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Abstract

The transport equation for a bunched beam in longitudinal stochastic cooling under
a sinusoidal rf voltage has been derived. A computer program has been developed to
numerically solve this equation. The analysis is applied to the cooling of high charge-
state ions in the RHIC collider where the Schottky noise is dominant. It has been shown
that the agreement between the coasting- and the bunched-beam theory is satisfactory

provided that the bunch occupies a large amount (>75%) of the rf bucket.



I. Introduction

Stochastic cooling! > in the RHIC® aims at compensating for the emittance growth of
heavy-ion beams, primarily due to intrabeam scattering. In order to reduce the growth
of the bunch spread during the 10 hour period of storage, the currently adopted scenario
requires blowing-up the initial normalized transverse emittance of 1°7Au"+ beams from
10 to 60rmm-mrad. The final peak voltage required for the 160MHz rf system is 4.5MV.
Compared with the case that the initial emittance is kept at 107rmm-mrad, this scenario
results in a loss of at least a factor of 3 in the integrated colliding-beam luminosity. Nev-
ertheless, without the initial emittance blow-up, a peak rf voltage of 11.5MV is required
to compensate the growth in momentum spread. Stochastic cooling in longitudinal phase
space is therefore of particular interest in reducing the amount of rf voltage. Indeed, pre-
vious studies” indicate that with a constant momentum-cooling rate of about 1/9 hour™!
and the same 4.5MV 1f voltage, the integrated luminosity can be increased by more than
3 times even without the initial blow-up.

Previous estimates® based on coasting-beam theory indicate that a reasonable cooling
rate can be achieved with a cooling system of frequency bandwidth 4-8 GHz. However,
detailed analysis based on bunched-beam theory has to be performed to both understand
the cooling mechanism and optimize the performance.

This paper summarizes our study on longitudinal stochastic cooling of hadron bunches
in the absence of intrabeam scattering. The discussion is restricted to the so-called “slow
cooling” regime, where the characteristic cooling time  is long compared with the period
of synchrotron oscillation. Section II introduces the transport equation which, in terms
of action variable J, describes the evolution of longitudinal particle density distribution
under the influence of stochastic cooling. Section III essentially addresses the numerical
solution of this equation. The analysis is applied to the cooling of high charge-state ions
in the RHIC collider in section IV, where the required amplifier power is also estimated.

A comparison on the cooling results obtained from the bunched-beam and the coasting-



beam theory is given in section V.
II. Theoretical Approaches

Longitudinal (momentum) stochastic cooling of hadron bunches can be classified into
two categories: “fast” and “slow” cooling. The former refers to the case where the relative
change of the particle distribution is large during one synchrotron-oscillation period, while
the later refers to the opposite case.

The fast-cooling process can be investigated using the longitudinal transfer matrices.?
Due to the fast (non-adiabatic) variation of the particle motion, the momentum spread
in the bunch is often reduced faster than the phase spread. The resulting bunch shape is
then continuously mismatched to the rf bucket.

In reality, due to system bandwidth and amplifier power limitations, it is often of
practical interest to consider slow-cooling process. The essential formulation applicable

to this regime will be presented in the following subsections.

A. Single-particle equations of motion

Longitudinal motion of the particles can be described by two variables, the phase
¢s + ¢ of the rf field at the moment the particle passes the cavity, and W = AE /hwo,

with the energy deviation AE from the synchronous value, as

~

V. sin(d, + ¢) — sin 6] + U

W= 2wh .
= Eﬂ2 ,

where % is the harmonic number, = 1/92 — 1/4?, vr is the transition energy, wo = 27 f;,
E = Amoc?y, and fc are the synchronous revolution frequency, energy, and velocity,
and ¢ and A are the charge and the atomic number of the particles, respectively. For
simplicity, the synchronous phase will be taken as ¢, = m, which represents the storage

mode above transition in the RHIC.



