A request/reply expression looks like:

request event (arg1, arg2, . . .)

where event is as defined in 7.5.1, page 73, with the restriction that you must specify
a single event name (no use of the “*” event designator).

Request/reply’s execute synchronously; see 7.6, page 75 for a full description.

4.12 Event-Attribute Expressions

Three special values are available for accessing attributes of the most recently received
event: $agent, $name, and $value return the agent that generated the event, the
event’s name, and the event’s value. See 7.5.3, page 75.

4.13 Precedence

Glish operators for the most part take their precedence from C, with a few additions.
Table 4.1 summarizes the precedence and associativity; entries at the top have highest

45

precedence, those at the bottom lowest. Parentheses can always be used to override
precedence and associativity.

Operators Associativity

., [], () left
!, unary + and - none

: none
ˆ right

*, /, % left
+, - left

==, !=, <, <=, >, <= none
& left
| left
&& left
|| left

ref, const, val, function none
:= right

Table 4.1: Operator Precedence and Associativity, Highest to Lowest

46

Chapter 5

Statements

Glish scripts are made up of a series of statements, which are first compiled and then
executed sequentially. Enclosing a series of statements inside of braces (“ . . . ”)
groups them together into a block that is treated syntactically as a single statement.
As in many languages, groups of statements can be collected into functions to provide
subroutines, as described in Chapter 6, page 55, and 7.13, page 87. This section
describes the various types of statements available in Glish.

Strictly speaking, all Glish statements are terminated with semi-colons (“;”). For
the most part, though, the ; needn’t be explicitly present, since Glish can figure out
when inserting a ; makes sense and does so automatically. See 5.10, page 53. In the
examples that follow, we omit the final ; from statements since in general they are not
necessary.

5.1 Expressions as Statements

Any expression is also a legal statement. The expression is evaluated and the result
discard; presumably the expression has some interesting side-effects. See Chapter 4,
page 39, for a discussion of the different types of expressions.

5.2 Empty Statement

A lone “;” is treated as an empty, do-nothing statement. For example,

if (x)
;

else
print "not x"

is equivalent to

47

if (! x)
print "not x"

(see 5.4, page 48).

5.3 Printing

The print statement provides a simple way of displaying (to Glish’s stdout) values.
Its syntax is:

print value1, value2, . . .

where any number of values may be listed (including none, which produces a blank
line).

At the moment printing of values is crude. Values are printed with a single blank
between them and a final newline added at the end. In the future print will allow
more sophisticated formatting.

5.4 Conditionals

Glish provides C-style if and if . . . else conditionals:

if (expression) statement

if (expression) statement1 else statement2

An if statement evaluates expression, converts the result to a boolean value, and if
true executes statement. if . . . else is similar, executing statement1 if the value is
true and statement2 if false. expression should evaluate to a scalar value; if it is an array
then its first element is tested, though in the future an error may be generated instead.

As in most languages, a “dangling-else” is associated with the nearest previous if,
so

if (x)
if (y)

print "x and y"
else

print "either not x or not y"

is interpreted as:

if (x)
{
if (y)

print "x and y"
else

print "either not x or not y"
}

48

and not as:

if (x)
{
if (y)

print "x and y"
}

else
print "either not x or not y"

5.5 Loops

Glish supports two looping constructs, while and for.

5.5.1 While Loops

A while loop looks like:

while (expression) statement

As in C, upon encountering a while statement the expression is evaluated (in the
same way as in an if statement; see 5.4, page 48) and statement executed if true.
expression is then evaluated again and if true the process repeats.

5.5.2 For Loops

Glish supports a different style of for loop than C provides. A Glish for loop looks
like:

for (variable in expression) statement

When the for is executed, expression is evaluated to produce an array value. variable
is then assigned to each of the values in the array in turn, beginning with the first and
continuing to the last. For each assignment, statement is executed. Upon exit from the
loop variable keeps the last value assigned to it.

Here, for example, is a for loop that prints the numbers from 1 to 10 one at a
time:

for (n in 1:10)
print n

Here’s another example, this time looping over all the even elements of an array x:

for (even in x[x % 2 == 0])
print even

49

Here’s a related example that loops over the indices of the even elements of x:

for (even in seq(x)[x % 2 == 0])
print "Element", even, "is even:", x[even]

And one final example, looping over each of the fields in a record r:

for (f in field_names(r))
print "The", f, "field of r =", r[f]

The philosophy behind providing only this style of for loop is rooted in the fact
that Glish is most efficient when doing operations on arrays. I believe that this for
loop (which was taken from the S language) encourages the programmer to think about
problems in terms of arrays, while C’s for loop does not. I’m interested in hearing
from users with situations where they find Glish’s for loop too restrictive.

5.5.3 Controlling Loop Execution

Glish provides two ways to control the execution of a loop, the next and break
statements, which are directly analogous to C’s continue and break (indeed,
continue is allowed as a synonym for next). The syntax of these is simply:

next

break

next ends the current iteration of the surrounding while or for loop and begins
the next iteration, or exits the loop if there are no more iterations. break immediately
exits the loop regardless of whether there normally would be more iterations.

5.6 return Statement

As discussed in Chapter 6, page 55, normally a function’s execution proceeds until the
last statement of the function. If that statement is an expression then the value of the
expression becomes the result of the function call; otherwise the result is F. A function
can also prematurely terminate using the return statement, which has two forms:

return

return expression

The first form results in a returned value of F; the second form returns the value of
expression.

See Chapter 6, page 55, for examples.

50

5.7 exit Statement

As discussed in 10.1.2, page 129, normally a Glish program ends when the last
statement of the main program has been executed and all tasks have terminated. To
prematurely end the program, use exit, which has a syntax similar to that of return:

exit

exit expression

The first exits the program with a status of 0; the second evaluates expression and
converts it to an integer scalar (by ignoring all but the first element), which is then
used as the exit status.

5.8 local “Statement”

The local declaration, discussed in Chapter 6, page 55, is also a statement. If the
local declaration includes initializations than the local statement is equivalent to
the corresponding assignment. That is,

if (x)
local a := 3

is the same at run-time as:

if (x)
a := 3

where a refers to a local variable.
If the local declaration does not include any initializations then it is equivalent

to an empty statement:

if (x)
local a

is the same as

if (x)
;

5.9 Sending and Receiving Events

Sending and receiving events forms the heart of Glish, and both are discussed in Chap-
ter 7, page 66. Here we briefly cover the syntax of the related statements.

51

5.9.1 Sending Events

The event-sending statement looks like:

event (arg1, arg2, . . .)

event must name exactly one event (one agent and one name); see 7.5.1, page 73,
for the general syntax of event’s as well as the syntax allowed when sending events.
Each arg argument (there needn’t be any, in which case an event with the value F is
sent) has one of two forms:

expression

name = expression

in a manner directly analogous to the syntax of a function call (Chapter 6, page 55). If
only one argument and the first form is used specified then Glish evaluates expression
and uses the result as the event value. If more than one argument is specified or the
second form used for a lone argument then Glish constructs a record in a manner
similar to that described in 3.4.1, page 28, and uses that as the event value. Again,
see Chapter 7, page 66, for a full discussion.

You can also send events using a reply expression; see 4.11, page 45.

5.9.2 Receiving Events

There are two types of statements for receiving events, whenever and await. Both
are discussed in full in 7.5, page 73, and 7.7, page 76; here we just give an overview
of the related syntax.

Whenever Statements

A whenever statement looks like:

whenever event1, event2, . . . do statement

7.5.1, page 73, describes the event syntax. At least one event must be specified. The
meaning of the statement is that whenever any of the given events is generated, execute
statement with $agent, $name, and $value equal to the agent that generated the
event, the name of the event, and the event’s value.

Await Statements

await statements have three forms:

await event1, event2, . . .

await only event1, event2, . . .

await only event1, event2, . . . except event1, event2, . . .

52

The first form waits for one of the specified event’s to be generated (there must be at
least one) before proceeding with execution. If other events arrive during the interim
they are processed normally. The second form does not process such interim events
but instead drops them with a warning. The third form only processes those interim
events listed after the except keyword.

After each style of await, $agent, $name, and $value correspond to the event
that caused the await to finish.

5.9.3 activate and deactive Statements

Theactivate anddeactivate statements provide a mechanism for turningwhenever
statements “on” and “off”.

The statements have the following form:

activate

deactivate

activate expr

deactivate expr

See 7.8, page 79, for a full description.

5.9.4 link and unlink Statements

The link and unlink statements provide a mechanism for establishing and sus-
pending point-to-point connections between Glish clients. These connections sacrifice
flexibility (being able to inspect and modify event values) for performance.

The statements have the following form:

link event1 to event2

unlink event1 to event2

See 7.9, page 80, for a full description.

5.10 Leaving Out the Statement Terminator

Glish has a fairly simple rule for when the ; terminating a statement can be left out.
In general, if a line ends with a token that suggests continuation (such as a comma or
a binary operator). then the statement is continued onto the next line. If it ends with
something that could come at the end of a statement, then a semi-colon is inserted.
Those tokens that can end a statement are:

the) character, unless it’s part of the test in a if, for, or while statement, or
the argument list in a function definition;

53

the] character;

the break, exit, next (and its alias continue), and return keywords;

identifiers and constants;

and the special event expressions $agent, $name, and $value.

Glish inserts ;’s only at the end of a line or just before a “ ”. You can’t use its rules
to jam two statements onto one line:

print a b := 3

is illegal, though both

print a; b := 3

and

{ print a } b := 3

are perfectly okay.
You can prevent Glish from inserting a ; by using an escape (\) as the last character

on the line. For example,

print a \
, b

is okay, and equivalent to

print a,
b

or

print a, b

Such a final \ doesn’t work coming after a comment, though:

print a # oops, syntax error next line \
, b

is interpreted as two separate statements, the second one producing a syntax error.

5.11 include Directive

You can include the contents of a Glish source file using the include directive:

include "file"

where file is the name of the file to include. Note that include is a “directive” and
not a statement; strictly speaking, you can put an include anywhere you wish, even
in the middle of another statement, though doing so is bad form. Typically include
directives appear near the beginning of a source file, and include other source files as
a simple “library” mechanism.

include’s may be nested arbitrarily deep.

54

Chapter 6

Functions

Glish provides a flexible mechanism for defining and calling functions. These functions
are a data type; they can be assigned to variables or record fields, passed as arguments
to other functions, and returned as results of functions.

6.1 Simple Examples

Before delving into the details of functions, we first look at some simple examples.
Here’s a function that returns the difference of its arguments:

function diff(a, b) a-b

It could also be written:

function diff(a, b)
{
return a - b
}

Here’s a version that prints its arguments before returning their difference:

function diff(a, b)
{
print "a =", a
print "b =", b
return a - b
}

Here’s a version in which the second parameter is optional, and if not present is set
to 1, so the function becomes a “decrementer”:

function diff(a, b=1) a-b

55

Suppose we have defined diff using this last definition. If we call it using:

diff(3, 7)

then it returns -4. If we call it using:

diff(3)

it returns 2. If we call it using:

diff(b=4, a=7)

it returns 3, since 7 4 3.
Every function definition is an expression (see Chapter 4, page 39). When executed

it returns a value whose type is function. You can then assign the value to a variable
or record field. For example,

my_diff := function diff(a, b=1) a-b

assigns a function value representing the given function to my diff. Later we
could make the call:

my_diff(b=4, a=7)

and the result would be 3, just as it would be if we’d called diff instead of my diff.
With this sort of assignment we could also leave out the function name:

my_diff := function(a, b=1) a-b

Now my diff would be the only name of this function.

6.2 Function Definitions

A function definition looks like:

function name (formal1, formal2, . . .) body

The keyword function may be abbreviated func. We look at each part of this
definition in turn below.

Function definitions are expressions; they may occur anywhere an expression may.
In particular, since expressions are also statements, a function definition may also occur
anywhere a statement occurs.

56

6.3 Function Names

In a function definition, name is the name associated with the function. As indicated in
the examples above, name is optional. If it’s present then when compiling the function
definition Glish creates a global variable with that name whose value is a const
reference to the resulting function value. This name can then be used to call the
function.

If the name is missing then presumably the function definition is being used in
an expression, and the resulting function value assigned to a variable or passed as
an argument to another function. To illustrate the latter, here is a function that takes
two parameters, an array and another function. It prints out the result of applying the
function to each element in the array:

func apply(array, f)
{
for (a in array)

print "f(", a, ") =", f(a)
}

We could then call this function as follows:

square := func(x) xˆ2
apply(1:10, square)

to print out the squares of the first ten positive integers. We also could have called it
using:

square := func(x) xˆ2
apply(1:10, func(x) xˆ2)

6.4 Function Parameters

Each function definition includes zero or more formal parameters, enclosed within
()’s. Each formal looks like:

type name = expression

type and = expression are optional. (formal’s have one other form, “...”, discussed
in 6.4.4, page 60.)

6.4.1 Parameter Names

name serves as the name of a local variable that during a function call is initialized
with the corresponding actual argument. (See 6.5.1, page 62, for a discussion of
local variables.) As in most programming languages, actual arguments are match with
formal parameters left-to-right:

57

function diff(a, b) a-b

. . .

diff(3, 7)

matches 3 with a and 7 with b. Argument matching can also be done “by name”:

diff(b=1, a=2)

matches 1 with b and 2 with a.

6.4.2 Parameter Defaults

If in the function definition a formal includes = expression then when calling the
function an actual argument for that formal can be left out, and the formal will instead
be initialized using expression. expression is referred to as the formal’s default. As we
saw above, we could define diff as:

function diff(a, b=1) a-b

in which case a call with only one argument would match that argument with a and
initialize b to 1. A call using by-name argument matching, though, could not specify
b and not a, since a has no default:

diff(b = 3)

is illegal.
We could instead have defined diff with:

function diff(a=0, b) a-b

in which case when only b is specified in a call diff becomes the “negation” function.
A call like:

diff(6)

is now illegal, since 6 matches a and not b; but the call

diff(b = 6)

is legal and returns -6.
Note that while match-by-position and match-by-name arguments can be inter-

mixed, an parameter must only be specified once. For example,

diff(3, 4, a=2)

is illegal because a is matched twice, first to 3 and then to 2. Furthermore, once a
match-by-name argument is given no more match-by-position arguments can be given,
since their position is indeterminate:

diff(a = 3, 2)

is illegal, since it’s unclear what parameter 2 is meant to match.

58

6.4.3 Parameter Types

A formal parameter definition can also include a type. Presently, the type is one of
ref, const, or val. The type indicates the connection between the actual argument
and the formal parameter.

If the formal parameter’s type isref then the formal is initialized as aref reference
to the actual argument, and can be used to change its value if the actual argument is a
variable or record field (via a val assignment; see 4.6, page 41).

If the type isconst then it’s initialized as aconst reference to the actual argument.
The const type allows efficient argument-passing of large values (no copying is done)
but prevents the function from inadvertently modifying the argument.

If the type is val then the formal is initialized with a copy of the actual argument;
no changes to the formal will be reflected in the actual argument’s value.

The default type is const.
See 3.5, page 31, for a full discussion of references.
Here is an example of a function with aref parameter that increments its argument:

function bump(ref x)
{
val x +:= 1
}

After executing:

y := 3
bump(y)

y’s value is 4. Note though that the following call:

bump(3)

is perfectly legal and does not change the value of the constant 3 to 4!
Here’s another example of using a ref parameter:

sets any elements of x > a to 0.
func remove_outliers(ref x, a)

{
x[x > a] := 0
}

Without the ref type for x, calling this routine would result in a run-time warning
since a const reference would then be used to modify what it refers to.

One particular use of ref parameters is when passing anagent value to a function
for use in sending events to the agent:

function send_foo_bar(x)
{
send x->foo("bar")
}

59

will generate a run-time warning because the variable x is a const reference and
sending an event to x will modify x. Instead you must use:

function send_foo_bar(ref x)
{
send x->foo("bar")
}

While usually the default type of const is appropriate, sometimes you have to
modify elements of the formal and don’t want those changes reflected in the actual.
For example, here’s a definition of the “absolute value” function that relies on modifying
its parameter:

returns absolute value of x,
leaving x alone
function abs(val x)

{
x[x < 0] := -x[x < 0]
return x
}

In the future Glish will support more explicit typing of parameters. For example,
it will be possible to define a function like:

function abs(val numeric x)

in which case if abs is called with a non-numeric value Glish will detect the type clash
and generate an error.

It is also possible that the default parameter type of const will be changed. Glish
functions are not in general as stable as other parts of the language; we need more
experience using them before completely solidifying their design.

Restrictions on Parameter Types

Bear in mind that val parameters produce an implicit assignment between the actual
argument and the formal parameter, much as though

param := actual

were executed. Therefore the use of val parameters is restricted in the same way
that assignment is restricted (4.6.3, page 42); in particular, agent values cannot be
passed as val parameters. They must be either ref or const.

6.4.4 Extra Arguments

You can write functions that take a variable number of parameters by including the
special parameter “...” (called ellipsis) in the function definition. For example, here’s
a function that returns the sum of all its arguments, regardless how many there are:

60

func total(...)
{
local result := 0
for (i in 1:num_args(...))

result +:= nth_arg(i, ...)
return result
}

Two functions are available for dealing with variable argument lists. num args
returns the number of arguments with which it was called, and nth arg returns a copy
of the argument specified by its first argument, with the first argument numbered as 0.
For example,

num_args(6,2,7)

returns 3 and

nth_arg(3, "hi", 1.023, 42, "and more")

returns 42.
There’s a temptation to expect num args and nth arg to return information

about “...” if they’re not given an argument list, but presently they do not. Probably
they will be changed to do so in the future.

Note that the only operation allowed with “...” is to pass it as an argument to
another function. It cannot otherwise appear in an expression. When passing it to a
function, it is expanded into a list of const references to the actual arguments matched
by the ellipsis. For example,

func many_min(x, ...)
{
if (num_args(...) == 0)

return x
else

{
ellipsis_min := many_min(...)

if (ellipsis_min < x)
return ellipsis_min

else
return x

}
}

returns the minimum of an arbitrary number of arguments.
When an ellipsis is used in a function definition then any parameters listed after it

must be matched by name (or by default). Furthermore, the corresponding arguments
must come after those to be matched by the ellipsis. For example, given:

61

func dump_ellipsis(x, ..., y)
{
for (i in num_args(...))

print i, nth_arg(i,...)
}

both of the following calls are illegal:

dump_ellipsis(1, 2, 3)
dump_ellipsis(1, y=2, 3)

In the first y is not matched, and in the second the actual argument 3 is not matched
(in particular, it is not matched by the ellipsis). The following, though, is legal:

dump_ellipsis(1, 2, y=3)

and results in the ellipsis matching the single argument 2.

6.5 The Function Body

The body of a Glish function has one of two forms:

expression

statement1 statement2 . . .

When a function using the first form is called, it evaluates expression returns the result
as the value of the function call. With the second form, the statements within the ’s
are executed sequentially and the value of the last statement executed returned. Most
statements do not have a value associated with them. If the last executed statement is
one of these, the function call returns F. If the last executed statement is an expression
(see 5.1, page 47) or a return statement (5.6, page 50) then the call returns the
value of the expression.

Functions may call themselves either directly or indirectly; there is no limit on the
depth of calling other than the available memory.

6.5.1 Scoping

Glish supports two levels of scoping: global and local. A global variable persists
throughout the execution of the Glish program. Its value is accessible in every function.
For example, the following complete Glish program:

x := 1
function bump_x() { x +:= 1 }
bump_x()
print x

62

will print the value 2. This example also works when the function definition comes
before the assignment to x:

function bump_x() { x +:= 1 }
x := 1
bump_x()
print x

When Glish compiles the bump x function it sees that bump x refers to x, so it creates
an uninitialized global variable x. In these examples the variable bump x is also a
global variable, so the function bump x can be called within other functions.

Inside a function body you can declare variables local. A local variable is accessible
only inside the function body, and usually ceases to exist once the function call exits
(but see 6.5.2, page 64). When the function is next called, the variable is recreated
but with no trace of its former value.

You declare variables local using the local statement (5.8, page 51), which
looks like:

local id1, id2, . . .

where each id has one of the following two forms:

name name := expression

The second form specifies an initial value to assign to the local variable. You can
use any valid expression (Chapter 4, page 39). The assignment is done each time the
local statement is executed.

If we changed the above example to:

function bump_x() { local x; x +:= 1 }
x := 1
bump_x()
print x

then when executing the program we would get a run-time error that we used the value
of an uninitialized variable x; this is the version of x local to bump x. If we then
changed the example to:

function bump_x() { local x := 3 }
x := 1
bump_x()
print x

then it would run without complaint and print 1, since the global variable x, which is
the one referred to in the print x statement, has not been altered.

Glish does not restrict where local statements may occur. The scoping effect of
the statement persists from the point where it occurs in the function body until the end

63

of the function. This may change in the future, with scope extending only to the end
of the enclosing statement block.

All function parameters are local to the function body. If a name used in a function
does not occur in a local statement and is not a formal parameter name (6.4.1,
page 57) then its scope is global. I am somewhat concerned about this default being
error-prone; it is possible that the default scope will change to local except for names
of called functions.

6.5.2 Persistent Local Variables

There are two ways in which local variables can survive beyond the end of the function
call that created them. Here “survive” does not mean that subsequent calls to the
function see the previous value, but that the value continues to exist after the initial
function call returns.