The energy increment Uy of a “test particle” due to the cooling contains a determin-
istic (coherent) part U} resulting from the signal generated by itself, and a fluctuating
(incoherent) part Uy, resulting from the signals generated by all the other particles. It
can be expressed in terms of the voltage Vi that the particle experiences at the kickers,

Un() = 15 3 Vi) 8 ( ST A Z—K) ~ UG+ UL, 2)
where ¢ is the phase deviation of the test particle, 0k is the azimuthal location of the

kickers on the ring,
Vic(t) = 5 / G(w) Ipp(w)etdw, (3)

and the subscripts PU and K denote the pick-up and the kickers, respectively. The
causality condition requires that the gain function G(w) of the cooling system satisfies

the condition

G(~w) = G*(w). (4)

Furthermore, the Fourier transform Ipp(w) of the beam current I. pu(t) measured at the

puck-up can be expressed as

Ipp(w) = /_ Irp(t)e“tdt = ge 3 Zexp [—zw (2”m+ b +9PU)]. (5)

m=—00 j=1 wo th Wo

The first summation represents revolutions; the second summation represents IV particles
in each bunch. Since signals pertaining to different bunches are not correlated, it will
suffice to consider only an individual bunch.

Regarding the cooling contribution Uy as a perturbation, the unperturbed particle

motion can be derived from an Hamiltonian

H($, W) = CoW? + Cj sin? g, (6)
where the coefficients -
Ry _ geV
Cw = YTk and ng—ﬁ



may be time dependent. The incoherent noise term Uy, in eq. 1 is a function of location

¢ only. It therefore can be derived from a perturbative Hamiltonian

(8, W) =~ [ Uk ()4 ¢

On the other hand, the coherent cooling term U is a function of both location ¢ and
momentum deviation W it is non-Hamiltonian.?
In the absence of the perturbation, the action invariant J and the canonically conju-

gate angle @) can be obtained by using the Hamilton-Jacobi theory,” e.g.

J= ]{ Wdé = 8\/0% (k2 - DK (k) + E(R)], k= \/g <1, (8)

P a g
= B — — — 2 a2

are the complete elliptical integrals’ of first and second kind. J represents the phase-

where

space area enclosed by the trajectory of the particle performing synchrotron oscillation.

The oscillation frequency is given by

. 7/CwC.
Q=20 =Y o, (10)

It is seen that Q; is a monotonic function of k. At the boundary (separatrix) of the stable

region, Jyp = 8\/6%‘:;, and Qs(Jpqez) = 0.
B. Equations of motion in the action-angle variables

The study in the slow-cooling regime can be simplified be averaging the particle
motion over one synchrotron-oscillation period. First, the stochastic equation (1) has to
be written in terms of the action-angle variables @) and J. This transformation can be

achieved by means of a generating function of Goldstein’s'® second type,

¢ 1 7 Cs .29 .,
F2(¢,J,t)=/ \/m/ QS(J')dJ’—C—:f-mﬁ%dgb. (11)



I K(Q,J,t) is the transformed unperturbed Hamiltonian, eq. 1 may be expressed in

terms of @) and J as

0K

Q = —++Uq
J = Us
By expressing W and @ in terms of ¢ and J, and by using'? the identities
ow 6H O0H
dw (e, J,t) = 34) dt + == 6’J Usdt = (—- £ . + Uw> dt, (13)
and
0Q| oH oQ _ [ 0K
dQ(¢,J,t) = 3¢ dt-I— 8J Usdt = (6] . —I—UQ) dt, (14)
the stochastic quantities Ug and UJ can be related to Uy as
_9Q| ow|™ ow|™
UQ;—- —67 ) —EJ— Uw, and UJ = BJ UW (15)
Using eq. 8 and the canonical relations, the transformation coeflicients can be simplified,
e.g. .
- _ 4z CW
arl, = o (16)

Equivalent to eq. 1, the transformed equations (12) thus describe the stochastic motion
of each individual particle.

In order to obtain an explicit expression of the transformed stochastic equations, the
variable W in eq. 16 h‘a,s to be written in terms of @ and J. Define polar coordinates!3

k and ¢ such that

W = Cs k cosp, and siné =k sinep. (17
Cw 2

It is straightforward'* to expand W as a series of the periodic functions of Q,

Cy 2 & fn"%
Cw K(k) 2 14 ¢t

n=1

W =

cos [2(2n — 1)7Q)] . (18)
As shown in figure 1, the order parameter
¢ = exp [~mK/()/K(B)],
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with K'(k) = K(v/1 — k2), becomes significant only when it is near the separatrix Jpqz.

Hence, eq. 16 can be written as a series expansion of ¢,

ow|™"

57, 8k K(k)cos2rQ [1 —4¢sin?27Q + O(¢?)] . (19)

Note that k is a function of J only (eq. 8).
C. The transport equation

Longitudinal distribution of N particles in a bunch may in general be described by a

two-dimensional density distribution function U(Q,J, t), so defined that
NU(Q,J,t) dJdé

is the number of particles which, at time ¢, have synchrotron phase @ lying within an
element d@) about @) and action J lying within an element dJ about J. Assuming that

the stochastic process is Markovian, the time evolution of ¥ satisfies the Fokker-Planck

equation!®
o Q0¥ 0 [\ D (s
& = “2rog aq (o¥) ~ 57 (ArY)
(20)
10% (o &y, 108 (= o\ & i
5307 (Dae¥) + 3575 (Dwr®) + aqa7 (Dar?),
where ) 1 A
B = lim ([ [0 + Uk(t)] do),

(21)
Dun = Jim / / ULUEY) didt'), M,N = Q,J,
and Ug’ 7 and Ué, 7 are the coherent and the incoherent part of Ug,s, respectively. The
limit At — 0 implies that At is long as compared to the correlation time, but still short
as compared to the time interval within which ¥ changes appreciably.
As mentioned earlier, eq. 20 can be reduced by averaging () over one synchrotron-

oscillation period. Using the periodic conditions of ¥, 8¥/8J, and 9¥/0Q in Q, eq. 20
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becomes

v B 19
ot o] 2972

where ¥ is the phase—'avera,ged distribution which depends on J and ¢ only. Since the

(Fr®) + =57 (D), (22)

incoherent part is derivable from an Hamiltonian (eq. 7), eq. 22 can be simplified as'6:7

ov 10

i (\II)+23J[(DSH+DT) } - (29)

The boundary conditions of eq. 23 is that ¥ vanishes at the separatrix Ji,qz, and the flux

vanishes at J =0, i.e.

? 1 ov
;J=0: —F\I/+-2-(DSH+DT)5=O,
(24)

J=Jpe: =0,

Note that the drifting coefficient F' in eq. 23 contains only the coherent contribution.
With the causality condition (eq. 4), it is straightforward to find

F(J) = Jim oo / U dy

= 9267:(-00 ilé _nl;.,]l2 [mwoet(J)] Re {Gr [mwo + 1Q,(7)] — Gr [mwo — 19,(N)]}
+0(¢),

(25)
where O(§) represents terms whose magnitudes are of order ¢ or higher when compared
with the first term, At represents a time interval that is long compared to the synchrotron-

oscillation period, Re denotes the real part of a complex quantity, and
Gr [mwo + 1Q,(1)] = G [mwe — IQ,(T)] e~imrpv=0x) (il ()0Pr—0x)/wo (26)

J1 is the Bessel function of Ith order, and 7(J) is the amplitude of synchrotron oscillation
in time space,

(J)= ——1— arccos (1 - 2k2) k<1 (27)

hwo



The summation on the revolution bands in eq. 25 is performed over the range of system
bandwidth, while the summation on the synchrotron side-bands is actually performed
over the range from I = 1 to mwoyr(J), with J the bunch area, corresponding to m times
the revolution-frequency spread in the bunch. The factor ¢??s(/Nfrv—0x)/wo represents the
ph;ase slip that non-synchronous particles experience during their passage from the pick-
up to the kickers. In order to minimize this undesirable “mixing”, the distance between
the pick-up and the kickers should be chosen such that

- (Opv = Ox)nan™,(0) < 1, 7 =7(J), (28)
where n,, is the average of the revolution harmonic numbers of the cooling system band-
width.