The first way is by returning a reference to the variable. For example, in:

func big_computation()
{
local huge_array
huge_array := 1:1e7
ref huge_array
}

big := big_computation()
compute_with_big(big)
big := something_else()

the call to big computation returns a reference a reference to the ten-million el-
ement huge array rather than a copy of it. This reference is then used for some
computation and then its storage released when big is assigned to another value in the
last statement.

The second way that local variables survive is if the function body executes a
whenever statement. The whenever statement specifies action to be taken at a
future time, asynchronously to the execution of the statements in the Glish program
(see 5.9.2, page 52, and particularly Chapter 7, page 66). For example, the following:

Waits for x->foo, prints y
when it comes
func announce_upon_foo(x, y)

{
whenever x->foo do

print y
}

announce_upon_foo(x, 14)

64

work()
more_work()
etc()

will print 14 whenever x generates a foo event. The value of y (which, being
a parameter, is local to the function body) is remembered even after the call to
announce upon foo returns. We could later add another call:

announce_upon_foo(x, "hi there")

and when x generates foo events both 14 and "hi there" will be printed (in an
indeterminate order).

When the function executes a whenever all of its local variables are preserved and
can be accessed within the statements of the whenever’s body. If those statements
modify the variables then the modifications persist:

func announce_upon_foo(x, y)
{
whenever x->foo do

{
print y
y +:= 1
}

}
announce_upon_foo(x, 14)
announce_upon_foo(x, 7)

will print 14 and 7 upon x’s first foo event, 15 and 8 upon the second, and so on.
Persistent local variables are particularly important for subsequences; see 7.13,

page 87.

65

Chapter 7

Events

Glish’s main purpose is to coordinate a number of processes that form a distributed
system. These processes are instances of programs written in compiled languages such
as C or C++.

Each program is written in an event-oriented style; the program’s sole view of the
rest of the system comes from events it receives, and its sole mechanism for commu-
nicating its state and results to the system is by generating more events. The programs
have no knowledge of what other programs the system includes, or what is done with
their results, or where received events came from. The event-oriented style lends itself
to creating modular programs that you can connect together in powerful, unforeseen
ways. You make these connections using Glish.

We deal with the details of how programs receive, interpret, and generate events
later in Chapter 8, page 89. In this chapter we focus on manipulating events from
within a Glish program.

7.1 What is an “Event”?

An event has a name and an associated value. The name is simply an identifier, much
like a variable’s name. The value can be any Glish value, of any type: numeric,
string, record, reference, agent, or function1. We might speak of a foo
event with value [3, 2, 5], to mean an event whose name is “foo” and value is the
particular three-element integer array [3, 2, 5].

An event can be thought of as a message, with the name identifying the message’s
type and the value conveying data specific to a particular message. For example, in
addition to the foo event we discussed above we might have another foo event, this
time with a value of "howdy howdy!". Both events can be thought of as “foo”-type
events, though their values are different.

1But when sending events to clients as opposed to subsequences, there are restrictions on the value. See
9.6, page 115, and 11.1, page 134, below.

66

Glish provides ways to generate events and to specify what should happen when an
event is received. Events are sent to and received from agent’s, which are discussed in
the next section.

7.2 Agents

An agent is an entity that generates and responds to events. Typically it’s a process
running either locally or on a remote computer; these agents are called clients.

Agents generate events in order to communicate with the rest of the world, namely
the Glish program and any other agents the program may have created. By saying that
agents respond to events we mean that they expect to receive certain types of events,
and when they do they perform some action based on the value of the event. The action
may entail generating one or more new events or may not. In general, the events an
agent receives and those it generates need not be related, though often they are.

7.2.1 The agent Type

Glish provides an agent type for values corresponding to agents.
The client function provides a way to create an agent associated with a running

process. For example,

demo := client("demo_client")

assigns to demo an agent value corresponding to an instance of the program
demo client running on the local host.

demo := client("demo_client", host="mars")

does the same thing except demo client runs on the remote host mars. See 7.10,
page 81, for a full discussion of the client function.

You can also create agents that correspond to autonomous entities running within
the context of a Glish program. The create agent function takes no arguments and
returns an agent value corresponding to a new, unique agent:

my_agent := create_agent()

This agent can then be sent events using the mechanisms discussed in 7.4, page 71, and
respond to those events using whenever statements, as discussed in 7.5, page 73.
For example,

my_agent := create_agent()
whenever my_agent->hello do

print $value
send my_agent->hello("how are you?")

will cause Glish to print "how are you?" (Don’t worry if this example doesn’t
make sense yet; see 7.3, page 68, for other, more fully explained examples of sending
and receiving events.)

67

7.2.2 Agent Records

Each agent value is also a record. Whenever the agent generates an event, Glish
sets a field in therecordwith the same name to the value of the event. So, for example,
if an agent a generates a hello event with a value of [F, F], then a.hello is set
to [F, F].

For the most part, an agent’s record can be used just like any other. In particular,
you can create new fields in it or modify existing ones. Neither of these operations
generates an event, though. One exception, though, is (as noted in 4.6.3, page 42)
that an agent value cannot be copied. Both

a := create_agent()
b := a

and

func takes_val_arg(val x) { }
a := create_agent()
takes_val_arg(a)

are illegal. Instead, you must use either ref or const references:

a := create_agent()
b := ref a

or

func takes_const_arg(const x) { }
a := create_agent()
takes_const_arg(a)

are both okay.
Glish considers sending an event to an agent as modifying the agent, so

a := create_agent()
b := const a
send b->foo("hello")

generates a warning, since a const reference is being used to modify a value.

7.3 Some Simple Examples

7.3.1 Examples of Sending Events

Suppose that a is a Glish variable whose value is an agent. You can send an event to
a’s agent using the send statement. Executing:

a := client("demo")
send a->foo([1, 4, 6])

68

results in a foo event being sent to a’s agent with a value of [1, 4, 6]. In this case
a’s agent is a process called demo running on the local operating system. See 7.10,
page 81, for more detail about creating agents.

Sending an event is in many ways similar to making a function call. In particular,
we can send more than one value:

send a->foo("value1", 2)

sends an event with two values, the string "value1" and the integer 2. The values
can also be named:

send a->foo(x="xval", y=5)

sends an event with the “parameter” x equal to "xval" and y equal to 5. Multi-valued
events are equivalent to passing a single-valued event where the value is a record. This
last example, for instance, is equivalent to:

send a->foo([x="xval", y=5])

7.3.2 Examples of Receiving Events

Again, suppose that a is an agent-valued variable. In a Glish program you can
respond to events that a generates using a whenever statement. Once executed,

a := client("demo")
whenever a->bar do

print "got a bar event"

will print "got a bar event" every time the demo process generates a bar
event.

The value of the most recently received event is kept in a special variable $value:

whenever a->bar do
print "got a bar event =", $value

will display the value of each bar event that a generates.
$value can be used in expressions just like other variables. Here’s a fragment that

only prints out the value of the bar event if it’s an integer array with 3 elements:

whenever a->bar do
if (is_integer($value) && len($value) == 3)

print "got a bar event =", $value

This fragment prints every other bar event:

69

count := 0
whenever a->bar do

{
count +:= 1
if (count % 2 == 1)

print $value
}

Event values can be stored in variables and record fields just like any other value:

last_bar := "none"
whenever a->bar do

{
print "got a bar event =", $value
print "the previous bar event was", last_bar
last_bar := $value
}

will print out both the value of each of a’s bar events and the value the event had the
previous time it was received. The output from this program might look something
like:

got a bar event = 3
the previous bar event was none
got a bar event = hello there
the previous bar event was 3
got a bar event = 1 4 7
the previous bar event was hello there

and so on.
Furthermore, each agent value is also arecord (see 7.2.2, page 68). Whenever

the agent generates an event, a field in the record with that event’s name is set to the
event’s value. This means that:

whenever a->bar do
print "got a bar event =", $value

is equivalent to

whenever a->bar do
print "got a bar event =", a.bar

and that it’s easy to refer to past events with different names:

whenever a->bar do
{
print "got a bar event =", a.bar
print "the last foo event was", a.foo
}

70

7.3.3 Examples of Request/Reply Events

Sending an event corresponding to a “request” and receiving a natural “reply” in re-
sponse to it can be combined into a single action. For example,

v := request database->get_voltage(1:10)

sends a get voltage event to the agent database with a value of 1:10, waits for
database to generate an event in response, and assigns the value of that response to
v. See 7.6, page 75 below for details.

7.4 Sending Events

You send events using a send statement, which has one of two forms:

send expression -> name (val1, val2, . . .)

send expr1 -> [expr2] (val1, val2, . . .)

In both cases Glish evaluates the expression to the left of the-> operator to see whether
it’s an agent. If not, an error is generated. Otherwise the name of the event is taken
from either name or by evaluating expr2, which must yield a string scalar. The
following are equivalent:

send a->foo(5)
send a->["foo"](5)

The second send-event form is quite flexible. Here, for example, is one way to send
a three events, foo, bar and bletch, with values of 1, 2, and 3:

for (i in 1:3)
send a->["foo bar bletch"[i]](i)

Note that presently the send keyword is optional, but in the future it will become
mandatory.

The value of the event is taken from the various val’s. If you specify just one val
then that’s the event’s value. If you don’t list any val’s then the event’s value is F. If
you give more than one val then Glish constructs a record from the val’s. In this latter
case usually the val’s are given names, using the same name = expression syntax as
when creating records (3.4.1, page 28) or calling functions (6.4.1, page 57). Some
examples:

send a->foo()

sends a a foo event with the value the boolean scalar F; with

send a->foo(1:10)

the event’s value is the first ten positive integers, and with

71

send a->foo(b=4, c=[F, T], d=a.foo)

the value is a record whose b field is the integer 4, c field is a two-element boolean
array, and d field is the value of the last foo event generated by a. Had this last
example instead been written:

send a->foo(4, [F, T], a.foo)

then a would still receive a record value with the foo event, but now the fields of
records would be named with internal, gobbledygook names, the effect the same as:

foo_val := [=]
foo_val[1] := 4
foo_val[2] := [F, T]
foo_val[3] := a.foo
send a->foo(foo_val)

(see 3.4.4, page 30).
Note that if when listing a single value you specify a name, then the event value is

a record with a single field of that name:

send a->foo(x=5002)

is the same as

send a->foo([x=5002])

Indeed, in general

send a->foo(v1=e1, v2=e2, v3=e3)

is equivalent to

send a->foo([v1=e1, v2=e2, v3=e3])

i.e., to passing a single record for the value.
Glish considers sending an event to an agent to modify the agent, so using a const

reference to an agent for an event-send draws a warning. When passing an agent to
a function for purposes of having the function send events to the agent, declare the
corresponding parameter ref and not const (the default). Instead of:

func send_foo(x)
{
send x->foo()
}

use

func send_foo(ref x)
{
send x->foo()
}

72

7.5 Receiving Events

You specify what to do when an agent generates an event using a whenever statement.
As briefly discussed in 5.9.2, page 52, these look like:

whenever event1, event2, . . . do statement

where at least one event must be listed.
When executed Glish evaluates the event specifiers listed after the whenever key-

word, and subsequently whenever any of those events are generated executes statement.
Thus a whenever statement can refer to several different events generated by several
different agents.

7.5.1 Event Syntax

You can specify an event for a whenever statement in one of three forms:

expr -> name

expr1 -> [expr2]

expr -> *

As when sending events (7.4, page 71), Glish evaluates the expression to the left of
the -> operator to determine which agent you’re talking about.

With the first form, name then specifies the name of the event of interest.
With the second form, Glish evaluates expr2 to produce a string value. Each

element of that value then designates an event produced by the agent. For example,

whenever a->["foo bar bletch"] do
print $value

will print the value of each foo, bar, and bletch event generated by the agent a; it
is equivalent to:

whenever a->foo, a->bar, a->bletch do
print $value

The third form indicates interest in every event generated by the agent. For
example,

whenever a->* do
print $value

prints the value of every event a generates.

73

7.5.2 Execution of whenever

When a whenever is executed, each of the event’s is evaluated to see which events
of which agents they designate. Whenever any of those events subsequently occurs,
statement is executed. We refer to statement as the body of the whenever statement.

As noted in 6.5.2, page 64, if a function executes a whenever and then exits, its
variables persist after the function call finishes, and the whenever body can access
and modify the variables. For example, a call to:

func report_foo(x)
{
y := 3
whenever x->foo do

{
print y
y +:= 1
}

y := 7
}

will print 7 the first time x generates a foo event, 8 the next time, and so on.
Glish does not define the order of execution of two or more whenever statements

that match the same event. This may change in the future; I am interested in hearing
from users who find they need a defined order.

An important point is that each time you execute a whenever, a connection is
made between the arrival of the given events and executing the whenever’s body.
If you called report foo twice with the same x argument, then the first time x
generated a foo event Glish would print 7 twice, the second time 8 twice, and so
on. Furthermore, if x generated a foo event between the first and second calls to
report foo then the next time it generated a foo event Glish would print 8 and 7
(perhaps in the opposite order), and the next time 9 and 8.

Similarly, a single call to:

func announce_bar(x)
{
for (i in 1:3)

whenever x->bar do
print "x did bar"

}

will result in Glish printing "x did bar" three times every time x generates a bar
event.

A final note: when Glish receives an event it only executes the corresponding
whenever bodies at well-defined times (in particular, not when it is in the middle of
executing any other statements). See 10.1.2, page 129, for a complete discussion of
how Glish proceeds in executing programs and processing events.

74

7.5.3 $agent, $name, and $value

Each time Glish receives an event it sets three special variables: $agent is the
agent associated with the event, $name the event’s name, and $value the event’s
value. For example, the body of the following whenever

whenever x->foo do
print $name

always prints foo, since a foo event is the only possible event that can result in the
body executing. The following prints the value of each foo event generated by x or
y, but only prints the name of the event if y generated it:

whenever x->foo, y->foo do
{
print $value
if ($agent == y)

print $name
}

Because agent values are also records (see 7.2.2, page 68), after Glish receives an
event the following is always true:

$agent[$name] == $value

Here $name provides a string index for the agent’s record, designating the field
with the same name as the new event.

$name is particularly useful in conjunction with the * event designator (see 7.5.1,
page 73). For example, the following whenever “relays” every event generated by
x to y, with the same name and value:

whenever x->* do
send y->[$name]($value)

Glish provides a number of functions for doing this sort of relaying; see 9.7, page 116.

7.6 Request/Reply Events

Often when an agent receives a particular event, it naturally in turn generates a single
outbound event as a “response” to the first event. You can capture such event patterns
in Glish using request/reply events. Here the first event is a “request” for the agent
to perform some service, and the second event is the “reply” generated by the agent
indicating that it has completed the service.

You specify request/reply events in Glish scripts using a request/reply expression
(4.11, page 45):

request event

75

where event is identical to the form given above for sending an event (7.4, page 71).
The value of the expression is the value of the event sent by the agent in response. For
example,

a := request b->c(d)

sends a c event with value d to the agent b, waits for b to respond, and assigns the
value of the response to a.

There are several saliant points regarding request/reply events:

Presently you can only use request/reply events with clients; not with subse-
quences (7.13, page 87), which presently just immediately return F in reply to
the request (and never see the request event).

Clients must respond to request/reply events using the Client::Reply mem-
ber function (Chapter 8, page 89).

After a client is sent a request, the Glish interpreter waits for that client to gen-
erate a single event in response. Any events generated by any other clients are
blocked (they will be processed normally once the requested client replies)2. If
the requested client generates any event other than a reply to the request, the
Glish interpreter generates a warning and treats the event as a reply anyway.

If you find you cannot abide waiting for the requested client to reply, then you
should consider instead using an await statement (7.7, page 76) or restruc-
turing your application to use a whenever statement.

The reply event sent by the client does not have a name, just a value. In particular,
no value for it gets entered in the client’s agent record (7.2.2, page 68).

Request/reply events are a new feature, subject to change as we gain experience
with them. Two natural additional features are adding timeouts controlling how
long the interpreter waits for a reply, and adding some form of exception handling.

7.7 The await Statement

As discussed in 5.9.2, page 52, the await statements comes in three forms:

await event1, event2, . . .

await only event1, event2, . . .

await only event1, event2, . . . except event1, event2, . . .

2Though point-to-point links remain active; see 7.9, page 80

76

In each of these forms, event designates an event just like in a whenever statement.
An await statement instructs Glish to wait for one of the listed events to occur.

Glish pauses program execution until this happens. Without the only keyword, Glish
will still process incoming events by executing their corresponding whenever bodies.
This style of await can be used to effect synchronous communication with an agent.
For example, suppose that c refers to a client that when sent a compute request
performs some computation and generates a compute done event when finished. If
you want to tell c’s client to do its computation and wait for the result, you could do:

send c->compute()
await c->compute_done

at this point, c is done
with its computation

After an await completes, $agent, $name, and $value correspond to the event
that caused the await to finish. In the above example, $agent will be c, $name
will be "compute done", and $value will be the value of the compute done
event.

In general, though, request/reply events are preferred for synchronous communica-
tion; see 7.6, page 75.

If you use the only keyword then while Glish is waiting for one of the listed
events, no intervening events it receives will be processed. Instead, these events are
“dropped”; it is as though they had never occurred, though Glish generate a warning
message concerning each dropped event.

await only is meant for use as a “hold-point”, to freeze the effective execution
of a Glish program until some seminal event occurs. For example, suppose that when
key program generates a panic event that it is vital to suspend execution of the
Glish program and its clients until the current program state can be archived by the
archiver client. You might program this using:

whenever key_program->panic do
{
print "panic, doing archive snapshot"
send archiver->do_archive
await only archiver->archive_done
}

Sometimes during such an await only there are a few events that if they arrive
still must be processed. Glish provides for this case with theawait only . . .except
statement. If in the above example we also had a high priority client that had to
continue even during the archiving, we could have used:

whenever key_program->panic do
{
print "panic, doing archive snapshot"

77

send archiver->do_archive
await only

archiver->archive_done except
high_priority->*

}

Similarly, we could restrict which ofhigh priority’s events were processed during
archiving by replacing the * event name with a specific event name or list of names:

whenever key_program->panic do
{
print "panic, doing archive snapshot"
send archiver->do_archive
await only

archiver->archive_done except
high_priority->interrupt

}

Since in general when executing an await other events may be processed, leading
to the execution of the body of whenever statements, the question arises “What
happens if one of those whenever bodies itself executes an await?” We call such
an await within another await a nested await.

Only the most recently executed nested await is active. For example, if we have:

c1 := client("c1")
c2 := client("c2")

whenever c1->ready do
{
send c2->doit()
await c2->done
}

whenever c2->ready do
{
send c1->doit()
await c1->done
}

then if c1 generates a ready event we will send a doit event to c2 and then enter
an await waiting for c2 to generate done. If c2 then first generates ready prior
to generating done then we will execute the second whenever clause, resulting in
sending a doit event to c1 and then a nested await as we wait for c1 to generate
done.

78

If c1 now generates done then we go back to waiting for c2 to generate done.
But if c2 first generates done then this event is ignored because the only active await
is the one waiting for c1 to generate done.

As illustrated in the last sentence, this nesting behavior can lead to subtle bugs in
which a Glish script remains “stuck” in an await even though the liberating event
arrives. I have already found this trap easy to fall into, and will probably modify
await’s semantics to prevent it. One possible change is that the dropped events will
instead be queued so they appear to arrive later than they actually did. I welcome other
suggestions.

7.8 Activating and Deactivating “whenever” Statements

Ordinarily, once a whenever statement is executed, it remains active from then on.
That is, whenever an event arrives corresponding to one designated when the state-
ment was executed, Glish executes the body of the whenever statement. Sometimes,
though, other events may occur leading you to want to deactivate a whenever state-
ment so its body no longer executes. Glish provides a deactivate statement for
turning off execution of a whenever’s body, and a corresponding activate state-
ment for turning it back on. The simplest form of these statements is simply:

activate

deactivate

which indicate that the currently-executed whenever body (or the most-recently ex-
ecuted one, if none is current) should be activated or deactivated, respectively.

For example,

count := 0
whenever a->foo do

{
do_stuff()
count +:= 1
if (count >= 5)

deactivate
}

will call do stuff() upon receiving a’s first 5 foo events, but then will quietly
ignore the remainder.

You can also give the activate and deactivate statements an optional argu-
ment specify which whenever statement(s) to affect:

activate expr

deactivate expr

79

Here expr must evaluate to an integer (possibly an array) built out of values returned
using thecurrent whenever() 9.7, page 117,last whenever executed() 9.7,
page 118, and whenever stmts() 9.7, page 119 functions. The corresponding
whenever bodies are then activated or deactivated. For example, the following al-
lows response to one of a’s foo events only if one or more intervening bar events
have been received since the last foo event.

whenever a->foo do
{
do_foo()
deactivate # wait for bar
}

a_foo := last_whenever_executed()

whenever a->bar do
{
do_bar()
activate a_foo
}

See the discussion of the active agents() function (9.7, page 118) for an
example of using deactivate with an array argument.

7.9 Point-to-Point Communication

Sometimes in a Glish system two clients need to communicate as fast as possible. If
the system’s Glish script only forwards events from one client to the other without
modifying the events’ values then we can instead use a direct connection between
the two. Glish supports this style of communication using the link statement. When
executed alink statement directs a client to send a particular event it generates directly
to another client (perhaps renaming it). For example,

link t->transformed_data to
send d->new_data

will cause the client associated with t to send its transformed data events directly
to d’s client, which will see them as new data events. (Other events generated by
t’s client still go to the Glish interpreter.) The destination of a link can use the “*”
event to mean “use the same name”:

link t->transformed_data to d->*

will send the transformed data events along without renaming them.
You can suspend point-to-point links with the unlink statement:

80

unlink t->transformed_data to
send d->new_data

suspends the link formed in the first example above. t’s agent will now instead send
its transformed data events to the Glish interpreter, which will execute the cor-
responding whenever bodies. Executing another link statement restores the point-
to-point link.