The diffusion is contributed from the beam Schottky noise (Dgp) and the system
(thermal) noise (Dr). If the revolution bands are not overlapping within the system
bandwidth, the Schottky coefficient Dgy at location J can be shown to depend both on
the particle density ¥(J), and the density ¥(J') at location J' that is correlated to J by
synchrotron side-band overlapping, e.g. kQ,(J) = IQ,(J') between the kth and the lth

side-band, as

1 e
Dsu(7) = Jim — /0 /0 UL UL dide')-

_ Nq e wg ad kZ\II(J')
zz-;kzl 1]48]

Q5 (J)=kQs () /1

{IGsa(k, D + |Gsu(~Fk, ~D)|* — 2Re[Gisz(k, D Gsr(~, =]} + O(¢),
| (29)

where
Gsu(k, 1) = Z G [mwo + I1Q,(J')] e ™OPv=0%) T, [muwor ()] Ji [mwor ()] (30)
m—l
The quantity |%—l| appeared in eq. 29 is a monotonically increasing function of J,

d0.(7) 0w 1 [ E(k)
dJ 16 k2K3(k) [ “K(k)]7 k<1 (31)




If it is near the separatrix, £ — 1, then I l — 00. This implies that the enhancement
of the noise density due to synchrotron oscillation monotonically approaches 0 near the
separatrix, while it is the largest at the center of the bucket.
The thermal coefficient Dr is expressed in terms of the thermal temperature Tpy at
the pick-up. Similar to Dgg, it can be obtained using eqs. 1-5,
D) = 2sTrod' 3 3o mor(D)] -
| m=1 =1 (32)
{ G fmwo + 1Q4(D] [ + |G [ — 1(D] 12} + O(8),
where G is the gain in the cooling system excluding the pick-up. Since Dy is proportional
to ¢ while Dggy is proportional to ¢*, the thermal noise contribution often appears less

important for the cooling of intense beams of high charge-state ions.
D. Power limitation

The average power required from the amplifier that applies on an array of Nx kickers,
each with an equivalent impedance Rx, can be expressed in terms of the total voltage

Vi on the kickers,
1 At
P = lim / VA(t)dt)/ R, (33)
0
where Vk can be splif, into a Schottky part and a thermal part. The corresponding

average Schottky power is proportional both to the number of bunches N, inside the ring

and to the number of particles N inside each bunch,

= Nqu NiNg*e*w] i Z/ dJY(J)I} [mwor (J)]
m=1[=1 (34)

{1G [rmuwo + 12,(D]]* + |G [mwo — 19,(1)]1°}.
The peak Schottky power Psy needed from the amplifier is thus Psg divided by the

bunching factor. As an example, for a bunch of Gaussian distribution,

Varh —

P, 35
NbO’q& SH, ( )

Psy =
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which is independent of V. The thermal power Pr can again be expressed in terms of

Tpy,
kT, oo
Py = "BoFU /0 Gr(w)Pdw. (36)

™

If the cooling system has Npy pick-ups, each with an equivalent impedance Rpy, the

gain function G and Gt can be written as

G = \/NKNPURKRPU é, and GT = \/RKRPU é, (37)

where G is the gain in the circuit between the pick-up and the kickers. Obviously,
increasing the number of pick-ups will improve the signal-to-noise ratio, while increasing

the number of kickers will decrease the amplifier power.
ITI. Computer Techniques

A computer program has been developed to solve the transport equation (eq. 23)
numerically. First, the J-space (0, Jiqz) is equally divided into Ny bins of width AJ.
An initial discrete distribution U(J;,;t = 0), ¢ = 1,---,Ny, is then generated. The
transport equation (23), written in a difference form, is iterated according to the boundary
conditions eq. 24. At each time step, the three-point differentiation formulae!® are used
to evaluate the density-flux difference ]%\J;t each J; using eqgs. 25, 29, and 32. The change
in bunch area (first moment in J, i.e. ZJ: Ji¥(J;)AJ) is used to obtain the cooling rate.