Presently, executing a link statement twice causes two links to be established.
Thus

link a->foo to b->bar
link a->foo to b->bar

causes a to send each foo event to b twice (i.e., b will see two bar events). It seems
unlikely that this behavior is desirable, since there may be times when you wish to
establish a link and are not sure if it has already been established. So users should not
rely on this behavior as it may well change in the future.

7.10 Creating Clients

Clients form the heart of the Glish system. They can be created in two ways. You
can use either the predefined client function to execute a new instance of a client
program (i.e., a program linked with the Glish Client Library; see Chapter 8, page 89),
or the predefined shell function to run an unmodified Unix program as a simple type
of Glish client. We discuss these two alternatives in turn.

7.10.1 The client Function

The client function takes the name of a program and an optional set of arguments,
invokes the program with the arguments, and returns a Glish agent value that you
can then use to manipulate the program via events, as discussed in 7.4, page 71, and

7.5, page 73, above.
A call to client requires at least one argument, a string giving the name of

the program to execute. If the name begins with a slash (/) or a period (.) then it
is interpreted as giving the complete pathname to the program; otherwise the $PATH
environment variable is used as a search path for locating the program, just as is done
by the standard Unix shells (e.g., sh, csh).

Additional arguments to client are converted to string values and passed to the
program. For example,

c := client("tester", 1:3, "hi")

invokes the program tester and passes it four string arguments, “1”, “2”, “3”, and
“hi”.

81

Presently the client arguments are first evaluated as string values and then split
into separate run-time arguments at each instance of whitespace. This means that the
following:

c := client("tester", ’hello there’)

invokes tester with two arguments, “hello” and “there”. This behavior means
that it’s impossible to pass an argument to a client that includes embedded whitespace.
This behavior will be fixed in the future.

Also note that the evaluation behavior applies to the first client argument as
well. The last example could also have been written:

c := client("tester hello there")

This still invokes the program tester, not tester hello there.
The client function also takes a number of optional, named parameters:

host= specifies on which host to run the client, as a string scalar. For example,

c := client("tester", host="mars")

will run tester on the remote host mars. If missing, the client runs on the
local host.

input= takes a string value and makes it the client’s standard input. The value is
split into lines at each occurrence of a newline (’\n’):

c := client("tester", input="hello there")

results in tester seeing a single line on its standard input, namely the string
“hello there”, while

c := client("tester", input=’how\nare\nyou?’)

results in three lines appearing on tester’s standard input.

Note that presently non-string values are converted to strings as though they were
being printed, so

c := client("tester", input=1:3)

results in the single line “[1 2 3]” appearing on the standard input. This may
change in the future.

If no input= argument appears then the client inherits the Glish interpreter’s
standard input.

suspend= takes aboolean value. If true then when the client runs it will first suspend
itself, allowing a debugger to attach. Suspending clients generate a message like:

82

tester @ myhost, pid 18915: suspending ...

indicating that the client tester running on host myhost with process ID
18915 has suspended. See Chapter 8, page 89, for a discussion of how to
resume a suspended client once a debugger has been attached.

ping= takes a boolean value. If true then whenever an event is sent to the client,
the client will be “pinged” by also sending it a SIGIO signal. Use of ping=
is discouraged, since it is error-prone (in particular, receipt of a single SIGIO
signal may indicate more than one new event has arrived for the client). I’m
interested in hearing from users who find ping= indispensable.

async= takes a boolean value. A true value specifies an asynchronous client. In this
case, Glish does not execute the client process. Instead it is assumed that the user
has arranged a separate mechanism for invoking the process, perhaps because
the mechanism Glish uses to invoke remote clients (Chapter 11, page 134) is
unavailable for this particular client.

For asynchronous clients, the client function still returns an agent value.
The record associated with this value has itsactivate field set to a string giving
special command-line arguments that need to be passed to the client. Once the
client is executed by some means, these arguments will then be interpreted on
the client’s behalf by the Glish Client Library so that the client knows how to
connect to the Glish interpreter.

For example, executing:

a := client("special", async=T)
print "executing special using:", a.activate

will assign to a an agent value and then print out the arguments that need to
be used to invoke special and associate it with a’s agent. Note that a host=
option should not be used even if special is running on a remote host.

When the asynchronous client runs and “joins” the current Glish script it gen-
erates an established event, just as do regular clients (see 7.12, page 86,
below). Even before this happens, though, you can senda events using the send
statement, and execute whenever statements for responding to a’s events.

7.10.2 The shell Function

You can use the shell function to incorporate unmodified Unix programs into a Glish
program. As noted in 4.9, page 44, above, a standard use of shell is to run a
Unix program, wait for it to terminate, and collect its output as a string array. For
example:

sources := shell("ls *.c")

83

returns in sources a list of all of the files in the current directory that end in “.c”.
Similarly to how you can invoke client (see preceding section), shell takes

a number of optional arguments. Of these, host=, input=, and ping= behave
identically (suspend= is useful only for debugging Glish itself).

The async= option behaves differently, though. It runs the shell command asyn-
chronously; that is, it instructs Glish not to wait for the command to complete but instead
to use an event-oriented interface for the shell command. We call asynchronous shell
commands “shell clients”.

The asynchronous interface works as follows. First, when async=T is used,
shell returns not a string value but instead an agent value, the same as done by
client. You can then use the agent value to send stdin events to make text
appear on the shell client’s standard input, EOF events to close the standard input, and
terminate events to terminate the client. Furthermore, each line of text the shell
client writes to its standard output becomes a stdout event.

To illustrate, here’s a Glish script that uses awk to print the numbers from 1 to 32
in hexadecimal, each appearing as a separate event:

cvt := "awk ’{ printf(\"%x\\n\", $1) }’"
hex := shell(cvt, async=T)

count := 1
send hex->stdin(count)

whenever hex->stdout do
{
print count, "=", $value
if (count < 32)

{
count +:= 1
send hex->stdin(count)
}

else
send hex->EOF()

}

The first two statements associate an asynchronous shell client with the variable
hex. The next line initializes the global count to 1 and sends that value to hex,
making it appear on awk’s standard input.

The whenever body prints out the current count and its hexadecimal equivalent,
and then either increments the count and sends awk a new input line or closes its
standard input.

One might think that a race exists between sending the first stdin event to hex’s
client and setting up the whenever to deal with the client’s response. This problem
does not arise, however, because the Glish interpreter does not read events generated by

84

clients until it is done executing all of the statements in a script; see 10.1.2, page 129,
below.

One final note regarding asynchronous shell commands. Glish uses a technique
called “pseudo-ttys” for communicating with shell clients. This makes the shell clients’
standard output be line-buffered (instead of block-buffered, the default). Without this
technique, in our example awk would buffer up its output until either it had filled an
entire block (a lot of text) or its standard input was closed and it exited. In this case
we would not immediately get a new stdout event for each stdin event, and the
program would not work correctly. One drawback of using “pseudo-ttys”, though, is
that the shell command truly believes that it is writing to a terminal. Programs that
alter their behavior depending on whether they’re writing to a terminal will engage the
altered behavior. For example, on BSD systems the following Glish program:

a := shell("ls", async=T)
whenever a->stdout do print $value

will print out several filenames at a time, because ls writes its output in columns when
writing to a terminal.

7.11 Script Clients

In addition to running separate programs or shell commands as clients, you can also use
Glish scripts as clients in other Glish scripts. We refer to such scripts as “script clients”.
You create script clients using the client function, much as you might expect:

sc := client("glish myscript.g")

In general you use the same argument syntax as when running a script directly (see
10.1, page 128).

In every Glish script, whether run as a script client or not, Glish provides a global
variable called script (9.8, page 121). If you run the script directly (not as a
script client), then script has the boolean value F. If however you run the script
as a script client then script is an agent record (7.2.2, page 68), and can be
used in whenever and event-send statements to receive and send events. You can
also determine whether a script is being run as a script client by checking whether
“system.is script client” is T or F (see 9.8, page 120 for further description
of the system global variable).

For example, the following script computes a “timestamp” string (perhaps to be
used in constructing archive file names). If invoked directly the script prints the cur-
rent timestamp and exits. But if invoked as a script client, it waits forget timestamp
events. Upon receiving one it generates a timestamp event with the current times-
tamp and goes back to waiting for the next get timestamp event.

Script to compute timestamps.
Run independently, prints current timestamp

85

and exits. Run as a script client, responds to
"get_timestamp" events by fetching the current
timestamp and sending it out in an "timestamp"
event.

if (system.is_script_client)
{
whenever script->get_timestamp do

send script->timestamp(current_timestamp())
}

else
Run independently.
print "Current timestamp:", current_timestamp()

func current_timestamp()
shell("date +%a-%h-%d-%T")

If this script were in a file timestamp.g, we could then use it in another script as
follows:

timestamp := client("glish timestamp.g")
...
Return current timestamp.
func stamp()

{
send timestamp->get_timestamp()
await timestamp->timestamp
return $value
}

Script clients behave in general identically to regular clients. In particular, they
respond to and generate the predefined events defined in 7.12, page 86 below.

7.12 Predefined Events

Glish predefines several events for every client to provide automatic access to the
client’s state:

established is generated when an client first begins running. Return of the client
call does not guarantee that the client is now running (especially if the async=T
option has been used; see 7.10.1, page 81, above). A client’s established
event is usually of interest only with asynchronous clients, since you can send

86

events to a client and execute whenever statements referring to a client before
the client has become established.

unrecognized is generated when a client does not recognize an event sent to it. By
convention clients also generate error events when an event sent to them is
erroneous in some way (for example, a mandatory field is missing from the
event’s value), but error events are not (yet) automatically generated.

done is generated when the client finishes successfully. Contrast with:

fail is generated on behalf of a client that terminates abnormally. For example, if a
client faults due to a bus error and crashes, the Glish interpreter will detect the
client’s failure and generate a fail event. If communication with a client is lost
due to network problems, though, then Glish may not detect the problem for a
long time.

terminate can be sent to any client to tell it to exit. All clients are sent implicit
terminate events when a Glish program terminates due to an exit statement
(5.7, page 51).

These events form the mechanism by which you can control clients and detect
their errors. In general if a client generates an event which has no corresponding
whenever specifying what to do when that event occurs, then the Glish interpreter
generates a warning message. This message is not generated, though, for unnoticed
established and done events.

Ideally we would like the above events to apply to all agents and not just clients.
That is, we would like subsequences (see the next section) to generate and respond to
these events, too. Presently, however, these events only apply to clients (“clients” here
includes asynchronous shell commands; see 7.10.2, page 83).

7.13 Subsequences

Along with clients and asynchronous shell commands, a final way to create an agent
is using a subsequence. A subsequence is just like a function except that when called
it returns an agent value, which you can then use to send and receive events to and
from the subsequence. In the body of a subsequence the predefined variable self
refers to its agent value. For example, the following script creates two subsequences,
and when executed it prints 36 followed by [8 125 1030.3]:

subsequence power(exponent)
{
whenever self->compute do

send self->ready($value ˆ exponent)
}

87

square := power(2)
cube := power(3)

send square->compute(6)
send cube->compute([2, 5, 10.1])

whenever square->ready, cube->ready do
print $value

The first set of statements defines power as a subsequence that is invoked with
an argument exponent and responds to compute events by generating a ready
event whose value is the value of the compute event raised to the given exponent.
(The keyword subsequence, by the way, can be abbreviated subseq.) The two
assignments bind square and cube to agents corresponding to different instances of
power. The next two statements send those agents compute events with a single
integer value and a three-element double-precision array value, respectively. The final
whenever statement prints the value of any ready events generated by square or
cube.

In a sense, a subsequence provides a separate “thread” running inside the Glish
interpreter. Each instance of a subsequence has its own set of local variables which it
“remembers” between receiving events. Presently there is little mechanism for con-
trolling a subsequence (as discussed in the previous section). In particular, there is no
way right now to terminate an instance of a subsequence once it has begun. In general
we do not yet have much experience with subsequences so it is possible that they will
change somewhat in the future.

Subsequences are a somewhat more disciplined instance of the more general
create agent function (7.2.1, page 67, 9.7, page 116). In particular, the follow-
ing subsequence:

subseq example(x, y)
{
do_something(x)
whenever self->do_y do

do_something(y)
}

is identical to:

func example(x, y)
{
self := create_agent()
do_something(x)
whenever self->do_y do

do_something(y)
return self
}

88

Chapter 8

The Glish Client Library

You make a program into a Glish client by using the Glish Client Library. This is a
C++ class library that provides three classes, Value, Client, and GlishEvent:

Value encapsulates a Glish Value, giving access to values identical to Glish variables
(dynamically-typed arrays, records, functions, and agents). It is a rich, complex
class.

Client encapsulates the program’s connection to the Glish world: it provides methods
for sending and receiving events.

GlishEvent encapsulates a single Glish event; that is, a name and an associated value.

We first discuss each of these classes briefly in turn, and then look at an example
constructed using the classes. Following the example we present the full details of the
Client and Value classes (GlishEvent is simple enough that we cover it entirely in
our first look). We finish with an overview of the (unfortunately few) Glish clients that
come with the Glish system.

8.1 An Overview of the Value Class

Value objects can be constructed from C++ scalars or arrays. For example,

Value* v = new Value(5);

assigns to v a Value object representing the integer 5, while

double* x = new double[3];
x[0] = 1.0;
x[1] = 3.14;
x[2] = 4.56;
Value* v = new Value(x, 3);

89

assigns to v the equivalent of the Glish value [1, 3.14, 4.56]. By default, Value
objects constructed from arrays “take over” the array: they will realloc() the array if
it grows larger and delete it when the Value object is destroyed. The class library also
provides mechanisms for specifying that an array should not be altered or should first
be copied (see 8.6, page 97, below).

The Value class provides a number of member functions for manipulating values:

Type returns the type of an object and Length its length.

IntVal interprets one element of the value as a single integer, performing
type conversions as necessary, and similar functions are provided for boolean,
floating-point, and string interpretations.

IntPtr returns a pointer to a C++ array of integers that can then be used for
direct access to the value’s underlying elements. A related member function,
CoerceToIntArray, returns either the underlying array if already of type

integer or else a copy of the array converted to integer. Again, these functions
have counterparts for the other Glish types.

Polymorph converts the value from its present type to a new type.

Analogs to these functions are available for directly accessing and setting a
record’s fields.

The (non-member) function create record() returns a new, empty record.

The (non-member) function copy value(Value* v) returns a complete
(i.e., “deep”) copy of the Value object v. reference values are de-referenced.

A key point concerning the Value class is that it makes it easy to wrap Glish values
around an existing program’s data structures. These data structures can then be made
available to other programs by sending them as event values.

Note also that both the Value and Client classes use reference-counting for memory
management. The Ref() and Unref() functions manipulate each object’s reference
count. When the count reaches zero the object is deleted and any objects it refers to are
Unref()’d. In particular, Unref()’ing a record until its reference count is zero
will result in the record being destroyed and each of its fields being Unref()’d.
Individual record fields should not be otherwise Unref()’d unless you Ref()’d
them earlier.

8.2 An Overview of the Client Class

Each Glish client constructs one instance of the Client class by passing the Client
constructor the program’s argc and argv. When a Glish client is executed by a
Glish script argv contains special arguments telling the Client object how to connect
the Glish interpreter. So usually the beginning of a Glish client looks like:

90

int main(int argc, char** argv)
{
Client c(argc, argv);
...

The Client constructor removes these special arguments from argv (and correspond-
ingly updates argc) so after the Client object is constructed the program will no longer
“see” the arguments.

The Client class provides four main member functions:

NextEvent waits for the next event to arrive and returns its name and a
corresponding Value object. The event is returned as a pointer to a GlishEvent
object, which is simply a structure with name and value fields (see 8.3,
page 91, below).

PostEvent takes a string and a Value object and sends an event with the
given name and value.

Reply replies to the most recently-received request/reply event (see 7.6,
page 75) with a Value object.

Unrecognized is used to report that the current event is not recognized by
the Glish client.

The class also provides variants on PostEvent for sending events with simple
string values (see 8.5, page 92, below, for details). In addition, the class provides
access to the file descriptors from which it reads events, so the program can use select()
to multiplex between different input sources (see 8.5.2, page 95).

8.3 The GlishEvent Class

A GlishEvent object encapsulates a single Glish event: a name and an associated value,
represented by a pointer to a Value object. Usually you will not create GlishEvent
objects yourself, but only deal with those returned by Client’s NextEvent member
function.

GlishEvent objects have two fields that are directly accessible: name is a char*
pointer to the name of the event, and value is a Value* pointer to the event’s
associated value.

GlishEvent objects are reference-counted, like Value and Client objects, so you
should always use Unref() to dispose of one rather than delete.

If you wish to construct a GlishEvent object, you do so using:

GlishEvent(char* name, Value* value)

The GlishEvent object assumes that it now “owns” the name string, which must have
been dynamically allocated and will be delete’d when the GlishEvent object is de-
stroyed. Similarly, the GlishEvent object will Unref() the value pointer when
destroyed.

91

8.4 An Example of a Client

Suppose we want to create an “FFT server”: a Glish client that when sent a numerically-
valued fft event computes the FFT of the array of data and returns the result as an
answer event. The result consists of a record with two fields, real and imag, arrays
of the real and imaginary parts of the Fourier transform.

Assume we have a function fft available for doing the actual transformation and
want to “wrap” a Glish client interface around this function. Figure 8.1 shows how we
would do so.

First we create a Client object using the idiom discussed in 8.5. We then enter
the event-loop, blocking until a new event is ready (NextEvent returns a nil pointer
when the client should terminate).

If the event’s name is fft then we extract the event’s value, convert it to double
if it is not already, and extract its length into num. We then use DoublePtr to
get a pointer to the actual array of double-precision elements. In order to call fft we
need to also pass it arrays where it should put its results, so we create real and imag.
After computing the FFT we create in r a Glish record value to hold the two arrays, and
assign them to r’s real and imag fields. We then send this aggregate value as a Glish
event with the name answer. Now that we’re done with r we Unref() it to reclaim
its memory. This will automatically result in real and imag’s memory being reclaimed
too. We don’t need to Unref() the GlishEvent pointed to by e because the next call
to NextEvent automatically does so.

Finally, if the event wasn’t fft then we inform the Client library that we don’t
recognize this particular event.

To compile this example we use:

C++ -I$ISTKPLACE/include -c fft_server.cc

where C++ is the local C++ compiler (typically g++ or CC) and $ISTKPLACE is an
environment variable giving the path of the top of the ISTK source tree (see 11.7,
page 138).

We then link the example using:

C++ -o fft_server fft_server.o \
-L$ISTKPLACE/lib/$ARCH -lglish -lsds -lm

where $ARCH indicates the local architecture (again, see 11.7, page 138).

8.5 The Client Class

As discussed in 8.2, page 90, above, Glish clients should construct a single Client
object using the argc and argv with which the client program was invoked.

92

#include string.h
#include "Glish/Client.h"

Computes the FFT of the first “len” elements of “in”, returning
the real part in “real” and the imaginary part in “imag”.

extern void fft(double in, int len, double real, double imag);

int main(int argc, char argv)

Client c(argc, argv);

GlishEvent e;
while ((e = c.NextEvent()))

if (! strcmp(e name, "fft"))
an “fft” event

Value val = e value;

Make sure the value’s type is “double”.
val Polymorph(TYPE DOUBLE);
int num = val Length();

Get a pointer to the individual elements.
double elements = val DoublePtr();

Create arrays for results.
double real = new double[num];
double imag = new double[num];

Compute the FFT.
fft(elements, num, real, imag);

Create a record for returning the
two arrays.

Value r = create record();
r SetField("real", real, num);
r SetField("imag", imag, num);

c.PostEvent("answer", r);
Unref(r);

else
c.Unrecognized();

return 0;

Figure 8.1: Glish Wrapper for FFT Client

93

8.5.1 Standard Client Member Functions

Client objects provide the following public member functions:

Client(int& argc, char** argv) creates a Client object using the
given argc and argv variables, which upon return are updated to no longer
include the special Glish arguments used to instruct the Client how to connect
with the Glish interpreter.

If the program was not invoked by the Glish interpreter then the special arguments
will be missing. The Client constructor detects this case and knows that the
program is running stand-alone, in which case it reads string-valued events from
stdin and “posts” outbound events to stdout. This behavior allows client programs
to be debugged separate from running within Glish. A line such as:

hello there how are you?

on stdin will be turned into ahello event with a value of a four-elementstring
corresponding to "there how are you?".

For a way to turn off this behavior, see 11.4, page 137.

virtual ~Client() terminates the client “cleanly”; that is, it informs the Glish
interpreter that the client terminated successfully and closes the connection be-
tween the client and the interpreter. If you wish the client to indicate “failure”
instead, leading to afail event (see 7.12, page 86), then exit the client program
without destructing the Client object.

GlishEvent* NextEvent() waits for the next event to arrive and returns a
pointer to a GlishEvent object representing it. This object will be Unref()’d
on the next call to NextEvent(), so if you wish to keep the GlishEvent pointer
(or the Value pointer) you must Ref() it (or its value element).

If the connection to the interpreter has been broken then NextEvent() returns
a nil pointer and the caller should delete the Client object and terminate.

void Unrecognized() must be called by any caller of NextEvent() if the
current event is unrecognized (its name does not match one that the caller knows
how to respond to).

void PostEvent(GlishEvent* event) sends out an event as repre-
sented by the given GlishEvent object.

void PostEvent(const char* name, const Value* value) is
similar to the preceding version of PostEvent(); it sends out an event with
the given name and value. Typically this version of PostEvent() is more
commonly used than the preceding version.

94

void PostEvent(const char* name, const char* fmt, const
char* arg) sends out a string-valued event with the given name, using
a printf-style format and an associated string argument to construct the value of
the event. For example,

client->PostEvent("error",
"couldn’t open %s", file_name);

sends an error event identifying which file could not be opened.

void Reply(Value* value) replies to the most recently-received re-
quest/reply event (see 7.6, page 75) with the given value. Note that presently
each request/reply event must be paired with a corresponding Reply call, with
no other events sent or received during the interim.

void PostOpaqueSDS Event(const char* name, int sds) sends
an opaque-valued event. The value of the event is given by sds, the index of
an already-existing SDS dataset. See 11.1, page 134 for a brief discussion of
SDS datasets.

int HasSequencerConnection() returns true if the client was invoked by a
Glish interpreter, false if the client is running stand-alone (i.e., reading string-
valued events from stdin and sending string representations of outbound events
to stdout, as described in 8.5.1, page 94).

int HasEventSource() returns true if the client has some sort of event
source, either a connection to the Glish interpreter, or running stand-alone and
reading events from stdin (8.5.1, page 94), and false if there is no event source
whatsoever (due to use of -noglish; see 11.4, page 137).

8.5.2 Multiplexing Input Sources

Some Glish clients need to receive input from multiple sources, such as both user-
interface input and event input. The Client class Client class provides three additional
member functions to support input multiplexing. The basic idea is that the Client class
makes available an fd set identifying which file descriptors it uses to receive events.
This fd set can then be used in a call to select() to determine whether any of the
client’s event sources are active. Another Client member function takes the fd set
returned by select() and reports whether or not the modified fd set indicates that an
event is pending. If so then a special version of NextEvent() is called with the
fd set passed as an argument; it decodes the fd set and returns the pending event.

The additional member functions are:

void AddInputMask(fd set* mask) adds to the fd setmask any file
descriptors used by the Client object to receive events.

95

Note that the collection of file descriptors in general changes dynamically, mean-
ing that AddInputMask must be called prior to each call to select() (or at
least after every call to NextEvent). Alternatively, you can override the
FD Change virtual member function (see below) to get explicit notification
of changes.

int HasClientInput(fd set* mask) returns true if the mask indicates
that an event is pending for the Client.

GlishEvent* NextEvent(fd set* mask) is a version of NextEvent()
which can be passed anfd set returned by a call to select() to aid in determining
from where to read the next event.

virtual void FD Change(int fd, bool add flag) is a virtual
function that is called automatically whenever the Client’s input sources change
(due to newly-executed link orunlink statements). Ifadd flag is true then
the given fd is a new input source; if false, then it is no longer an input source.

The default version of this member function does nothing, so you needn’t call it
if you override the function in a subclass.

Putting these member functions together, suppose we have an fd set called mask
which already has set in it the non-Glish file descriptors we use for input. Then the
following fragment illustrates how we can multiplex between these input sources and
the Glish sources:

// Assume c is a pointer to our Client object.
// Add c’s input sources into the mask.
c->AddInputMask(&mask);

// Now select between the different sources.
if (select(FD_SETSIZE, &mask, 0, 0, 0) < 0)

error();
else

{
if (c->HasClientInput(&mask))

{
GlishEvent* e = c->NextEvent(&mask);
handle_event(e);
}

// Check our other input sources for activity, too.
...
}

96

8.6 The Value Class

As noted above, the Value class is both rich and complex. It provides considerable
functionality for manipulating Glish-style values. We divide our discussion into con-
structing Value’s, basic operations, type conversions, manipulating records, and access-
ing and assigning elements. We do not discuss all of the member functions here, as
some of them are intended for use only by the Glish interpreter (which uses the Value
class internally).

8.6.1 Constructing Value Objects

Value objects can be constructed either from single scalars, in which case a one-element
Value is created, or from arrays, in which case a multi-element Value is created.

To create a scalar Value, use one of the following:

Value(bool value)
Value(int value)
Value(float value)
Value(double value)
Value(const char* value)

These create single-element Valueobjects that correspond to the Glish types boolean,
integer, float, double, and string. Note that in all cases (including the
string constructor) the value used to initialize the object is copied. Note also that the
C++ bool type is an enumerated type with two constants, true (= 1) and false (= 0).
If used in a source file that includes headers from the Glistk (or InterViews) toolkits,
then these constants are instead referred to as glish true and glish false, to
avoid name conflicts with InterViews.1

To create a new, empty record, use:

Value* create_record()

To create a multi-element Value, use one of the following:

Value(bool value[], int num_elements,
array_storage_type storage = TAKE_OVER_ARRAY)

Value(int value[], int num_elements,
array_storage_type storage = TAKE_OVER_ARRAY)

Value(float value[], int num_elements,
array_storage_type storage = TAKE_OVER_ARRAY)

Value(double value[], int num_elements,
array_storage_type storage = TAKE_OVER_ARRAY)

Value(const char* value[], int num_elements,
array_storage_type storage = TAKE_OVER_ARRAY)

1These source files must include at least one Glistk or InterViews header prior to including any Glish
header.

97

Each of these constructors takes a pointer (array) of one of the types discussed above,
the number of elements in the array, and an optional argument indicating to what degree
that array now “belongs” to the Value object.

This last argument defaults toTAKE OVER ARRAY, which informs the Value object
that it can do whatever it wishes with the array, including resize it (via a call to realloc())
and delete it when done using it. Thus if TAKE OVER ARRAY is used the array must
have been dynamically allocated. The following is erroneous:

int foo[50];
Value* v = new Value(foo, 50);

because foo is not a dynamically allocated array. This, too, is illegal:

int* foo = new int[50];
Value* v = new Value(foo, 50);
delete foo;

because foo now belongs to v and should not be deleted by anyone else.
The storage argument can also be COPY ARRAY, in which case the Value object

uses a copy of the entire array instead of the original array (string Value’s copy each
string element of the string array, too), or PRESERVE ARRAY, in which case the Value
object uses the array as is but does not attempt to grow it or delete it. If the Value object
needs to alter a PRESERVE ARRAY array, it first copies it instead.

Naturally, when using COPY ARRAY or PRESERVE ARRAY you want to be care-
ful regarding efficiency or deleting the array while a Value object still refers to it,
respectively.

8.6.2 Basic Value Operations

The Value class provides the following basic member functions:

glish type Type() const returns the Value’s type, one of:

TYPE_BOOL, TYPE_INT
TYPE_FLOAT, TYPE_DOUBLE
TYPE_STRING
TYPE_RECORD
TYPE_REF, TYPE_CONST
TYPE_AGENT
TYPE_FUNC

unsigned int Length() const returns the number of elements in the Value
(if an array), the number of fields (if a record), or 1 (if a reference, an
agent, or a function).

bool IsNumeric() const returns true if the Value is numeric (boolean,
integer, float, or double), false otherwise.

98

int IntVal(int n = 1) const treats the Value as an integer type and
returns the n’th element converted to the C++ int type. n = 1 corresponds to
the first element of the Value.

If the Value is a reference then it is first dereferenced.

If n is out-of-bounds (less than 1 or greater than the number of elements) then
an error is generated and 0 returned.

If the Value is not numeric then an error is generated and 0 returned.

bool BoolVal(int n = 1) const is analogous to IntVal() except the
Value is treated as an boolean type. false is returned upon any error.

double DoubleVal(int n = 1) const is analogous to IntVal()
except the Value is treated as a double type. Upon any error, 0.0 is returned.

char* StringVal(char sep = ’ ’) const returns a string representa-
tion of the Value object. The optional sep argument indicates what character
should be used to separate adjacent elements. For non-string arrays of more
than one element the result is wrapped in []’s. For example, an array of the first
three positive integers results in a string of "[1 2 3]" being returned.

The string returned is dynamically allocated and should bedelete’d when done
with.

int* IntPtr() const returns a pointer to the underlying C++ int array of an
integer Value object. These elements can then be directly manipulated (there
are, of course, Length() elements present). If the Value is not of type integer
than a fatal error results.

Analogous functions for boolean, float, double, and string values are:

bool* BoolPtr() const;
float* FloatPtr() const;
double* DoublePtr() const;
charptr* StringPtr() const;

int* IntPtr() is similar to the preceding IntPtr() member function except
that if Value’s type is not integer then it is first Polymorph()’d (see

8.6.3, page 100, below) to integer. Analogous functions are provided for
the other numeric and string types.

bool IsRef() const returns true if the Value is a reference (either ref or
const), false otherwise.

bool IsConst() const returns true if the Value is aconst reference, false
otherwise.

99

Value* Deref() dereferences the Value until it is no longer a reference.

const Value* Deref() const is the same as the previous except it is aconst
member function returning aconstValue pointer (hereconst refers to the C++
notion of “constant pointer”, not the Glish type of “constant reference”).

8.6.3 Type Conversions

The Value class provides the following member functions for manipulating the type of
a Value object:

void Polymorph(glish type new type) changes the Value from its
present type to new type, which is one of the types listed in the previous
section for the Type() member function. For example,

v->Polymorph(TYPE_INTEGER);

will change v from its present type to integer, coercing all of its elements to
the C++ int type.

The Value’s current and new types must be compatible. Presently this means that
they either must be the same or both must be numeric. This restriction will be
eased in the future.

int* CoerceToIntArray(bool& is copy, int size, int* result
= 0) const returns a C++ int pointer to an integer representation of the
Value’s elements.

If the Value’s type is integer and size equals the number of elements in the
Value, then the Value’s underlying array is returned (as though IntPtr() had
been called; see the preceding section) and is copy will be false. In this
case the returned pointer must not be delete’d.

If the type is a different numeric type, or size differs from the number of
elements, then a copy of its first size elements, coerced to int, is returned, and
is copy will be true. In this case it is the caller’s responsibility to delete
the returned pointer when done with it.

If the type is non-numeric then a fatal error is generated.

If the Value has only 1 element and size is greater than 1, then size copies of
that one element coerced to int.

If result is non-nil then the result is placed in result (as well as returned
by the function), and is copy will always be true.

Analogous functions for type conversions to boolean, float, and double
are provided:

100

bool* CoerceToBoolArray(bool& is_copy,
int size, bool* result = 0) const;

float* CoerceToFloatArray(bool& is_copy,
int size, float* result = 0) const;

double* CoerceToDoubleArray(bool& is_copy,
int size, double* result = 0) const;

const char* CoerceToStringArray(bool& is copy, int size,
const char* result = 0) const is similar to
CoerceToIntArray() except that the Value’s type must be string. This
restriction will be eased in the future to allow numeric types, too.

8.6.4 Manipulating Records

Very often record’s are used as Glish event values, so it’s important that it be easy to
manipulate them. The Value class provides a number of member functions for accessing
and setting record fields. We first list the most commonly used ones:

Value* Field(const char field[]) returns the record field named
“field”, or nil if either the field doesn’t exist or the Value object is not a
record.

Value* Field(const char field[], glish type t) is the same as
the preceding Field() function except the field is polymorphed to type t (see

8.6.3, page 100, above).

int* FieldIntPtr(const char field[], int& len) returns a
pointer to the underlying values of the given field, polymorphed to integer.
The number of elements in the field is returned in len.

Analogous functions are available for boolean, float, double, and
string types:

bool* FieldBoolPtr(const char field[], int& len)
float* FieldFloatPtr(const char field[],

int& len)
double* FieldDoublePtr(const char field[],

int& len)
const char* FieldStringPtr(const char field[],

int& len)

These functions return a nil pointer if the Value object is not a record or doesn’t
contain the given field. In these cases, len is not modified.

101

bool FieldVal(const char field[], int& val, int n = 1)
looks for a field with the given name. If present, returns true, and in the second
argument (val) returns the scalar value corresponding to the n’th element of
that field coerced to int. n=1 corresponds to the first element of the field.

If the field is not present, returns false, and val is unchanged.

Analogous functions are available for boolean and double:

bool FieldVal(const char field[],
bool& val, int n = 1)

bool FieldVal(const char field[],
double& val, int n = 1)

bool FieldVal(const char field[], const char*& val) is similar
to the functions described in the previous item, but rather than just coercing one
element of the field to string, it returns a string representation of the entire
value (as described for the StringVal()member function in 8.6.2, page 98,
above). Thus the value returned in val is a newly allocated string which should
be delete’d when done with.

void SetField(const char field[], int value) sets (or changes,
if already present) the given field in a record to a scalar integer value.

Analogous functions are available for other scalar types:

void SetField(const char field[], bool value);
void SetField(const char field[], float value);
void SetField(const char field[], double value);
void SetField(const char field[],

const char* value);

The last of these, like the const char* Value constructor, copies the contents
of the passed string.

For example, the following:

Value* r = create_record();
r->SetField("x", 3);
r->SetField("y", "hi there");
r->SetField("z", false);

is equivalent to the Glish statement:

r := [x=3, y=’hi there’, z=F]

If the Value object is not a record then a fatal error is generated.

102

void SetField(const char field[], int value[],
int num elements, array storage type storage =
TAKE OVER ARRAY) is a similar member function for adding a multi-
element field to a record. The first argument names the field to be added, and the
remaining arguments are identical to those for the integer array constructor
discussed in 8.6.1, page 97, above.

Exactly analogous member functions are available for creating arrays of
boolean, float, double, and string values.

Again, if the Value object is not a record then a fatal error is generated.

In addition to these member functions, several others are available, primarily for
when you want to deal with record fields as Value objects themselves:

Value* Field(const char field[]) returns a pointer to the given
field of a Value object. If the Value object is not a record, or does not contain the
given field, the function returns a nil pointer instead.

Value* Field(const Value* index) is similar to the preceding function
except that index is itself a Value object (presumably string-valued).

Value* Field(const char field[], glish type t) is similar to
the first member function above except a Glish type such as TYPE FLOAT is
specified as well, and the field if present is polymorphed to that type prior to
return.

void SetField(const char field[], Value* value) assigns
the given field to the given Value object. The assigned Value object may or
may not be copied by the member function, but in any case upon return it is safe
for the caller to Unref() the assigned value (and the caller should do so if it
will not be used further).

If the called Value object is not a record then a fatal error is generated.

Value* NthField(int n) returns a pointer to the n’th field in the record,
with the first field that was added to the record numbered 1. Returns a nil pointer
if n is out of range or the Value object is not a record.

const Value* NthField(int n) const is a const version (in the C++
sense of the term) of the preceding member function.

const char* NthFieldName(int n) const returns a non-modifiable
pointer to the n’th field’s name. Returns a nil pointer under the same circum-
stances as NthField().

char* NewFieldName() returns a copy of a unique field name; that is, a field
name not already present in the given record. Returns a nil pointer if the object
is not a record.

The name will have an embedded “*” character indicating it is an internal name.

103

const Value* ExistingRecordElement(const char field[])
const is directly analogous to the first Field() function above except it
works for const (in the C++ sense) Value objects and returns a const pointer.
Also available is:

const Value*
ExistingRecordElement(const Value* index) const

identical to the second form of Field().

If the field does not exist or the object is not a record then these functions generate
error messages and return a pointer to a boolean Value object whose value is
false.

8.6.5 Accessing and Assigning Elements

Usually the Value class is used to “wrap” Glish values around C, C++, or FORTRAN data
so those values may be communicated as events. As such, the emphasis in using the
class is on convenient wrapping and unwrapping. It is also possible to use the class to
manipulate Value objects similar to how they can be manipulated in the Glish language.
We discuss here some of the member functions available for doing so. I’m interested
in hearing from users who find they would like more such functionality.2

Value* operator[](const Value* index) const indexes the Value
object with the given index, which is itself a Value object. The index should
either be numeric (in which case it is treated as discussed in 3.7, page 33, above)
or string (in which case the called object should be a record, and is indexed
as explained in 3.4.3, page 29, above).

This function returns a newly created Value object representing the designated
elements of the original object. The caller should Unref() this new object
when otherwise done with it.

Any errors result in messages being written to stderr and a return value of a copy
of the F constant.

void AssignElements(const Value* index, Value* value)
assigns the elements designated by index to value. index is treated as

discussed for the preceding member function.

2One idea for adding a great deal of such functionality is to embed a Glish interpreter in each client. (This
is not as extravagant as it sounds; in reality, most of the Glish interpreter is presently linked into each client).
The user might then use an “eval” function for executing Glish statements:

Value* x = new Value(5);
eval("x +:= 1:3");
// The x variable now points to an integer Value
// with the value [5, 10, 15].

104

AssignElements() will either take over (by Ref()’ing) or copying what it
needs from value, so after the function returns the caller should discard value
by Unref()’ing it when otherwise done with it.

For example, the sequence:

int* x = new int[3];
x[0] = 3; x[1] = 5; x[2] = 7;
Value* xval = new Value(x, 3);
Value* index = new Value(2);
Value* new_val = new Value(10);
xval->AssignElements(index, value);
Unref(new_val);

is equivalent to the Glish statement:

x := [3, 5, 7]
x[2] := 10

void TakeValue(Value* new value) discards a Value object’s present
value and instead uses new value for its value. The caller should then
Unref() new value when otherwise done using it.

8.7 Available Glish Clients

The Glish system comes with a very modest number of clients.3 Source code for these
clients resides in the clients/ subdirectory of the Glish source tree; installing Glish
(see 11.7, page 138, below) includes installing these clients, so they are generally
available for use.

The available clients will grow with time and contributions are welcome. The
clients presently available:

test client simply copies its arguments to stdout and then reports to stderr the
name and value (string representation) of any events it receives.

echo client “echoes” back any event it receives, using the same name and
value. It also generates an initial echo args event listing the arguments with
which it was invoked (if any).

timer generates events at periodic intervals. timer is invoked with two optional
arguments, the flag -oneshot and a floating-point value indicating how long
the initial timeout should last. timer waits this many seconds and generates a

3While a fair number of Glish clients have been written, most are either special-purpose or use the ISTK
graphics library, which is distributed separately from Glish.

105

ready event whose value is the number of seconds it waited. If -oneshot
was not specified then timer “rearms” itself and goes off again after the same
number of seconds elapse.

Anytime timer receives an interval event it interprets the event’s value as a
double value indicating the new timeout period. It then resets its timer and
begins waiting for this new period of time. The original setting of -oneshot
remains in effect.

If no initial time is specified when timer begins executing then it simply waits
until it receives an interval event.

For example, the following generates a ready event approximately every 1.5
seconds:

t := client("timer", 1.5)
whenever t->ready do

print "timer went off after", $value, "seconds"

tell glishd sends messages to the glishd Glish daemon (11.2, page 135)
running on a given remote host so you can manipulate the daemon. You give
tell glishd a flag specifying what it should tell the daemon to do, and an
optional hostname indicating which daemon it should talk to (defaults to local
host). Presently the only flag supported is -k, which tells the daemon to kill
itself. So, for example:

tell_glishd -k bigelow

tells the daemon running on the host “bigelow” to terminate.

Running tell glishd without any arguments lists the different messages it
supports.

Note that tell glishd is not a Glish client; rather it is an auxiliary program,
meant to be run by hand.

106

Chapter 9

Predefined Functions and
Variables

The Glish language includes a number of predefined functions for aiding in writing
Glish scripts. These include functions for identifying and converting types, manip-
ulating arrays and strings, storing and reading values to and from files, dealing with
variable argument lists in functions, and manipulating agent’s. Glish also includes
predefined global variables for accessing the script’s arguments and environment, for
inspecting and responding to changes in the system’s state, and for running a script as
clients (7.11, page 85).

We discuss each of these in turn.

9.1 Type Identification

Glish provides the following functions for identifying the type of a value:

is boolean(x) returns true (T) if x’s type is boolean and false (F) otherwise.
The following analogous functions are available for identifying other types:

is_integer(x)
is_float(x)
is_double(x)
is_string(x)
is_record(x)
is_function(x)
is_agent(x)

is numeric(x) returns T if x’s type is numeric (boolean, integer, float,
or double), F otherwise.

107

type name(x) returns a string scalar identifying the type of x. For example,

type_name(5)

returns "integer" and

type_name(func (x) x+1)

returns "function". The names of the various types are:

"boolean"
"integer"
"float"
"double"
"string"
"record"
"function"
"agent"
"opaque"

The name of a reference type is the concatenation of the string "ref" (or
"const") followed by the name of the referred-to type. For example,

type_name(ref "hi")

yields ’ref string’ as a scalar value.

full type name(x) returns a more detailed description of x’s type.

If the value is an array with more than one element then the function reports its
size as well as its type:

full_type_name(1:10)

yields ’integer [10]’.

If the value is a record then the function identifies each field’s name and type
(recursively, if one of the fields is itself a record):

full_type_name([a=1, b="how are you?", c=2:5])

yields

’record [a=integer, b=string [3], c=integer [4]]’

If the value is a reference then the function returns only its referred-to type:

108

full_type_name(ref 5)

returns ’integer’.

field names(x) returns a string array listing all of the fields in x. For example,

field_names([a=1, b="how are you?", c=2:5])

yields "a b c".

If x is not a record than an error message is printed and F returned.

has field(x,field) returns T if x is a record and contains a field with the given
name, F otherwise.