The accuracy of this numerical af;;;‘oach depends on the choices of the time step
and the J step, the calculation of the coefficients, the approximation method of the
differentiations, and the treatment of the boundary conditions. In the case of poor
modeling, artificial wiggling in ¥(J) is often observed. Various methods can be used
to evaluate the accurécy. The most straightforward one is to evaluate the summation
Ap = % U(J;)AJ (zeroth moment in J) and compare it to the expected value, which is
equal 11;:2)1 1 in the case of proper cooling without particle loss.

Results obtained from this approach will be discussed in section IV.
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Another approach of computer modeling is to perform revolution-by-revolution sim-
ulation of the cooling process. However, this is practically limited by the available com-
puter capacity. A relatively small number of representative particles has to be chosen
for simulation, and a scaling rule has to be used to interpret the simulation result. Fur-
thermore, the drastic difference between a slow- and a fast-cooling process has to be

considered.1?
IV. Longitudinal Cooling in the RHIC

‘The heavy-ion beams will be stored in the RHIC collider using a 160 MHz, h = 2052 rf
system. Consider the beam of one of the highest charge-state ions 1°7Au™*+ in the RHIC
from which intrabeam scattering is expected to be the severest. Each of the 57 or 114
bunches contains 10? particles. Due to the high charge state, Schottky noise dominates
over the room-temperature thermal noise.

! as, within the unit time, the relative reduction in the

Define the cooling rate 7~
average phase-space afea occupied by the particles in the bunch. Using a cooling system
of frequency bandwidth 4-8 GHz, figure 2 shows the cooling rate as a function of the
initial bunch area, caléulated from the numerical solution of the transport equation (23).
In each case, the rf voltage is chosen so that initially the bunch occupies about 75% of the
bucket area. The phase spread in the bunch is thus the same. The solid line represents
the optimal cooling ra,fe, which is linearly proportional to the initial bunch area.

Assuming a total of 64 kickers, each with an equivalent impedance 100 ohms, figure 3
shows the corresponding peak amplifier power P,,; needed to achieve the optimal cooling
rate. As the bunch area (or the momentum spread) increases, the required P,,; increases
to its 4th power. The dash lines in figure 2 indicate the cooling rates that can possibly be
achieved with a maximum peak amplifier power no more than 2 kW, 1 kW, and 0.5 kW,

respectively.

As shown by the solid line in figure 4, the initial particle distribution is assumed to

12



be a Gaussian distribution in longitudinal phase space, which is modified such that the
density smoothly approaches zero at J (J = 0.3¢V-sec/amu). The time evolution of the
distribution is illustrafed by the subsequent dash lines. Correspondingly, figure 5 shows
the reduction in the bunch spread as a function of time. If the amplifier gain is fixed,
the cooling will soon saturate (the short-dash line); if the gain is constantly decreased
according to the bunch spread, the cooling will be continued although with a decreasing
cooling rate, 771 ~ [f (t)]2 (the long-dash line). Furthermore, if the rf voltage is lowered
according to the decreasing momentum spread so that the phase spread (i.e. the filling
factor defined in the next section) is kept constant, the cooling will be improved further
(771 ~ J(t), the solid line).

It is assumed that the cooling system has a single pick-up station consisting of two
pairs of stripline located, side by side, in a large dispersion region (z, ~ 1m). By taking
the difference of the sum signals from these two pairs, one obtains a signal which is
proportional to the horizontal displacement and thus the momentum deviation of the
beam sample. The pick-up and the kickers are located at two nearby sextants along the
ring, allowing a delay time of about 90 ns. With a 4-8 GHz system, the mixing between
the pick-up and the kickers is small for bunch area below leV-sec/amu. Since thermal
noise is not important, one pick-up should give satisfactory signal-to-noise ratio. The
number of kickers, however, has to be much larger than unity to reduce the necessary

power.
V. Comparison with the Coasting-Beam Theory

In the case that the number of significant synchrotron side-bands is much larger than
unity (ngywo? > 1), and that the bunch occupies the entire rf bucket, coasting-beam
theory is expected to provide comparable results to that of the bunched-beam theory. In
particular, when the phase spread in the bunch is kept constant, the scaling behaviour

of the cooling rate and the power on the momentum spread predicted from the coasting-
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beam theory, should also apply to the bunched beam. This analogy however disappears

when the bunch area becomes small compared with the bucket area.
A. Scaling behaviour from the coasting-beam theory

‘Let W = An f, be the frequency bandwidth of the cooling system. The momentum-

cooling rate obtained from the coasting-beam theory can be expressed as?

w3 o— a4 0], (3)

where g is the effective gain, M & (29n,,0a,/,) 7! is the “mixing factor”, U is the noise-
to-signal ratio, and op,/, is the rms momentum spread in the beam. The optimal cooling

rate can be readily obtained in the case U « M, as

— An fO 2nauAn nfOO'A /
1_ ~
Topt—-N(M_l_U)N i PIE (39)
The power required to achieve this cooling rate is estimated as
E%o}
Po 1 Ap/p ( 40)

Pt quKRK ;84Toptf0(M + U)’
which, in the case that revolution bands are not overlapping (i.e. “bad mixing” case), is
proportional to the momentum spread to the 4th power. The optimal rate is expected

only when this P,; is achieved. With a practical power P < P,,;, the cooling rate becomes
= 575,%, (41)

where § = \/m < 1. With a given power, the achievable cooling rate is inversely
proportional to the momentum spread in the case of bad mixing. This scaling behaviour
is shown by the dash lines in figs. 2 and 6.

The original program (DBFP) using the coasting-beam theory?® has been modified to
obtain an order-of-magnitude estimate of the momentum cooling of the bunched beam in
the RHIC. This program essentially solves the Fokker-Planck equation for a coasting beam

using numerical method. The peak current of the bunch is taken as the coasting-beam

14



current I. The initial momentum distribution is assumed to be a Gaussian distribution
with its rms value the same as the bunched beam. Figure 6 shows the cooling rate as a
function of the momentum spread that corresponds to figure 2. Taking into account the
numerical accuracy and the approximations, the agreement between these two theories
is within a factor of 2.' The fact that the cooling rate calculated from the coasting-beam
theory is less than that from the bunched-beam theory, is because that the peak current,

instead of a properly averaged current, has been used for coasting-beam calculation.
B. Comparison and discussion

It has been shown above that the agreement between the coasting- and the bunched-
beam theory is satisfactory provided that the bunch occupies a large amount (=>75%)
of the rf bucket. On the contrary, the prediction from these two theories are drastically
different if the relative bunch area is small.

Suppose that a bqnch of initial area J = 0.3 eV -sec/amu is stored using a peak
if voltage V. Define the rf-bucket filling factor R as the ratio of the bunch area J to
the. bucket area J.;. When the voltage Vis raised, R decreases as V-2 for a given
bunch area. The solid line in figure 7 shows the optimal cooling rate as a function
of R, calculated from the bunch-beam theory. The scaling rule can be obtained by
inspecting the transport equation (23): The synchrotron-oscillation frequency Q, ~ R~1;
the number of synchrotron side-bands of consideration n,,we? ~ R/2; therefore, the
drifting coefficient F' ~ R~1/2, while the Schottky coefficient Dgy ~ R=3/2. Hence, the »
optimal gain and, consequently, the optimal cooling rate are proportional to R, as shown
by the solid line in figure 7. In the case that R approaches zero, the bunch length becomes
comparable to the sa,mﬁling width of the cooling system; stochastic cooling is essentially
not possible.