9.2 Type Conversion

The following functions convert their argument to the stated type:

as_boolean(x)
as_integer(x)
as_float(x)
as_double(x)
as_string(x)

The argument x must be either numeric- or string-valued.
See 3.1.3, page 19, for a discussion of implicit type conversion (i.e., not requiring

use of one of these functions).

9.2.1 Boolean Conversions

Conversions to boolean yield T if the converted value is non-zero. A string value
yields T if it exactly represents a number other than zero; otherwise it yields F. For
example,

as_boolean([3.14159, 0])

yields [T, F], and

as_boolean("how are you?")

yields [T, T, T],

as_boolean(".0000001")

yields T, and

109

as_boolean(".0000001foo")

and

as_boolean("0.")

yield F.
Note that an empty string here means a string with no text in it; this is different from

a string with no elements.

as_boolean(’’)

yields F, but

as_boolean("")

yields [], an empty (boolean) array.

9.2.2 Integer Conversions

A boolean value converted to integer yields 1 if the value was T and 0 if F.
A float or double value yields the same integer value as would the host

machine’s C++ compiler when doing the same conversion via a cast. In particular, it is
not well-defined (I believe) whether a value like -3.14159 is converted to -3 or -4.

A string value is converted as per the C (and C++) routine atoi(). If the value is
not a valid integer then it is converted to 0.

9.2.3 Float and Double Conversions

A boolean value converted to float or double yields 1.0 if T and 0.0 if F.
A string value is converted as per the C (and C++) routine atof(). If the value is

not a valid floating-point number then it is converted to 0.0.

9.2.4 String Conversions

A boolean value converted to string yields "T" if true and "F" if false.
An integer value yields its natural string representation.
float values are converted as per printf()’s “%.6g” format.
double values are converted as per printf()’s “%.12g” format.

9.3 Manipulating Arrays

The following functions are available for manipulating (primarily numeric) arrays:

length(x) returns the number of elements in the array x, or the number of fields if
x is a record. length may be abbreviated to len.

110

sum(x) returns the sum of all of the elements in the numeric array x. The value
returned is a double scalar.

An error is generated and F returned if x is not numeric.

min(x) and max(x) return the minimum and maximum element of the numeric
array x. The value returned is a double scalar.

These functions are special cases of the more general function range(x),
which returns a two-element double array giving the minimum and maximum
elements of the numeric array x:

range(1:10)

yields [1, 10].

An error is generated and F returned if x is not numeric.

sqrt(x) , exp(x), log(x), sin(x), cos(x), andtan(x) return the square
root, exponentiation (i.e.,), natural logarithm, sine, cosine, and tangent of the
numeric array x, operating on each element in turn. The computation is done on
the value of x as coerced to double, and the returned d value is an array of type
double. For example,

sqrt(1:5)

yields [1, 1.41421, 1.73205, 2, 2.23607].

An error is generated and F returned if x is not numeric.

abs(x) returns the absolute value of the numeric array x. The result has the same
type as x.

The absolute value of a boolean value is simply that same boolean value.

An error is generated and if x is not numeric and an undefined value is returned.

all(x) returns T if every element of x is either T (if x’s type is boolean) or
non-zero (otherwise). It returns F if any element of x is either F or zero. For
example,

all(y > 3)

returns T if-and-only-if every element of y is greater than 3.

An error is generated and if x is not numeric and an undefined value is returned.

any(x) is analogous to all(x); it returns T if any element of x is either T or
non-zero, and F if every element is F or zero. For example,

any(y > 3)

111

returns F if-and-only-if every element of y is less than or equal to 3.

seq(x) returns an integer array of all of the numbers between 1 and x if x is a
scalar:

seq(5)

yields [1, 2, 3, 4, 5], as does:

seq(5.4)

If x is less than 1 or not numeric, an error is generated and F returned.

If x is not a scalar then its length is used instead:

seq([3, -5, 2])

yields [1, 2, 3]. This version of seq() is often useful for generating array
indices. See examples in 3.7.2, page 36, and 5.5.2, page 49. In this case x
can also be of type string.

seq(x,y) starts at x and proceeds counting by 1 until reaching y, returning the result
as either an integer array if x was an integral value (e.g., 3 or 5.0) or else
as a double array. If y is less than x then the function counts downwards.

For example,

seq(3,5)

yields [3, 4, 5], while

seq(5.2, 1)

yields [5.2, 4.2, 3.2, 2.2, 1.2].

If x or y contains more than one element then the first element is used.

If x or y is not numeric then the results are undefined.

seq(x,y,z) is similar to the precedingseq(x,y) function except instead of count-
ing by 1, it counts by z. If x is less than y then z must be positive, and if x is
greater than y then z must be negative. If z fails this requirement, or if z is 0,
then an error is generated and F returned.

For example,

seq(1,2,.2)

112

yields [1, 1.2, 1.4, 1.6, 1.8, 2].

A call to seq() resulting in more than a million elements results in an error
message and a return value of F.

See 3.7.1, page 33, for other examples of seq().

ind(x) returns an array of indices corresponding to x, which must be either an array
or a record. Thus,

ind(x)

is equivalent to:

1:len(x)

rep(value, count) returns an array consisting of count copies of value. For
example,

rep(6,4)

yields [6, 6, 6, 6].

rep() only works with scalar numeric arguments. If called with erroneous
arguments, rep() reports an error and returns F instead.

9.4 String Functions

Currently there are three functions for manipulating strings: paste, spaste, and
split. (Clearly more are needed.)

paste takes a list of values, converts them all to scalar string’s, and returns
their concatenation as a scalar string value. For example,

a := [2,3,5]
paste("the first three primes are", a)

yields

the first three primes are [2 3 5]

The []’s seen here in the string representation of the array a only occur for a numeric
value with more than one element.

Similarly,

paste("hello", "there")

is equivalent to the string constant

113

’hello there’

By default, the string values are concatenated together using a single space. The
optional sep= argument can be used to specify a string to use instead. For example,

paste("hello", "there", "how", "are", "you?",
sep="XYZ")

yields

helloXYZthereXYZhowXYZareXYZyou?

Note that the arguments to paste are first converted to scalar string’s, and then
concatenated together. So

paste("hello there", 1:3, sep="")

yields

hello there[1 2 3]

and not

hellothere[123]

spaste is simply a version of paste with the separator set to an empty string.
It is defined using:

func spaste(...) paste(...,sep=’’)

This form of paste is common enough that it merits its own simple form.
split is basically the inverse of paste. It takes a single argument, converts it to

a scalar string, and splits it into words at each block of whitespace, just as string
constants are constructed when enclosed in double-quotes (see 3.3.1, page 27). Thus

split(’hello there how are you?’)

is equivalent to

"hello there how are you?"

that is, it yields a five-element string array.
You can also call split with a second argument, giving a string of characters at

which it should break the string. For example,

split("hello there how are you", "eo")

yields the equivalent of

[’h’, ’ll’, ’ th’, ’r’, ’ h’, ’w ar’, ’ y’, ’u’]

114

Here the first element is ’h’, the second is ’ll’, the third ’ th’, and so forth. The
presence of the single leading space in ’ th’ may be surprising. What happened is
that first split converted

"hello there how are you"

to a scalar value, equivalent to

’hello there how are you’

since when the double-quoted constant was constructed all information about the num-
ber of blanks between words was lost. Next split broke the scalar into words at
every occurrence of an ’e’ or an ’o’, but not at each blank like it would without the
second argument. If a blank had been included in the second argument then these extra
blanks naturally disappear:

split("hello there how are you", ’eo ’)

yields the equivalent of

"h ll th r h w ar y u"

Note that you have to enclose the second argument in single-quotes, otherwise the blank
would have been removed.

9.5 Manipulating Variable Argument Lists

Two functions are available for manipulating variable argument lists. The first is
num args(...), which returns the number of arguments with which it was invoked,
first expanding any ... ellipsis arguments. The second is nth arg(n, ...),
which returns its n’th argument, numbering n itself as 0.

See 6.4.4, page 60, for a full discussion of these functions.

9.6 Reading and Writing Values

You can store Glish values to a file and read them from a file using write value()
and read value():

write value(value, file) writes a representation of the given value to the
file file, which is interpreted as a string. Presently only values of type
numeric, string, or record are supported, and those of type function and
agent are not supported. Values of type reference are first dereferenced
before being written.

write value() returns T if successful and F if not.

115

read value(file) reads a Glish value from the file file (interpreted as a
string) and returns it, or F if it encountered problems.

Note that when stored in files Glish values correspond to SDS datasets, so
read value() can be used to read in SDS datasets, too. See Chapter 11,
page 134, for a discussion of SDS.

9.7 Manipulating Agents

Glish provides the following functions for manipulating agent values:

create agent() returns a new agent value that can be used in subsequent
whenever and send statements. That is, the agent value can be sent events
and you can set up whenever’s to deal with receiving these events.

For example,

a := create_agent()
send a->hi("how are you?")

whenever a->hi do
print $value

will print "how are you?". I am interested in hearing whether users find
create agent() itself more useful than using subsequences (7.13, page 87),
which provide a more structured interface to dealing with agent’s.

client(command, ..., host=F, input=F, suspend=F, ping=F,
async=F) creates a Glish client corresponding to the given command and
arguments. See 7.10.1, page 81, for details.

shell(command, ..., host=F, input=F, suspend=F, ping=F,
async=F) either executes a Bourne shell command and returns a string
representation of its output (if async=F), or creates an asynchronous shell client
that can be sentstdin andEOF events and that in turn generatesstdout events.
The first of these is discussed in 4.9, page 44, and the second in 7.10.2, page 83.

relay(src, src name, ref dest, dest name="*") relays every
src name generated by the agent src to the agent dest, renaming the event
to dest name. If dest name is "*" (the default) then src name is used.

For example,

relay(a, "ready", b, "compute")

relays each of a’s ready events to b, renaming them compute, and

116

relay(a, "ready", b)

relays ready events generated by a to b, keeping the event’s name.

relay all(src, ref dest) relays every event from src to dest; it is equiv-
alent to:

whenever src->* do
send dest->[$name]($value)

birelay event(ref agent1, ref agent2, name) relays any “name”
event generated by either agent1 or agent2 to the other agent. Thus it is
equivalent to:

relay(agent1, name, agent2)
relay(agent2, name, agent1)

birelay all(ref agent1, ref agent2) relays every event generated by
either agent1 or agent2 to the other agent. It is equivalent to:

relay_all(agent1, agent2)
relay_all(agent2, agent1)

current whenever() returns an index identifying the whenever statement
whose body is currently (or was last) executed in response to an event. This index
has type integer and is suitable for use in an activate or deactivate
statement (7.8, page 79) for controlling the activity of the whenever state-
ment.

For example, suppose that client a generates both b and c events, and that we
want to respond to b events only as long as we haven’t received a c event. We
could use the following:

whenever a->b do
{
do_b_stuff()
w := current_whenever()
}

whenever a->c do
{
do_c_stuff()
deactivate w # turn off a->b
}

117

This example actually has a bug: if a generates a c event before any b events,
then wwill not be defined when executing thedeactivate statement, resulting
in an error. See the discussion of last whenever executed() below for
a bug-free example.

last whenever executed() returns an index identifying the most recently-
executed whenever statement. Here, “executed” refers to execution of the
whenever statement itself (which “activates” thewhenever), and not its body.

As with current whenever(), this index has type integer and is suitable
for use in anactivate ordeactivate statement (7.8, page 79). The exam-
ple used above in describingcurrent whenever() can instead be written as:

whenever a->b do
{
do_b_stuff()
}

w := last_whenever_executed()

whenever a->c do
{
do_c_stuff()
deactivate w # turn off a->b
}

active agents() returns a record array listing the currently active agents. For
example, the following:

agents := active_agents()

for (i in 1:len(agents))
{
a := ref agents[i]
if (has_field(a, "locked"))

send a->clear_lock()
}

will send a clear lock event to each agent whose agent record has a locked
field (presumably due to a previously-received locked event).

Note that the system global variable (9.8, page 120) is an agent, so
active agents() ordinarily returns at least one agent.

118

whenever stmts(agent) returns a record identifying the event names and cor-
responding whenever statements associated with agent. The record has two
fields, event andstmt, which arestring and integer arrays, respectively.
For example,

a := create_agent()
whenever a->foo do print 1
whenever a->bar do print 2
b := whenever_stmts(a)

assigns to b a record whose event field corresponds to the string array "foo
bar" and whose stmt field holds as its first and second elements the indices of
the first and second whenever statements.

The following, for example, turns off every whenever statement associated
with some agent’s “warning” event:

agents := active_agents()

for (i in 1:len(agents))
{
a := ref agents[i]
w := whenever_stmts(a)
mask := w.event == "warning"
deactivate w.stmt[mask]
}

9.8 Global Variables

Glish makes available to every script the following global variables:

argv is a list of the arguments (interpreted as string’s) with which the Glish script
was invoked. Presently the glish interpreter is invoked with a filename to interpret
followed by a list of arguments. So, for example, if a script is invoked using:

glish script.g hello, how are you

then argv will be a string value with 4 elements, “hello,”, “how”, “are”,
and “you”.

environ is a record providing access to the Unix environment (i.e., what in C
programs is accessible via getenv()). Each environment variable corresponds to
a string-valued field in the record. For example,

119

environ.HOME

will return the value of the $HOME environment variable. Naturally this could
also be referred to using:

environ["HOME"]

Changing the environ global does not presently affect the environment in
which Glish clients are run.

system is an agent record that contains general information about the environment
(not in an “environment variable” sense) in which the Glish script runs. It also
generates events corresponding to changes in the environment.

The predefined fields of system are:

version gives the version level of the Glish interpreter. Presently this field’s
type is string, though it may change to double in the future to facilitate
inequality comparisons like “system.version >= 2.1”.

is script client is true (T) if the Glish script is being run as a script client
(7.11, page 85) and false (F) if not.

The events generated by system are:

connection lost indicates the loss of the network connection to a remote
host. The value of the event names the remote host. See 11.2, page 135
for details as to when this event is generated.

connection restored indicates the restoration of the network connection
to a remote host. The value of the event names the remote host. See 11.2,
page 135 for details as to when this event is generated.

daemon terminated indicates that a remote glishd daemon terminated (nor-
mally this indicates a problem or bug, unless you explicitly terminated the
daemon using tell glishd— 8.7, page 106). The value of the event
names the remote host. See 11.2, page 135 for details as to when this
event is generated.

For example, the following checkpoints some local data whenever the network
connection to the “frontend” host drops, and rolls back to the checkpoint
when connectivity resumes:

whenever system->connection_lost do
{
if ($value == "frontend")

do_local_checkpoint()
}

120

whenever system->connection_restored do
{
if ($value == "frontend")

roll_back_to_checkpoint()
}

script has one of two possible values. If the Glish script is being run as a client of
another script, then script is an agent record (7.2.2, page 68) that can be
used to receive events sent by the parent script, and send events to it. If the Glish
script is running independently, then script will be the boolean value F.

See 7.11, page 85 for details.

9.9 Function Summary by Category

Here we summarize all of the Glish functions and variables according to their categories.

9.9.1 Type Identification

Functions for finding out about the type of a value:

is_boolean(x)
is_integer(x)
is_float(x)
is_double(x)
is_string(x)
is_record(x)
is_function(x)
is_agent(x)
is_numeric(x)

each return T if x has the given type and F if it doesn’t.

type_name(x)
full_type_name(x)

return a string value identifying x’s type.

field_names(x)

returns a string array listing all of the fields in the record x.

has_field(x,field)

returns T if x is a record with a field named field in it, F otherwise.

121

9.9.2 Type Conversion

as_boolean(x)
as_integer(x)
as_float(x)
as_double(x)
as_string(x)

return the value x converted to the given type.

9.9.3 Array Manipulation

length(x)
len(x)

return the length of x.

sum(x)

returns the sum of all of the elements in x.

min(x)
max(x)

return the minimum and maximum element of x.

range(x)

returns a 2-element numeric value giving the minimum of x in the first element and the
maximum in the second.

sqrt(x)
exp(x)
log(x)
sin(x)
cos(x)
tan(x)
abs(x)

each return values corresponding to applying the given mathematical function element-
by-element to x.

all(x)

returns T if every element of x is T or non-zero.

any(x)

returns T if any element of x is T or non-zero. The functions

122

seq(x)
seq(x,y)
seq(x,y,z)

return the integers from 1 to x, or the length of x if x is not a scalar; return the numbers
(possibly double instead of integer) from x to y, incrementing each time by 1; or
return the numbers from x to y incrementing by z.

ind(x)

returns an array of integer indices ranging from 1 to the length of x.

rep(value,count)

returns an array consisting of count copies of the value, which must be a numeric
scalar.

9.9.4 String Functions

paste(...,sep=’ ’)
spaste(...)

treat their arguments as string’s and return their concatenation, using sep as a
separator (for paste()) or nothing (for spaste()).

split(s)
split(s,sep)

splits the string s at each run of whitespace (or any character in sep), returning a
multi-element string value.

9.9.5 Manipulating Variable Arguments

num_args(...)

returns the number of arguments with which it was invoked.

nth_arg(n, ...)

returns the n’th argument with which is was invoked, numbering the first argument
(i.e., n) as 0.

9.9.6 Reading and Writing Values

read_value(file)

reads a Glish value saved to the file file.

write_value(value,file)

writes the value value to the file file so that a subsequent call to read value()
will recover the value.

123

9.9.7 Manipulating Agents

create_agent()

returns a new agent value.

client(command, ..., host=F, input=F,
suspend=F, ping=F, async=F)

creates a new Glish client with the given options.

shell(command, ..., host=F, input=F,
suspend=F, ping=F, async=F)

either runs a shell command synchronously (async=F) and returns a string repre-
senting its output, or creates an asynchronous shell client async=T.

relay(src, src_name, ref dest, dest_name="*")

relays any src name events generated by src to dest, renaming them dest name.

relay_all(src, ref dest)

relays every event from src to dest, using the same name.

birelay_event(ref agent1, ref agent2, name)

relays every name event generated by either agent1 or agent2 to the other agent.

birelay_all(ref agent1, ref agent2)

relays every event generated by either agent1 or agent2 to the other agent.

current_whenever()

returns an index identifying the whenever statement whose body is currently (or was
last) executed in response to an event.

last_whenever_executed()

returns an index identifying the most-recently executed whenever statement.

whenever_stmts(agent)

returns a record identifying the event names and whenever statement indices associ-
ated with agent.

active_agents()

returns a record array listing the currently active agents.

124

9.9.8 Global Variables

argv

holds a string array giving the arguments with which the Glish script was run.

environ

is a record whose fields correspond to each environment variable set when the Glish
script was run.

system

is an agent record giving information about the execution environment of the Glish
system.

script

is either an agent record if a Glish script is running as a client of another Glish script,
or the boolean value F.

9.10 Alphabetic Summary of Functions

Here we give an index of each function and the page of its description:

abs(x), 9.3, page 111.

active agents(x), 9.7, page 118.

all(x), 9.3, page 111.

any(x), 9.3, page 111.

argv, 9.8, page 119.

as boolean(x), 9.2, page 109.

as double(x), 9.2, page 109.

as float(x), 9.2, page 109.

as integer(x), 9.2, page 109.

as string(x), 9.2, page 109.

birelay all(ref agent1, ref agent2), 9.7, page 117.

birelay event(ref agent1, ref agent2, name), 9.7, page 117.

client(command, ..., host=F, input=F, suspend=F, ping=F,
async=F), 7.10.1, page 81.

125

cos(x), 9.3, page 111.

create agent(), 9.7, page 116.

current whenever(), 9.7, page 117.

environ, 9.8, page 119.

exp(x), 9.3, page 111.

field names(x), 9.1, page 109.

full type name(x), 9.1, page 108.

has field(x,field), 9.1, page 109.

ind(x), 9.3, page 113.

is agent(x), 9.1, page 107.

is boolean(x), 9.1, page 107.

is double(x), 9.1, page 107.

is float(x), 9.1, page 107.

is function(x), 9.1, page 107.

is integer(x), 9.1, page 107.

is numeric(x), 9.1, page 107.

is record(x), 9.1, page 107.

is string(x), 9.1, page 107.

last whenever executed(x), 9.7, page 118.

len(x), 9.3, page 110.

length(x), 9.3, page 110.

log(x), 9.3, page 111.

max(x), 9.3, page 111.

min(x), 9.3, page 111.

nth arg(n, ...), 6.4.4, page 61.

num args(...), 6.4.4, page 61.

paste(...,sep=’ ’), 9.4, page 113.

126

range(x), 9.3, page 111.

read value(file), 9.6, page 116.

relay(src, src name, ref dest, dest name="*"), 9.7, page 116.

relay all(src, ref dest), 9.7, page 117.

rep(value,count), 9.3, page 113.

script, 9.8, page 121.

seq(x), 9.3, page 112.

seq(x,y), 9.3, page 112.

seq(x,y,z), 9.3, page 112.

shell(command, ..., host=F, input=F, suspend=F, ping=F,
async=F), 9.7, page 116.

sin(x), 9.3, page 111.

spaste(...), 9.4, page 114.

split(s), 9.4, page 114.

split(s,sep), 9.4, page 114.

sqrt(x), 9.3, page 111.

sum(x), 9.3, page 111.

system, 9.8, page 120.

tan(x), 9.3, page 111.

type name(x), 9.1, page 108.

whenever stmts(agent), 9.7, page 119.

write value(value,file), 9.6, page 115.