On the other hand, the coasting-beam theory predicts a different scaling behaviour:
the peak current [ ~ R~!; the momentum spread Ap/p ~ R71; therefore, the optimal

15



cooling rate is independent of R (eq. 39) in the case of bad mixing, as shown by the dash
line in figure 7.

The other reason that stochastic cooling for a short bunch is difficult is that the
synchrotron-frequency spread is small for particles of small synchrotron-oscillation am-
plitude (J). In the transport equation, this is taken into account by the factor d,/dJ.

It has been assumed in the bunched-beam calculation that ¢ < 1, which is valid when
particles are away from the separatrix (figure 1). On the other hand, it has also been
assumed that the particle density in longitudinal phase space vanishes near the separatrix
(eq. 24). In the case that the number of particles near the separatrix is not negligible,
the bunch behaves more like a coasting beam. Because particles near the separatrix have
larger momentum deviations compared with those near the center of the bucket, they are

more strongly aﬁ'ected;by the stochastic cooling.
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Appendix. Longitudinal Schottky Signal of a Bunched Beam

‘The current of the circulating beam can be written as

=g 3 36 (t _2mm _ ﬂ) . (42)

me—oo =1 wWo hwq

Substituting into eq. 42 the expression of synchrotron oscillation
28, ;
L), (43)

Wo
where ¢ is the initial phase of synchrotron oscillation of the jth particle, the Fourier

¢; = hwet; cos (

transform of I(t) becomes

oo N o
Iw)=qews >, 3 50 *Ip(—wr;)e™ i 6(w — muwg + kL, ;). (44)

m=—c0 j=1 k=—oco

Obviously, the width of the frequency spread of the kth synchrotron side-band is |k|
times that of the synchrotron-frequency spread of the bunch. The number of significant
synchrotron side—bands of the nth revolution band is 2nwyf.

Assume that initially particles are uniformly distributed in phase with (©?) =0, and
that different revolution bands are not overlapping. The power of the beam current at
the nth revolution baﬁd becomes

(I%(t)) = (gefo)’ [Zl Jo(nwot;)

S
+ Zl [1 - Jg(nworj)] . (45)

The first term in eq. 45 corresponds to the coherent signal at the multiple of the syn-
chronous revolution fréquency nfo. At high frequency (nwef > 1), this term is con-

tributed only from the particles of small oscillation amplitude,
nwer; <24, j=1,---,N. (46)

Nevertheless, because this coherent part is proportional to N2, it may be comparable to
the Schottky signal even at frequencies as high as the microwave cutoff frequency of the
vacuum pipe. The second term in eq. 45 corresponds to the so-called Schottky power. In
contrast to that of a coasting beam, the Schottky power at different revolution band n is

not the same. Nevertheless, at high frequency (nwo? > 1) it is very nearly a constant.
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FIGURE CAPTIONS
Figure 1. The parameter ¢ as a function of relative phase-space area J/Jpq0-

Figure 2. The bunch-area reduction rate as a function of initial bunch area, evaluated by

numerically solving the bunched-beam transport equation.

Figure 3. The amplifier power required to achieve the optimal cooling rate, as a function

of the initial bunch area to the 4th power.

Figure 4. The time evolution of the particle density distribution in J during the longitu-

dinal stochastic-cooling process.
Figure 5. The reduction in bunch area as a function of time that corresponds to figure 3.

Figure 6. The momentum-spread reduction rate as a function of the equivalent initial

bunch area, calculated by numerically solving the coasting-beam transport equation.

Figure 7. A comparison of the optimal cooling rate obtained from the bunched-beam and

the coasting-beam theory, respectively.
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