127

Chapter 10

Using Glish

This chapter covers particulars of using the Glish system, including the Glish interpreter
and its initialization files, and how to debug Glish programs.

10.1 The Glish Interpreter

All Glish scripts are executed by the Glish interpreter. This program is invoked as:

glish [-v] [bindings . . .] [file] [--] [args . . .]

-v is an optional verbose flag indicating that the interpreter should report on its
activity. If specified once then its reports the name and value of each event it receives
from a client. If specified twice then it both does this reporting, and reports each event
as it queues it for “notification” (i.e., triggering of whenever statements), and as it
removes the notification from the queue and actually performs it.

bindings is an optional list of environment variable bindings of the form:

var = value

file is the optional name of the source file to compile and execute. By convention
such files end in a “.g” suffix. If file is missing or if the first argument is “--”, then
Glish runs interactively (10.1.1, page 129).

args is an optional list of arguments to pass to the Glish script; if present, args may
optionally (for backward compatibility) be delimited from the preceding file using the
special argument “--”. “--” may also be used in lieu of an initial file to specify that
the interpreter should run interactively (10.1.1, page 129).

The Glish interpreter adds the giving bindings to the environment, compiles the
listed files, and then executes the result with the given args. For example,

glish host=cruncher myscript.g 10 12.5

128

will compile the script myscript.g and run it withargv equal to"10 12.5" (see 9.8,
page 119, for a discussion of the argv global); the record field environ.host will
equal "cruncher" (see 9.8, page 119, for a discussion of the environ global).

Prior to compiling the specified files, the interpreter looks for a user-customization
file. It first checks to see if the $GLISHRC environment variable is set, and if so uses
the file it names as the customization file. If the variable is not set then it looks for the
file “.glishrc”, first checking the current directory and then the home directory. If
it finds the file then it compiles it before proceeding with the files on the command line.

If you don’t specify any arguments, or if you give the “--” argument instead of a
source file name, then Glish is run interactively, discussed in the next section. 10.1.2,
page 129 then discusses execution of a Glish script more generally.

10.1.1 Using Glish Interactively

When run interactively, the Glish interpreter prompts with a dash (“- ”) for input. At
this prompt you may type any legal Glish statement (or expression, since expressions
are statements). This prompt changes to a plus sign (“+ ”) if you need to type some
more input to complete the statement you’ve begun. Glish then executes the statement
and prints the result, continuing until you type an end-of-file (usually control-D). For
example,

largo 130 % glish
Glish version 2.1.
- 1:3 * 2:4
[2 6 12]
- (end-of-file)
largo 131 %

shows using Glish interactively to evaluate the product of [1, 2, 3] times
[2, 3, 4] to get [2, 6, 12].

There are no restrictions on interactive use. In particular, you may create clients
and execute whenever statements, and you may execute scripts stored in files by
include’ing them (5.11, page 54).

10.1.2 How Glish Executes a Script

Glish executes a script starting with its first statement and proceeding through all the
statements in the script till it executes the last one. Often one of these statements will
be a function definition; executing these is a NO-OP (no operation).

For example, in the following script:

func increment(x)
{
return x + 1
}

129

n := 1
n := increment(n)
print n

the first statement is the definition of the increment function, and is effectively
skipped. The interpreter then proceeds to assign 1 to the global n, to call increment
with this value and assign the result to n, and then to print the result.

When a whenever is executed, Glish simply makes a note that in the future if
it sees the indicated events it should execute the body of the whenever. But an
important point is that whenever Glish is executing a statement block (such as when
it initially executes a script), it does not process any incoming events until after done
executing the entire block. For example,

d := client("demo")
send d->init([5, 3])
whenever d->init_done do

print "done initializing demo"
do_some_other_work()

when executed will create the client demo and send it aninit event with a value of[5,
3], then sets up a whenever for dealing with d’s init done event, and finally calls
the function do some other work. Only after this function returns will the Glish
interpreter begin reading any eventsdmay have generated (in particular, a init done
event). Any events generated while Glish is executing a block of statements are not
lost but merely queued for later processing.

This rule regarding when events are read is particularly important in an example
like the one above; the rule means that we do not have to worry about setting up a
whenever for dealing withd’sinit done event prior to sending aninit event tod,
even though perhaps d will generate this even immediately after receiving the init
event, which may occur before the interpreter executes the whenever (because d’s
client is a process separate from the interpreter process).

One important effect of this rule, however, is that it may have unintuitive conse-
quences when dealing with subsequences. In particular, the following program:

x := 1

subseq print_x()
{
whenever self->print do

print x
}

p := print_x()
send p->print()

130

x := 2
send p->print()

prints 2 followed by 2, not 1 followed by 2. This is because x is assigned to 2 before
the first Glish processes the first print event sent to print x.

Changing this sequence to:

x := 1

subseq print_x()
{
whenever self->print do

print $value
}

p := print_x()
send p->print(x)
x := 2
send p->print(x)

produces the expected output of 1 followed by 2.
The rule of no event processing until Glish is done executing the statement block

holds also when it is executing the body of a whenever statement. One exception to
this rule is that executing an await statement (7.7, page 76) suspends execution of
the block, so Glish begins processing events again until the await condition is met,
at which point Glish continues executing the block.

When the interpreter is processing events it first processes any pending events (those
that have already arrived, or were generated by event-send’s to subsequences during
the last statement block’s execution). If processing one of these events leads to the
generation of additional events (again, those sent to subsequences) then these events,
too, are processed, until all pending events have been exhausted.

At this point, the interpreter checks to see whether there are any clients running.
If not, it exits, since now there is no possibility of any further events being generated.
If, however, there are some clients running, then the interpreter waits for one or more
of them to generate an event. When this happens, the events are read and queued
in an undetermined order and the interpreter again processes these pending events as
described in the preceding paragraph.

Because the interpreter cannot tell which clients only generate events in response
to events they’ve received, it cannot detect a condition in which it should exit because
only these sorts of clients are running (and therefore no new events can be created).
Usually scripts using clients with this property can be modified to use exit statements
(5.7, page 51) when it is clear they are finished doing their work.

One final point regards the ordering of events, to which the following rules apply:

Events generated by the same agent are processed by the interpreter in the same
order as generated.

131

Events sent to the same agent are received by it in the same order as generated.

Events generated by different agents or sent to different agents may lose their
temporal ordering; i.e., the one sent first may arrive (from a clock’s point of view)
last.

If an event matches more than one whenever statement, then the order in which
the whenever statement bodies are executed is unspecified. It is possible that
in the future this will change and an order will be specified.

10.2 Debugging Glish Scripts and Clients

Glish provides some rudimentary tools to aid in debugging Glish scripts. These in-
clude reporting which events are generated (see the -v flag in 10.1, page 128, and the
discussion of the “event monitor” in 10.2.2, page 133, below), use of theprint state-
ment to provide debugging output1, and use of the client function’s suspend=T
option, discussed in the following section.

10.2.1 Debugging Clients

Debugging Glish clients is primarily done using a conventional debugger and the
suspend=T option to the client function (see 7.10.1, page 81). With this option,
when the client is executed and constructs its Client object (see 8.2, page 90), the
Client constructor will first announce itself, producing a message like:

tester @ myhost, pid 18915: suspending ...

and then suspend itself by entering the following loop:

suspend = true;
while (suspend)

sleep(1);

A debugger such as gdb or dbx can then be used to attach to this running process.2 Once
attached, set the variable suspend to 0 (or glish false)3, set any breakpoints
needed for debugging, and continue the process.

In addition to the suspend=T argument to client, every time Glish creates a
new client the interpreter inspects the environment variable $suspend to see whether
that client’s name occurs in$suspend’s (blank-separated) list of names. For example,

1Since Glish is interpreted, you will find that adding debugging print statements to a Glish script and
restarting often gives a very quick means of debugging.

2For gdb, use the attach command; for dbx on a Sun, give the pid value on the command line following
the name of the executable.

3To do this you may need to change the debugging scope after attaching to the process; in both gdb and
dbx this is done using the up command to move up the call stack until arriving in the Client::Client
constructor (which may have a more garbled name).

132

glish suspend="my_demo ./bin/camac" my_script.g

will execute the script my script.g and whenever a client with the name my demo
or ./bin/camac is executed, the client will act as though suspend=T had been
specified.

Note that the name here refers to the actual name of the executable and not the
name of the variable to which the result of theclient() call is assigned. For example,
the above suspend list will not suspend a client created by the following:

my_demo := client("./my_demo")

10.2.2 The Event Monitor

If when the Glish interpreter starts running the $glish monitor environment vari-
able is set, then the interpreter takes the value of the monitor as designating the name
of a client to serve as an “event monitor”.

The event monitor is sent an event every time either the interpreter receives an event
from a client, or sends an event to a client or a subsequence. The former results in the
monitor receiving an event in event, the latter in an event out event (i.e., “in”
and “out” are relative to the interpreter’s perspective). The event’s value is a record
with three fields: id, which identifies the agent associated with the event; name, the
name of the event; and value, the value of the event.

133

Chapter 11

Internals

The Glish interpreter is written in about 10,000 lines of C++. It presently runs on
SunOS, Ultrix, and HP/UX platforms. In this chapter we discuss those internals of the
Glish system relevant to understanding the system’s strengths and weaknesses, and for
assessing the difficulty of porting the system to another platform.

11.1 Encoding Event Values

Glish events are encoded in two parts. First, a header (defined in the file glish event.h)
is sent, containing a code identifying the type of the event (currently either “string”,
“SDS”, or “opaque SDS”), the length of the encoded event, and then the name of the
event, which is limited to 32 characters.

“String” events correspond to events whose value is a single string scalar. These
are not encoded further, but simply follow the event header as raw bytes. “String” events
provide a rudimentary way for communicating with clients running on hosts for which
it proves difficult to implement the SDS layer (see next paragraph).

“SDS” events correspond to every other type of event. These are encoded using
a software layer called SDS, which forms an independent (i.e., not Glish-specific)
part of the ISTK toolkit1. SDS handles padding, byte-swapping, and floating-point
representation differences, so it can be used to efficiently transmit binary data between
heterogeneous architectures (e.g., VAX and SPARC). SDS events presently have some
restrictions regarding the types of Glish values they can encode; these are the same as
discussed for the write value() function (see 9.6, page 115), since it uses SDS
as its file representation.

An “opaque SDS” event results in an opaque value (3.6, page 33); this mech-
anism provides a way for Glish clients to directly communicate SDS datasets to one
another even when the Glish interpreter does not know how to convert the dataset into
a corresponding Glish value.

1For further details regarding ISTK, contact Chris Saltmarsh at salty@largo.lbl.gov.

134

11.2 Creating and Controlling Remote Clients

To create clients on a remote host, the interpreter uses a daemon, called glishd, running
on that host. Each host runs at most one copy of glishd, which attachs to TCP port
9991. If the interpreter cannot contact glishd on a remote host then it first remotely
executes the daemon on the given host. Once the interpreter contacts the daemon,
glishd executes and controls processes on behalf of the interpreter. An important point,
though, is that while glishd will create clients, all event communication between those
clients and the interpreter is still done directly, via a socket connection, and not using
glishd as an intermediary.

The interpreter creates glishd using the rsh command (called remsh on some sys-
tems). Thus the user that invoked the interpreter must have an account on the remote
host, and must have transparent access to that account enabled via the user’s .rhosts
file. Furthermore, glishd runs with that user’s permissions. Since the daemon does
not exit with the Glish interpreter, it’s possible you will find yourself using a daemon
started up by another user. If that user doesn’t have the necessary permissions for your
programs you will need to kill and restart the daemon. The daemon can be killed using
the tell glishd program (8.7, page 106), and then restarted just by running the
Glish interpreter.

Note that the daemon can support more than one Glish interpreter simultaneously;
but presently has no provision for doing so with different user-ID’s.

In addition to creating and controlling clients, glishd provides a mechanism for de-
tecting network outages. Every five seconds the Glish interpreter sends a “probe” event
to glishd. If it receives no response within the next five seconds, the interpreter deems
network connectivity lost, generates a warning message to this effect, and creates a
“connection lost” event for the system agent (9.8, page 120). If glishd sub-
sequently responds to another probe then the interpreter deems connectivity regained,
reports this fact, and generates a “connection restored” event for system.
If glishd exits for any reason (e.g., it crashes, or is killed using tell glishd—

8.7, page 106), then the interpreter generates a “daemon terminated” event for
system.

The interpreter tells glishd which directory it should run in when controlling client’s
on the interpreter’s behalf; this will be the same directory that the interpreter is running
in, with the assumption that the remote host shares enough of a common file system
with the interpreter’s host that the directory path will be valid. If the path is invalid
then glishd generates an error message and continues.

glishd is itself a Glish client and responds to the following events:

setwd specifies the working directory glishd should use when executing programs
on the interpreter’s behalf.

client creates a new client. The event has a single string value, the first part
of which gives an internal identifier for later use in manipulating the client, the
remainder a full argument list (i.e., including executable name) for invoking the
client. glishd searches for the executable using whatever $PATH environment

135

variable it inherited via being invoked by rsh. If it cannot invoke the client it
presently just generates an error message to stderr and continues. It probably
instead should generate an event.

kill terminates a client by sending it a SIGTERM signal. The string value of the
kill event identifies the client to kill.

ping pings a client by sending it a SIGIO signal. The string value of the ping
event identifies the client to kill. ping supports the ping= argument of the
client function (see 7.10.1, page 81).

shell executes a synchronous shell command and returns the resulting output. The
value of the shell event is a record containing at least a command field giving
the command to execute, and possibly a input field giving the input to be used
(see the input= argument of the shell function, 9.7, page 116).

If glishd is unable to run the shell command it generates a fail event with a
value of F. If successful then it first generates a okay event with a value of T,
then a shell out event for each line of output generated by the shell command
(better would be to buffer all of the output lines together into a single event), and
finally a status event containing the exit status of the shell command. All of
these events are handled directly by the Glish interpreter; they are not “visible”
in a Glish script.

probe requests that glishd acknowledge that it is still receiving messages from the
interpreter (i.e., that network connectivity holds). Ordinarily glishd immediately
responds with a probe-reply event.

terminate-daemon tells glishd to exit.

11.3 Transmitting Events

Glish uses three different forms of interprocess communication (IPC) for transmitting
events. When the Glish interpreter creates a client it passes it special arguments telling
it how to make its connection with the interpreter.

The most general form of IPC used by Glish is a socket connection. In this case,
the client’s arguments tell it to which host and port number to connect2. The client then
opens a socket to that host and port, sends a message identifying itself, and uses the
socket for its subsequence communication with the interpreter.

As an optimization, however, if a client is running on the same host as the inter-
preter then the interpreter will use pipes to communicate with the client instead. We
found by experience that using pipes locally can result in a substantial improvement
in performance (a factor of 2 on SunOS). In this case, prior to creating the client the

2The interpreter picks the first free port available on its host, starting with port 2000.

136

interpreter creates two pipes which the client will inherit when the interpreter exec()’s
it.

The link statement requires the creation of a separate connection between two
clients. The interpreter sends the sending end of the link a special *link-sink*
event. The Client Library of the sender intercepts this event, creates either a Unix- or
Internet-domain socket endpoint (the former if the sender and receiving reside on the
same host), creates a *rendezvous* event describing how to connect to endpoint
(i.e., which host and port), and returns that event to the interpreter. When the interpreter
receives a *rendezvous* event it sends a corresponding *rendezvous-resp*
event to the link receiver, and reflects back a *rendezvous-orig* event to the
sender (this second event isn’t strictly necessary, but used to be to avoid deadlock). The
sender and receiver then rendezvous using the given socket, establishing the separate
connection between them.

Theunlink statement suspends the separate connection between two Glish clients.
It is implemented by sending a *unlink-sink* event to the sender-side of the link.
The sender then marks the link as inactive; it does not destroy the link, however, since
it might later be resurrected via another link statement.

11.4 Suppressing Stand-Alone Client Behavior

As described in 8.5.1, page 94, if a Glish client is run without being given the special
arguments telling it how to connect to the Glish interpreter, then it runs in a “stand-
alone” mode in which any text appearing on stdin is interpreted as an incoming event,
and any events generated are written in text form on stdout.

This behavior can be annoying when the client uses stdin or stdout for a different
purpose, or generates large events that you don’t want to look at in text form, or is
to be placed in the background (which can result in the client being “stopped” by the
terminal driver because its stdin disappears).

If you run a Glish client run stand-alone and you give it the -noglish option as
the first argument on the command line, then the stdin/stdout behavior is suppressed,
and the client will not see any inbound events nor create any output when it generates
events.

A complementary -glish flag confirms the default behavior.

11.5 The “Shell” Client

Glish creates and manages asynchronous shell clients (i.e., created using the shell
function’s async=T option; see 9.7, page 116) using a special client called
shell client. shell client is invoked with an optional -ping argument (to
implement ping=T) and then a list of arguments corresponding to the shell command.

Prior to executing the shell command,shell client attempts to create a “pseudo
tty” master/slave pair. If successful then it uses the pseudo-tty for the shell command’s

137

stdin and stdout; this causes the command to believe it is communicating directly
with a user, so it will generate prompts, perhaps use terminal escape sequences where
appropriate, and, most importantly, line-buffer its output.

Ifshell client fails to create a pseudo-tty then it uses a pair of pipes to commu-
nicate with the command. In this case, the commands’ output will be block-buffered,
meaning that it may not appear at all until the command has either generated a lot of
output, or terminates. This behavior makes the shell command much more difficult to
use as a Glish client, since its output appears unpredictably.

As discussed in 7.10.2, page 83, each line of output generated by the shell com-
mand results in a string-valued stdout event. shell client itself responds to
the following events:

stdin instructs shell client to make a string representation of the stdin
event’s value appear on the command’s stdin input stream.

EOF causes shell client to close the command’s stdin.

terminate results in shell client killing the shell command by sending it a
SIGTERM signal.

11.6 Initializing the Interpreter

A number of the predefined functions discussed in Chapter 9, page 107, are actually
written in the Glish language rather than built into the Glish interpreter. These functions
are loaded from a file called glish.init, a version of which resides in the Glish source di-
rectory. When the Glish interpreter is compiled, the #define constant “GLISH DIR”
defines the directory where the interpreter looks for glish.init. By default this directory
is lib/$ARCH, the same place as where the Glish and SDS libraries reside (see 11.7,
page 138, below).

Sometimes it is inconvenient to have this directory path hardwired into the Glish
interpreter (particularly when moving just the interpreter binary to another system).
Because of this, the interpreter first checks for the existence of the environment variable
$glish init; if it exists, then it uses the value of the variable as the complete path
(not just the directory) to the initialization file.

11.7 Installing and Porting Glish

Directions for installing Glish can be found in the file GLISH RELEASE NOTES at the
top level of the Glish distribution (i.e., at the some level as the glish/ source directory).
The installation proceeds in three steps. First the SDS library is built and installed, then
the Glish interpreter and client library, and finally the clients that come with the Glish
system (8.7, page 105).

138

The basic requirements for installing and/or porting Glish are a C++ compiler and
access to sockets as provided by the socket(), bind(), accept(), and connect() system
calls. Those system dependencies of which we are aware have been isolated in the
(C, not C++) source file system.c; its companion header file, system.h, provides brief
documentation as to what each function is expected to do.

139

Chapter 12

Changes Between Glish
Releases

Here we document the changes between the various Glish releases.

12.1 Release 2.4

Release 2.4 comprised the following changes to Release 2.3:

Glish now has a mechanism for synchronous request/reply events:

result := request a->b(1:10)

sends a b event to a with value 1:10 and then waits for a to reply. The value of
a’s reply is stored inresult. Note thatrequest is a new keyword, which may
cause incompatibilities (syntax errors) with existing scripts that have variables
with that name.

See 7.6, page 75 for details.

The “event-send” statement now takes an optional send keyword. That is, you
can write

foo->bar(args)

instead as

send foo->bar(args)

The belief is that using send will lead to more readable scripts, and the plan is
to gradually phase in send as a mandatory keyword.

140

The Client library now includes a member function:

int Client::HasEventSource()

which returns true if a Glish client has any input source (either a connection to
the Glish interpreter, or by reading from stdin), and false if it has no input source
(due to using -noglish) (Chapter 8, page 89).

The [] expression now returns a truly empty array (3.1.4, page 21).

12.2 Release 2.3

Release 2.3 comprised the following changes to Release 2.2:

The new activate and deactivate statements allow control of executing
whenever bodies (7.8, page 79).

The whenever stmts(agent), active agents(),
current whenever(), andlast whenever executed() built-in func-
tions provide information regarding which agents generate what events, to be
used in conjunction with activate and deactivate (9.7, page 118).

Each host now runs at most one copy of the Glish daemon glishd. The Glish
interpreter periodically probes the daemon and generates events if connectivity
is lost or regained, or if the daemon terminates (11.2, page 135).

A new agent record, “system”, manages information about the general en-
vironment in which a script runs. It also generates events indicating that the
environment has changed. See 9.8, page 120.

The “version” global has been removed, as it’s now subsumed by
“system.version”.

An “include” directive supports including the contents of one Glish source
file inside another (5.11, page 54).

When running Glish interactively, you can now create clients and set up
“whenever” statements to respond to their events.

You can use “==” and “!=” operators to comparerecord,function, agent,
and opaque values (4.4, page 40).

The Glish interpreter now allows only one filename on the command line (since
the “include” directive can be used to access multiple sources). Because of
this change, you no longer need the special ”–” argument to delimit the end of
source filenames and the beginning of script arguments. See 10.1, page 128.

A new program (not a Glish client), tell glishd, is available for controlling
the Glish daemon on a given host (8.7, page 106).

141

12.3 Release 2.2

Release 2.2 comprised the following changes to Release 2.1 (the original Glish release):

Assignment (the “:=” operator) changed from being a statement to being an
expression, allowing “cascaded” assignments (4.6, page 41).

Glish now supports “compound” assignment such as x +:= 1 (4.6, page 41).

You can include an optional initialization assignment in local statements
(6.5.1, page 62).

You can use a Glish script as a client in another Glish script (7.11, page 85).

The opaque type is available for client data uninterpreted by Glish (3.6,
page 33).

The division operator (“/”) now always converts its operands to double and
yields a double value.

The Client class now includes a virtual member function FD Change you can
use to be notified when the Client’s input sources changes (8.5.2, page 95).

142

Chapter 13

Bugs

We list here the known Glish bugs:

1. Use of a ref expression in an array constructor, such as [ref 5], results in an
internal interpreter error.

2. Indexing an array with a multi-element string value, such as a["b c"],
results in an internal interpreter error.

3. There is a limit on how much output can be generated by a synchronous shell
command.

4. A local statement not inside a function results in an internal interpreter error.

5. A double use of the val operator, such as val val a := 4, results in an
internal interpreter error.

6. Invoking a function with too many arguments does not produce an error message,
but does return a spurious result.

7. Invoking max, min, or range on an empty array indexed by an empty array,
such as min([]), returns spurious results.

8. The interpreter sometimes gets confused as to whether what has been typed in so
far ends a statement or should be continued. This is particularly prevalent with
entering “if” statements.

9. Reassigning a variable with a agent value should terminate the agent if no other
variables refer to it. Reassigning a variable with a client value presently leads to
an internal error.

10. When the Glish interpreter dies, sometimes some of the clients it created continue
running.

143

11. Linking to the Client Library pulls in almost all of the Glish interpreter presently,
resulting in large executables.

12. Event values sent to or from clients cannot contain function’s or agent’s.
reference values are first dereferenced.

13. The current precedence is such that -5ˆ2 yields 25, while probably -25 is more
intuitive.

14. Error messages don’t always well identify the object they relate to, or the cor-
responding file. Also, those that write an object’s value write then entire value,
which can prove very annoying for large objects.

15. A mechanism is needed to support passing embedded blanks in arguments to
shell commands.

16. Glish does not do a very good job converting string’s to numeric values. In
particular, it should mark conversion of a value like “"1.234foo"” as erro-
neous, while allowing automatic conversion of a value like “"1.234"” (i.e., no
explicit use of as double() required).

17. Printing of values by the Glish interpreter is sometimes messy to the point of
being unreadable (particularly printing function values).

18. The frame in which default variables are evaluated is not well-defined.

19. There is no mechanism for making the variables local to a function accessible by
a function it declares internally.

20. If the Glish interpreter tries to contact a remote host to run glishd and is unsuc-
cessful, it does not gracefully recover.

21. This manual needs a companion manual documenting the Glish internals.

144

Chapter 14

Future Directions

There are many areas in which the Glish language or system may evolve in the future.
We list here the likely changes (or, in some cases, changes at least being considered),
some of which will not be backward-compatible:

1. Already we have found the Glish scoping rules to be somewhat unsatisfactory.
They may well be replaced with variables being “local” by default and requiring
an explicitglobal statement to make a variable global. Perhaps also the “local”
statement will be local to a statement block (statements enclosed in braces) rather
than the current function.

2. A way for providing “type signatures”, both for Glish functions and whenever
statements, and for programs using the Client Library. The signature would
provide run-time type-checking, and also automatic partition of a value into its
components. For example,

whenever a->b(numeric c, string d) do
...

would respond to any b event generated by agent a by first checking whether its
value had a numeric “c” field and a string “d” field, and if so then assigning
those fields to local variables “c” and “d”.

Similarly, in a Glish client, something along the lines of:

client->Register("b", "numeric c, string d",
my_func);

which would register the client as responding to the same sort of b event by
calling my func with arguments “c” and “d”.

3. Perhaps a “module” facility to support precompiled script libraries.

145

4. Support for timeouts and exception handling when using request/reply events
(7.6, page 75).

5. Support for persistent Glish clients, perhaps created using a function server
instead of client, which keep running and maintain their state even when the
Glish script that created them exits. Such clients have many applications for
control systems.

6. print needs to be more sophisticated, to support printf()-style formatting.

7. Optional “do-once” initialization clauses for statement blocks, with the added
implication that any variable mentioned in such a clause becomes persistent to
the statement block (analogous to a “static” function in C).

8. Limiting the scope of variables declared using local statements to end when
execution leaves the enclosing statement block.

9. Perhaps an “in” operator for determining whether a field is in a record, rather
than has field() (9.1, page 109), which is somewhat inefficient and clumsy
to use.

10. The “ref” and “const” reference mechanisms are somewhat unsatisfying (i.e.,
buggy to use). Glish might greatly benefit from using a more general “copy-
on-write” scheme internally so that large objects are automatically shared until
modified. Experience to date indicates that often large objects are assigned but
not subsequently modified (usually in order to create an event value).

11. Additional C-style operators, such as “? . . . :” and perhaps “++”.

12. A mechanism for “adding” one record to another, including all of its fields.

13. Making the implicit semi-colon insertion algorithm (5.10, page 53) never insert
a semi-colon if there is a pending close-parenthesis (i.e., more open-parentheses
have been seen than close-parentheses).

14. An “Incomplete()” member function for Client, similar to
Unrecognized(), for reporting events that arrive without all the necessary
values (record fields). The various Value:Field() member functions would
record the last field they were asked to find but couldn’t, so Incomplete()
could generate an event identifying which field was missing (or had the wrong
type).

15. The ability to compare records element-by-element using the “==” operator.

16. An ascii=T optional argument to read value() to make the resulting file
human-readable. Of course, write value() should be able to read the result.

146

17. Similarly, making the input= argument to shell() and client() more
imaginative about how it turns event values into text. For example, 1:10 should
generated 10 lines, one integer per line, instead of a single line of the numbers
surrounded by []’s.

18. Sprucing up the limited stdin interface provided to stand-alone clients (8.5.1,
page 94).

19. Additional mathematical functions, such as sgn(), rand(), and perhaps con-
stants such as e and pi.

20. Additional functions for manipulating strings: extracting substrings, searching
for patterns, substitution. Perhaps the “+” operator should perform spaste()
(9.4, page 114) when invoked with string operands.

21. Perhaps allow assignment between multiple record fields and a single array with
the same number of values:

r["x y z"] := [0, 0, 10]

would assign r.x to 0, r.y to 0, and r.z to 10.

22. Perhaps make await an expression (returning $value) instead of a statement.

23. Perhaps redefineref so that it “distributes” across records. For example, “a["b
c"] := ref d["x y"]” would make a.b a reference to d.x and a.c a
reference to d.y.

24. Perhaps a unary “*” operator for extracting the length of an objects, since this is
such a common operation.

25. A more flexible record-constructor that expands any records inside it, so that
[a=1, [b=2, c=3]] becomes equivalent to [a=1, b=2, c=3], just as
[1, [3, 5]] is presently equivalent to [1, 3, 5].

26. A “missing(x)” function that returns T if the given parameter x in a function
was not supplied during a call (i.e., took its default value).

27. A “trace” feature that reports when large internal copies are done, so inefficiencies
in Glish scripts can be tracked down.

28. Functions for “walking” records or arrays and applying other functions to each
element or field.

29. num args() andnth arg() should default to apply to “...” if no arguments
are given.

30. Glish-language functions for reporting error messages, possibly producing trace-
backs, and then exiting.

147

31. Exception-handling to work with these functions.

32. A mechanism for efficiently deleting a field from a record.

33. Perhaps a “compound-assignment” statement for extracting pieces of an array or
a record:

a, b, c := d

would assign the first field (or element) of d to a, the second field to b, and the
remainder to c.

34. A mechanism for recording events and later playing them back or displaying
them for analysis.

35. Signal-handling in the interpreter, such as trapping control-C.

36. More flexible use of uninitialized variables, rather than just generating a warning
and assigning them to F. Perhaps simply do away with the warning message.

37. A Client::EventPending() member function for determining whether
a Client object has an event pending.

38. Event-designators for “an x event generated by any agent” (“*->foo”) or “any
event whatsoever” (“*->*”).

39. Presently there is a division between functions that are actually built into the
Glish interpreter and those that are defined in the glish.init file (11.6,
page 138). The former do not support named arguments or variable argument
lists. This restriction should be removed, as it will make it much easier to add
more built-in functions.

40. Perhaps an “eval()” function provided by the Client Library that can be used
to interpret and execute Glish statements in a Glish client.

41. Perhaps the use of a special “error” value instead of Fwhen the interpreter detects
an error.

42. for loops should work for iterating over record’s as well as arrays.

43. Probably for loop indices should be implicitly local unless explicitly made
global.

44. Perhaps the C-style for loop will be supported as well as the Glish style of for
(var in value).

45. A mechanism for dealing with out-of-band events, and for flushing event queues
under exceptional conditions.

148

46. The “...” ellipsis should “remember” its name=value bindings so they are
preserved if the ellipsis is passed as an argument to another function.

47. A mechanism for allowing “unexpected” clients to “join” a Glish script. The
present mechanism (using async=T in a call to client(); see 7.10.1,
page 81) requires that the script anticipate that a client may wish to join.

48. Probably the full set of ANSI escape sequences will be supported in string literals.

49. Executing the same link statement more than once should not cause the link
source to send multiple copies of the given event, but instead do nothing if the
link is already established.

50. A mechanism for terminating a subsequence.

51. More flexible type conversion in Value::Polymorph().

52. Perhaps split() should return empty strings if it finds multiple, adjacent split
characters.

53. Changing the environ global should probably change the environment.

54. Errors in executing shell commands and asynchronous shell clients should prob-
ably result in events being generated.

55. The “short-circuit” && and || operators should complain if one of their operands
is not a scalar, instead of just using the first element of the operand. The same
holds for values tested in conditionals.

149

Chapter 15

Acknowledgments

Glish was developed by Vern Paxson, of the Lawrence Berkeley Laboratory, in con-
sultation with Chris Saltmarsh, of the Superconducting Super Collider Laboratory.
The United States Department of Energy supported the work under Contract No. DE-
AC03-76SF00098 and Contract No. DE-AC02-89ER40486. The original concept of a
language for specifying event connections began with Chris’ work with colleagues at
the CERN Laboratory for Nuclear Research in Europe. The Glish system then evolved
(often radically) over a series of incarnations into its present form.

Glish benefitted a great deal from input from its users. I’d particularly like to thank
Mike Allen, Matt Fryer, Dave Lambert, and Lindsay Schachinger. Their contributions
are much appreciated.

The Glish software and documentation is covered by the following copyright:

Copyright c 1993 The Regents of the University of California.
All rights reserved.
This code is derived from software contributed to Berkeley by

Vern Paxson.
The United States Government has rights in this work pursuant to con-

tract no. DE-AC03-76SF00098 between the United States Department
of Energy and the University of California, and contract no. DE-AC02-
89ER40486 between the United States Department of Energy and the Uni-
versities Research Association, Inc.

Redistribution and use in source and binary forms are permitted pro-
vided that: (1) source distributions retain this entire copyright notice and
comment, and (2) distributions including binaries display the following
acknowledgement: “This product includes software developed by the Uni-
versity of California, Berkeley and its contributors” in the documentation
or other materials provided with the distribution and in all advertising ma-
terials mentioning features or use of this software. Neither the name of
the University nor the names of its contributors may be used to endorse or

150

promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE.

This basically says “do whatever you please with this software except remove this
notice or take advantage of the University’s (or the Glish authors’) name”.

151

Appendix A

Glish Syntax and Grammar

The Glish syntax is free-form.
Comments begin with # and extend to the end of the line. Statements are formally

terminated with semi-colons but in general Glish is able to infer the end of a statement
and supply an implicit terminator at the end of a line. Identifiers are case-sensitive;
record field names and event names have separate name spaces and may include key-
words.

A Glish source file may include another Glish source file by using the include
directive; see 5.11, page 54. Such directives are handled lexically and do not appear
in the Glish grammar.

In the following grammar, []’s surround optional elements and {}’s surround
elements that may occur zero or more times. Terminals are surrounded with quotes or
appear in uppercase.

program: { stmt }
stmt: "{" { stmt } "}"

| WHENEVER ev-list DO stmt ";"
| LINK ev-list TO ev-list ";"
| UNLINK ev-list TO ev-list ";"
| AWAIT ev-list ";"
| AWAIT ONLY ev-list [EXCEPT ev-list] ";"
| ACTIVATE [expr] ";"
| DEACTIVATE [expr] ";"
| SEND event "(" [param-list] ")" ";"
| IF "(" expr ")" stmt [ELSE stmt]
| FOR "(" ID IN expr ")" stmt
| WHILE "(" expr ")" stmt
| NEXT ";"
| BREAK ";"
| RETURN [expr] ";"

152

| EXIT [expr] ";"
| PRINT [param-list] ";"
| LOCAL id-list ";"
| expr ";"
| ";"

expr: "(" expr ")"
| expr assignop expr
| expr logop expr
| expr relop expr
| expr arithop expr
| expr ":" expr
| expr "[" expr "]"
| expr "(" [param-list] ")"
| expr "." FIELD-ID
| unaryop expr
| "[" "=" "]"
| "[" [param-list] "]"
| function
| REQUEST event "(" [param-list] ")"
| LASTEVENT
| ID
| CONSTANT

assignop: ":="
| "+:=" | "-:=" | "*:=" | "/:=" | "%:="
| "ˆ:=" | "&:=" | "|:=" | "&&:=" | "||:="

logop: "|" | "||" | "&" | "&&"
relop: "==" | "!=" | "<" | "<=" | ">" | ">="
arithop: "+" | "-" | "*" | "/" | "%" | "ˆ"
unaryop: "-" | "+" | "!" | ref-type

function: func-head "(" [formal-list] ")" func-body

func-head: FUNCTION [ID]
| SUBSEQUENCE [ID]

func-body: "{" { stmt } "}"
| expr

formal: [ref-type] ID ["=" expr]
| "..."

153

ref-type: VAL | REF | CONST

param: expr
| ID "=" expr
| "..."

event: expr "->" EVENT-ID
| expr "->" "[" expr "]"
| expr "->" "*"

ev-list: event ["," ev-list]
id-list: ID ["," id-list]
param-list: param ["," param-list]
formal-list: formal ["," formal-list]

154

Index

’ single-quote, see constants, string, single-quoted
" double-quote, see constants, string, double-quoted

comment character, 152

& “and” operator, 25
&& short-circuit “and”, 40
| “or” operator, 25
|| short-circuit “or”, 40
! “not” operator, 25, 39

operand conversion, 25

terminate-daemon event sent to glishd, 136
+ Glish interpreter continuation prompt, 129
+ addition operator, 24
+ unary operator, 24, 39
- Glish interpreter prompt, 129
- subtraction operator, 24
- unary operator, 24, 39
* every-event designator, 73
* multiplication operator, 24
* same-name in link statement, 80
* unary length operator (proposed), 147
/ division operator, 24
% modulus operator, 24
ˆ exponentiation operator, 24

-> event designator, 73

. record field access operator, 28, 44

... extra arguments, see ellipsis

: sequence operator, 21, 44
and array indexing, 34

:= assignment operator, 41

= default parameter value, 58
= record field name, 28

== equality operator, 26, 40
!= inequality operator, 26, 40
< less-than operator, 26
<= less-or-equal operator, 26
> greater-than operator, 26
>= greater-or-equal operator, 26

. . . grouping statements, 47

[] array creation operator, 20
[] indexing operator, 22, 23, 44
[] record creation operator, 28
[] record creation operator (proposed), 147
[] record field access operator, 29–30
[]()member function, see Value class, member functions

\f formfeed escape, 27
\n newline escape, 27
\r carriage-return escape, 27
\t tab escape, 27

-- argument to Glish interpreter, 128

abs() function, 111
activate statement, 53, 79
active agents() function, 118
AddInputMask() member function, see Client class,

member functions
$agent, 45, 75
agent type, see types, agent
agent values

assignment of forbidden, 42
passing to functions, 59
returned by subsequences, 87

agents, 67–68
arrays of, 30
associated whenever statements, 119
clients, see clients
comparisons, 40
creating, 67
functions to manipulate, 116–119
list of active, 118
records, 68

modifying, 68, 72
restrictions, 68

subsequences, see subsequences
values, see agent values

all() function, 111
alphabetic summary of functions, 125–127
any() function, 111
$ARCH, used to identify ISTK architecture, 92
argc, passed to Client constructor, 90, 94
arguments, see functions, parameters

to Glish scripts, 128
argv global variable, 119
argv, passed to Client constructor, 90, 94

155

array storage type enumerated type, 97
arrays, 20–23

assigning beyond end, 23
assigning multiple elements, 37
creating, 20–21
creating Value objects from, 97
empty, 21
extending, 23
first element is [1], 22, 99
holes, 23
indexing, 22, 44

masks, 36–37
multi-element, 33–38
with boolean array, 36–37
with integer array, 33–37
with stride, 35

indices for particular elements, 36
manipulation functions, 110–113
modifying, 23
multi-dimensional, 30
operations

element-by-element, 22, 24, 25
not element-by-element, 40
with scalars, 22

type conversion when assigning elements, 23, 37
with different types of elements, 30

as boolean() function, 109
as double() function, 109
as float() function, 109
as integer() function, 109
as string() function, 109
ascii= option for reading and writing values (proposed),

146
AssignElements() member function, see Value class,

member functions
assignment, 41–43

cascading, 43
changing a variable’s type, 19
compound, 43
compound (proposed), 148
length compatibility, 41
lvalue, 41
of agent values forbidden, 42
of functions, 44
of opaque values, 33
restrictions on, 42–43
syntax, 41, 45
to multiple elements, 37
to multiple record fields, 38, 41
to references, 31, 41–42
type compatibility, 37
type conversions, 37

async= client argument, 83
async= shell argument, 84
asynchronous clients, see clients, asynchronous

asynchronous shell clients, 84–85, 137–138
atof(), 110
atoi(), 110
await statement, 52, 76, 79

as an expression (proposed), 147
nested, 78
only, 77
only . . . except, 77
suspending execution, 131

birelay all() function, 117
birelay event() function, 117
bool enumerated type, 97
boolean, see types, boolean

constants, see constants, boolean
BoolPtr() member function, see Value class, member

functions
BoolVal() member function, see Value class, member

functions
Bourne shell, 44, 116
break statement, 50
bugs

known, 143–144
misfeatures, see possible misfeatures

C++ bool type, see bool type
C++ classes, see classes
C++ wrappers, see wrappers
changes

between Glish releases, 140–142
classes

Client, see Client class
GlishEvent, see GlishEvent class
Value, see Value class

Client class, 89
access to file descriptors, 91
constructor, 90, 94
destructor, 94
details, 92–96
indication of no more events, 94
member functions
AddInputMask(), 95
EventPending(), 148
FD Change(), 96
HasClientInput(), 96
HasEventSource(), 95
HasSequencerConnection(), 95
Incomplete(), 146
NextEvent(), 91, 92, 94, 96
PostEvent(), 91, 94, 95
PostOpaqueSDS Event(), 95
Reply(), 91, 95
Unrecognized(), 91, 94

memory management, see memory management
multiplexing input sources, 95–96
overview, 90–91

156

client event sent to glishd, 135
client() function, 67, 81, 116

optional arguments, 82
client library, 8, 89–106
clients

asynchronous, 83
available, 105–106
echo client, 105
tell glishd, 106
test client, 105
timer, 105

compiling, 92
controlling internals, 135–136
creating, 81–85

internals, 135–136
with shell(), 84–85

creating opaque values, 95
debugging, 94
error detection, 87
establishment, 86
Glish scripts as, see script clients
indicating failure, 94
input available, 96
interpreting executable name, 81
joining a running script (proposed), 149
linking, 92

with InterViews, 97
persistent (proposed), 146
pinging, 83
running on remote hosts, 82
source code, 105
special arguments, 90
stand-alone, 94, 95

suppressing, 137
standard input, 82
suspending, 82

attaching to, 132
termination

forced, 87
successful, 87
unsuccessful, 87

unrecognized events, see events, unrecognized
CoerceToBoolArray() member function, see Value

class, member functions
CoerceToDoubleArray() member function, see

Value class, member functions
CoerceToFloatArray() member function, see Value

class, member functions
CoerceToIntArray() member function, see Value

class, member functions
CoerceToStringArray() member function, see

Value class, member functions
coercion, see types, conversion
comments, 152
compiling clients, see clients, compiling

compound assignment, see assignment, compound
conditionals, 48–49

evaluation of condition, 48
connection lost event, 120
connection restored event, 120
const, see functions, parameters, const

C++ constant pointers, 100, 104
const operator, 31
constant references, see references, constant
constants

boolean, 23
floating-point, 23
integer, 23
numeric, 23
record, 28
string, 27

double-quoted, 27
empty vs. no elements, 110
escape sequences, see escape sequences
single-quoted, 27

continue
as synonym for break, 50

conversion, see types, conversion
copy-on-write (proposed), 146
COPY ARRAY enumeration constant, 98
copy value() function, 90
copying arrays, 98
copyright, 150
cos() function, 111
create agent() function, 67, 88, 116
create record() function, 90, 97
creating agents, see agents, creating
creating clients, see clients, creating
current whenever() function, 117

daemon, see glishd remote daemon
daemon terminated event, 120
dangling else, 48
dbx, 132
deactivate statement, 53, 79
debugging, 132–133
debugging clients, see clients, debugging
“deep” copy, 90
default parameters, see functions, parameters, default
delete, 98–100

use of Unref() instead, see memory management
Deref()member function, see Value class, member func-

tions
distributed systems

loosely-coupled, 8
done predefined event, 87
double, see types, double
DoublePtr()member function, see Value class, member

functions
DoubleVal()member function, see Value class, member

functions

157

dynamic typing, 19

echo client client, see clients, available
ellipsis, 60–62

allowed operations, 61
expanded as list of const references, 61
manipulation functions, 115
matching following parameters, 61
nth arg, see nth arg() function
num args, see num args() function
remembering bindings (proposed), 149

else, 48
dangling, 48

empty statement, 47
environ global variable, 119
environment

in which a Glish script runs, 120
environment variables

$ARCH, see $ARCH
$GLISHRC, see $GLISHRC
$GLISH DIR, see $GLISH DIR
$ISTKPLACE, see $ISTKPLACE
$PATH, see $PATH
$glish init, see $glish init
$glish monitor, see $glish monitor
$suspend, see $suspend
accessing, see environ global variable
command-line bindings, 128
modifying, 120

EOF event to shell client, 138
EOF events, 84
error detection, 87
“error” value (proposed), 148
errors

array index out of range, 22
array-index-mask size mismatch, 36
arrays with different sizes, 22
assignment of agent value, 42
conversion of non-numeric type, 100
copying an agent record, 68
creating ref reference from const, 42
event without matching whenever (warning), 87
memory management, 98
misuse of const reference (warning), 32
multiple element assignment mismatch, 37
non-numeric treated as numeric, 99
out-of-bounds array reference, 99
passing agent to function (warning), 60
record assignment mismatch, 38
record index out of range, 30
seq resulting in too many elements, 113
type mismatches, 20
variable used before set (warning), 39

escape sequences, 27
escape sequences (proposed), 149
established predefined event, 86

“eval” function (proposed), 104, 148
“event interface”, 16
event loop, 92
event monitor, 133
event records, see agents, records
event values, 71, see agents, records
event variables, see $agent, $name, $value
event-oriented style, 66
event in event, 133
event out event, 133
EventPending() member function, see Client class,

member functions
events, 8, 66–88

as messages, 66
definition of, 66
designators, 73

possible future changes, 148
flow of

actual, 13
conceptual, 13

inter-client encoding restrictions, 115, 134
introduction, 11
monitoring, see event monitor
name/value pair, 66
naming, 71, 73

restricted to 32 characters, 134
order of processing, 131–132
order preserved, 131
out-of-band (proposed), 148
pending, 95
point-to-point links, see point-to-point links
predefined, see predefined events
receiving, 45, 52–53, 71, 73–79, see whenever and

await statements
receiving every event from an agent, 73
recording (proposed), 148
request/reply, 45, 71, 75–76
sending, 45, 52, 69, 71–72, 75–76

modifies agent, 72
naming values, 52
single value, 72

sending opaque values, 134
synchronous, see events, request/reply
unrecognized, 87, 91, 94
values, 71
when read by interpreter, 130

example
argv global, 119
asynchronous client, 83
asynchronous shell client, 84
await only, 77
await only . . . except, 77
boolean mask, 15
client indicating an error, 95
client’s internals, 92

158

compiling a client, 92
computing absolute value using array masks, 37
creating a record, 28
creating an agent, 116
data transformation with Glish, 14
deactivating whenever statements, 118–119
debugging, 132
detecting network outages, 120
environment variable bindings, 128
FFT server, see FFT server
for loops, 49–50
full type name() function, 108
function with ref parameter, 59
function with variable arguments, 60, 61
indexing array with another array, 33, 36
link statement, 15
linking a client, 92
multiple execution of whenever, 74
multiplexing input sources, 96
nested await statements, 78
of using functions, 55–56
of using Glish, 11
order of execution, 130–131
persistent function variables, 64
point-to-point links, 15
receiving events, 69–70
record assignment, 38
references, 31–32

maintaining, 31
to record fields, 31

relay() function, 116
request/reply events, 71
reversing fields of a record, 38
script client, 85–86
script execution, 129
sending events, 68–69
seq() function, 112
setting record fields, 102
shell() function, 44
split() function, 114
subsequences, 87

and create agent(), 88
three intercommunicating processes, 13
timer client, 106
two intercommunicating processes, 12
unlink statement, 15
using Glish interactively, 129
Value::AssignElements, 105

exception-handling
for request/reply (proposed), 146

exception-handling (proposed), 148
execution, see scripts, how executed
ExistingRecordElement() member function, see

Value class, member functions
exit statement, 51, 131

exp() function, 111
expressions, 39–46

arithmetic, 40
as statements, 47
atomic, 39
event, 45
functions, 44, 56
indexing, 44
integer sequence, 44
logical, 40
operators, see operators
precedence, 45–46
references, 45
relational, 40
short-circuit, 40
unary, 39

F, 23
fail predefined event, 87
failure

of a client, see clients, termination, unsuccessful
false enumeration constant, 97
FD Change()member function, see Client class, member

functions
fd set, 95
FFT server, 8, 92
Field()member function, see Value class, member func-

tions
field names() function, 29, 109
FieldBoolPtr() member function, see Value class,

member functions
FieldDoublePtr() member function, see Value class,

member functions
FieldFloatPtr() member function, see Value class,

member functions
FieldIntPtr() member function, see Value class,

member functions
FieldStringPtr() member function, see Value class,

member functions
FieldVal() member function, see Value class, member

functions
file descriptors, see clients, multiplexing input sources
filters, 9
float, see types, float
FloatPtr() member function, see Value class, member

functions
for loop, C-style (proposed), 148
for statement, 49

controlling execution, see loops, controlling execution
philosophy, 50

formatting (proposed), 146
full type name() function, 108
func

as abbreviation for function, 56
function, 56, see types, function
functions, 55–65

159

arguments, see functions, parameters
arrays of, 30
as data type, 55
as expressions, 44–45, 56
body, 62–65

as expression, 62
as statement block, 62

comparisons, 40
defined with function keyword, 56
definition syntax, 56
extra arguments, see ellipsis
names

global, 57
optional, 57

parameter matching
by name, 58
left-to-right, 57

parameters, 57–62
const, 59
default type as const, 59
defaults, 58
formal, 57
local to function body, 64
names, 57
only specified once in a call, 58
ref, 59
reference, see functions, parameters, types
restrictions, 60
types, 59–60
val, 59

predefined, see predefined functions
recursion, see recursion, in function calls
responding to events, see subsequences
returning variable references, 64
variable arguments, see ellipsis
variables surviving due to whenever, 64

gdb, 132
getenv(), 119
Glish

acknowledgments, 150–151
class library, see client library
clients, see clients
copyright, 150
events, see events
flexibility, 8
functions, see functions
grammar, 152–154
installation, 138
interactive use, see interpreter, running interactively
internals, 134–139
interpreter, see interpreter
invoking, 128
main goals, 16
porting requirements, 138
possible future changes, see possible future changes

possible misfeatures, see possible misfeatures
records, see records
references, 9
scripts, see scripts
simple example, 11
statements, see statements
syntax, 152–154
system, elements of, 8
using, 128–133
values, see values

-glish client argument, 137
glish.init initialization file, 138
glish event.h header, 134
$GLISH DIR initialization directory, 138
glish false enumeration constant, 97
$glish init environment variable, 138
$glish monitor environment variable, 133
GLISH RELEASE NOTES , 138
glish true enumeration constant, 97
glish type enumerated type, 98
glishd remote daemon, 135–136
GlishEvent class, 89

constructor, 91
member variables

name, 91
value, 91

memory management, 91, see memory management
overview, 91
returned by Client::NextEvent(), 94

$GLISHRC environment variable, 129
.glishrc initialization file, 129
global variables, see variables, global

argv, 119
environ, 119
script, 121
system, 120

grammar, see Glish, grammar

has field() function, 109
HasClientInput() member function, see Client class,

member functions
HasEventSource() member function, see Client class,

member functions
HasSequencerConnection() member function, see

Client class, member functions
host= client argument, 82, 84

if statement, 48
. . . else, 48

in operator (proposed), 146
include directive, 54
Incomplete()member function, see Client class, mem-

ber functions
ind() function, 34, 113
indexing, see arrays, indexing
information

160

system, 120
initializing variables, see variables, initializing
input= client argument, 82, 84
installation, see Glish, installation
integer, see types, integer
interactive use, see interpreter, running interactively
internal event

link-sink, 137
rendezvous, 137
rendezvous-orig, 137
rendezvous-resp, 137
unlink-sink, 137

internals, see Glish, internals
Internet-domain sockets, see sockets, Internet domain
interpreter, 8, 128–129

-- argument separator, 128
connection broken, 94
environment in which scripts run, 120
environment variable bindings, 128
execution of scripts, 129–132
exiting automatically, 131
.glishrc file, 129
initialization, 138
prompt, 129
running interactively, 129
user-customization, 129
-v verbose flag, 128
version, 120
working directory, 135

interprocess communication, 136
InterViews

linking with, 97
IntPtr() member function, see Value class, member

functions
IntVal() member function, see Value class, member

functions
IPC, see interprocess communication
is agent() function, 107
is boolean() function, 107
is double() function, 107
is float() function, 107
is function() function, 107
is integer() function, 107
is numeric() function, 107
is record() function, 107
is string() function, 107
IsConst() member function, see Value class, member

functions
IsNumeric()member function, see Value class, member

functions
IsRef()member function, see Value class, member func-

tions
ISTK toolkit, 134
$ISTKPLACE, used to locate ISTK headers, 92

kill event sent to glishd, 136

known bugs, see bugs, known

last whenever executed() function, 118
length() function, 21, 29, 110

abbreviated as len(), 21
Length() member function, see Value class, member

functions
link statement, 53, 80, see point-to-point links

destination of *, 80
example, 15
implementation, 137
multiple execution, 81

link-sink event, 137
linking clients, see clients, linking
loading clients, see clients, linking
local statement, 51, 63
local variables, see variables, local
log() function, 111
loops, 49–50

controlling execution, 50
for, see for statement
while, see while statement

lvalue, see assignment, lvalue

masks, see arrays, indexing, masks
max() function, 111
memory management, 97–98, 104, 105

errors, 98
Ref() function, 90
Unref() function, 90

instead of delete, 90
messages, see events, as messages
min() function, 111
misfeatures, see possible misfeatures
missing() function, 147
modularity, 12, 66
module facility (proposed), 145
multiplexing input sources, see clients, multiplexing input

sources

$name, 45, 75
used with *, 75

name spaces, 152
names

case-sensitive, 28, 39
of variables, 39

network outages
detecting, 120, 135

NewFieldName() member function, see Value class,
member functions

next statement, 50
NextEvent() member function, see Client class, mem-

ber functions
-noglish client argument, 95, 137
nth arg() function, 61, 115

161

NthField() member function, see Value class, member
functions

NthFieldName() member function, see Value class,
member functions

num args() function, 61, 115
numeric, see types, numeric

opaque values, 33
assignment of, 33
comparisons, 40
creating, 95
storing in files, 33
use of discouraged, 33

operators
arithmetic, 24–25, 40

associativity, 25
operand conversion, 24
precedence, 25

comparison, 26, 40
associativity, 26
boolean ordering, 26
operand conversion, 26
precedence, 26

logical, 25–26, 40
associativity, 26
operands, 25
precedence, 26

precedence, 45–46
proposed, 146
short-circuit, 40
string, 28
unary, 39

out-of-band events, see events, out-of-band

parameters, see functions, parameters
paste() function, 113

optional sep= argument, 114
$PATH, used to locate clients, 81
persistent clients, see clients, persistent
persistent local variables, see variables, local, persistent
ping event sent to glishd, 136
ping= client argument, 83, 84
pinging clients, see clients, pinging
pipes

client connection, 136
point-to-point links, 80

suspending and restoring, 80
Polymorph()member function, see Value class, member

functions
porting, see Glish, porting requirements
possible future changes, 145–149

better printing of values, 48, 146
parameter typing, 60
reference type, 32
scope of local declarations, 64, 146
subsequences and predefined events, 87

possible misfeatures
array strides, 36
client() arguments with embedded whitespace, 82
default const parameter type, 60
first element of array tested in conditionals, 48
nested awaits, 79
nth arg() function, 61
num args() function, 61
reference semantics, 33

PostEvent() member function, see Client class, mem-
ber functions

PostOpaqueSDS Event() member function, see
Client class, member functions

predefined events, 86–87
connection lost, 120
connection restored, 120
daemon terminated, 120
done, 87
established, 86
fail, 87, 94
terminate, 87
unrecognized, 87

predefined functions, 107–127
agent manipulation, 116–119
array manipulation, 110–113
ellipsis manipulation, 115
mathematical, 111
mathematical (proposed), 147
reading and writing values, 115–116
string manipulation, 113–115
string manipulation (proposed), 147
summary, 121–127
type conversion, 109–110
type identification, 107–109

predefined variables, see variables, global
PRESERVE ARRAY enumeration constant, 98
print statement, 48
printf(), 146
printing, 48
probe event sent to glishd, 136
protocol

built-in, 11
session-layer, 11

pseudo-ttys, 85, 137

race conditions
avoiding, 130

range() function, 111
read value() function, 116
realloc(), 98
receiving events, see events, receiving
record, see types, record
records, 28–30

accessing fields, 101
“addition” of (proposed), 146
arrays of, 30

162

assigning (proposed), 147
assigning beyond end, 30
assigning part to another record, 38
comparisons, 40
comparisons (proposed), 40, 146
constants, see constants, record
creating empty, 97
deleting fields (proposed), 148
extending, 30
fields, 28

access with numeric subscripts, 30
access with string literals, 37
access with string subscripts, 29
accessing, 28
assigning, 28
first field is [1], 30
internal names, 30
legal names, 28–29
multiple, 37–38, 41
names, 29, 109
number of, 29
reserved names, 29

generating new field names, 103
manipulating, 101–104
memory management, 90

recursion
in function calls, 62

ref, see functions, parameters, ref
Ref() function, 90
ref operator, 31
reference, see types, reference
reference counting, see memory management
references, 31–33

arrays of, 30
assignment to, 31
constant, 31
dereferencing, 100
“distributed” (proposed), 147
equivalence to original variable, 32
interest in hearing about difficulties, 32
maintaining across assignment, 31
names of, 108
potentially error prone, 33
to record fields, 31

relay() function, 116
relay all() function, 117
remote clients, see clients, running on remote hosts
remote daemon, see glishd remote daemon
remote procedure call communication, see events, re-

quest/reply
remsh command, 135
rendezvous event, 137
rendezvous-orig event, 137
rendezvous-resp event, 137
rep() function, 113

Reply()member function, see Client class, member func-
tions

request expression, 45, 71, 75
request/reply events, see events, request/reply
reserved names, 29
return statement, 50
.rhosts file, 135
RPC communication, see events, request/reply
rsh command, 135

scalars, 20
creating Value objects from, 97
replicating to create an array, 100

scoping, see variables, scoping
script clients, 85–86

determining if script is a, 120
script global variable, 121
scripts, 8

as Glish clients, see script clients
debugging, see debugging
how executed, 129–132
made up of statements, 47

SDS datasets, 116, 134
search path, see $PATH
select(), 91, 95
self variable, 87
semi-colon

as empty statement, 47
as statement terminator, 47
omitting, 53–54

send keyword
optional, 71

send statement, 71
sending events, see events, sending
seq() function, 21, 35, 112

with one argument, 35, 112
with two arguments, 35, 112
with three arguments, 35, 112

SetField() member function, see Value class, member
functions

setwd event sent to glishd, 135
“shallow” copy, 33
shell event sent to glishd, 136
shell() function, 44, 83–85, 116

buffering, 85, see pseudo-ttys
optional arguments, 84
running on remote hosts, 136

shell client , 137
shell out event sent by glishd, 136
SIGIO, see clients, pinging
signal-handling (proposed), 148
sin() function, 111
socket connections, 136, 139

daemon port 9991, 135
default port 2000, 136

sockets

163

Internet domain, 137
Unix domain, 137

spaste() function, 114
special events

seepredefined events, 154
split() function, 114

with two arguments, 114
sqrt() function, 111
stand-alone clients, see clients, stand-alone
statements, 47–54

assignment, see assignment
block, 47
conditionals, see conditionals
empty, 47
exit, see exit statement
expressions as, 47
local, see local statement
loops, see loops
printing, see printing
receiving events, see events, receiving
return, see return statement
return values, 62
semi-colon termination, 47, 53–54
sending events, see events, receiving

static variables, see variables, local, persistent
stdin

events for stand-alone clients, 94
stdin event to shell client, 138
stdin events, 84
stdout

events for stand-alone clients, 94
stdout events, 84
string, see types, string
StringPtr()member function, see Value class, member

functions
strings, 27–28

manipulation functions, 113–115
manipulation functions (proposed), 147

StringVal()member function, see Value class, member
functions

subseq
as abbreviation for subsequence, 88

subsequence, 87
subsequences, 87–88

defined with subsequence keyword, 87
self variable, 87

success
of a client, see clients, termination, successful

sum() function, 111
$suspend list of clients to suspend, 132
suspend= client argument, 82, 84, 132
suspending execution, 131
synchronous communication, see events, request/reply;

also, await statement
syntax, see Glish, syntax

system global variable, 120
connection lost field, 120
connection restored field, 120
daemon terminated field, 120
is script client field, 120
version field, 120

system information, 120

T, 23
TAKE OVER ARRAY enumeration constant, 98
TakeValue()member function, see Value class, member

functions
tan() function, 111
tell glishd client, see clients, available
temporal event ordering, 132
terminate event to shell client, 138
terminate predefined event, 84, 87
termination

of a client, see clients, termination
test client client, see clients, available
threads

subsequences as, 88
timeout, 105
timeouts

for request/reply (proposed), 146
timer client, see clients, available
trace facility (proposed), 147
true enumeration constant, 97
Type() member function, see Value class, member func-

tions
type signatures (proposed), 145
type-checking (proposed), 145
type name() function, 18, 108
types

agent, 18
as arrays, 20
boolean, 18, 97

promotion, 24
compatibility, 100
conversion, 19–20, 100–101

automatic, 19
explicit, 20
forbidden, 20
to boolean, 109
to floating-point, 110
to integer, 110
to string, 110

conversion functions, 109–110
double, 18, 97
dynamic, see dynamic typing
float, 18, 97
function, 18
identifying functions, 19, 107–109
integer, 18, 97
numeric, 18, 23–26, 98, 107

intermixing, 24

164

opaque, 18
overview, 18
record, 18
reference, 18
string, 18, 97

Unix programs
running unmodified as Glish clients, 83

Unix-domain sockets, see sockets, Unix domain
unlink statement, 53, 80, see point-to-point links

example, 15
implementation, 137

unlink-sink event, 137
Unrecognized() member function, see Client class,

member functions
unrecognized predefined event, 87
Unref() function, 90, 92
user-customization file, 129

-v flag to Glish interpreter, 128
val, see functions, parameters, val
val operator, 31
$value, 45, 69, 75
Value class, 89

accessing and assigning elements, 104–105
constructors, 89–90, 97–98

array, 97
scalar, 97

converting to C++ pointer, 99
copy value() function, 90
create record() function, 90
creating an empty record, 97
creating Value objects, 89
details, 97–105
length of value, 98
manipulating records, see records, manipulating
member functions
AssignElements(), 104
BoolPtr(), 99
BoolVal(), 99
CoerceToBoolArray(), 100
CoerceToDoubleArray(), 100
CoerceToFloatArray(), 100
CoerceToIntArray(), 90, 100
CoerceToStringArray(), 101
Deref(), 100
DoublePtr(), 92, 99
DoubleVal(), 99
ExistingRecordElement(), 104
Field(), 101, 103
FieldBoolPtr(), 101
FieldDoublePtr(), 101
FieldFloatPtr(), 101
FieldIntPtr(), 101
FieldStringPtr(), 101
FieldVal(), 102

FloatPtr(), 99
IntPtr(), 90, 99, 100
IntVal(), 90, 99
IsConst(), 99
IsNumeric(), 98
IsRef(), 99
Length(), 90, 98
NewFieldName(), 103
NthField(), 103
NthFieldName(), 103
Polymorph(), 90, 99, 100
SetField(), 102, 103
StringPtr(), 99
StringVal(), 99, 102
TakeValue(), 105
Type(), 90, 98, 100

memory management, see memory management
overview, 89–90
references, 99

dereferencing, 100
storage, 97
string representation, 99
type of value, 98

values
functions to read and write, 115–116
implicit copying, 100
overview, 18
types, see types

variable arguments, see ellipsis
variables

declaring local, 51
global, 62, 119–121

summary, 125
initialization, 63
initialization (proposed), 146
local, 63

persistent, 64–65, 88
naming, 39
scoping, 62–64

possible future changes, 145
uninitialized, 39
uninitialized (proposed), 148

warnings, see errors
whenever statement, 52, 69, 73

activating and deactivating, 79–80
associated agents, 119
body, 74
execution specifics, 74
identifying, 117, 118
order of execution, 74, 130, 132
receiving every event, 73
when executed, 74

whenever stmts() function, 119
while statement, 49

controlling execution, see loops, controlling execution

165

wrappers, 9
around C routines, 92
around data structures, 90, 104

write value() function, 115

166

