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Strangeness evolution in the central region of a heavy ion 
collision with transverse flow effects 

. .  

K. Kajantiel, M. Kataja2 and P. V. Ruuskanen2 

Abstract 

Strangeness evolution in the central region of an ultra-relativistic nucleus-nucleus col- 
lision is studied by using a numerically computed boost invariant cylindrically symmet- 
ric hydrodynamic flow. Kinetic equations describing the evolution through quark-gluon 
plasma, mixed and hadron phases are derived. With reasonable collision terms the conclu- 
sion is that the strangeness density (=weighted sum of the strange quark density and the 
s u m  of K- and K" densities) evolves close to or up to a factor 2 below the equilibrium 
density until the end of the mixed phase. With transverse expansion the dilution of matter 
in hadron phase is so fast that strangeness creation and annihilation processes effectively 
decouple. This implies that the observed NK- /N, -  is rather independent of the assumed 
decoupling temperature and lies in the range 0.15 - 0.3. 

1) Academy of Finland and Department of Theoretical Physics, Siltavuorenpenger 20 C, 
SF-00170 Helsinki, Finland. 

2) Department of Physics, Seminaarinkatu 15, SF-40100 Jyv%kyla,Finland. 



A large relative strangeness abundance is often discussed as a signal for quark-gluon 
plasma [l - 21. Consider the baryon number-free central region, which probably is simpler 
than the baryon-rich fragmentation regions. For T; > rn, (= 150 MeV, for definiteness) 
one clearly must have nu = nG = n d  = nz = n, = nx, initially. To correctly assess the 
relative amount of strangeness, it is essential to include gluons and consider the ratio n,/s, 
s =entropy density. Furthermore, since the constant total entropy S of the event can .be 
measured by observing the multiplicity Ntot = S/c, c = 3.6 (neglecting mass effects in the 
hadron gas), an appropriate measure of the initial abundance is 

n, 3.6n, -e-- -0.095 N F = ~  

= 0.12 NF = 3, 
ntot S 

using ideal gas formula This is not very large. However, the experiments only observe 
the final strangeness and the question now is what happens to this initial abundance in 
the course of the hydrodynamic expansion. 

The behaviour of strangeness under scaling hydrodynamic flow of baryon-free QCD 
matter with a f is t  order equation of state has been discussed in [3] neglecting transverse 
flow. The aim of this letter is to derive kinetic equations describing the evolution of stran- 
gess through quark-gluon plasma, mixed and hadron phases for a general three-dimensional 
expansion of the system and to solve them numerically for a scaling cylindrically symmetric 
flow [4 - 51. 

The problem to be solved consists of different parts, which can be discussed separately: 
1. Equation of state, 2. Kinetics of the phase transition, 3. Computation of the flow, 4. 
Derivation of the collision terms describing the' processing of strangeness, 5.  Formulation 
and solution of the kinetic equations for strangeness evolution. For 1. we use the bag 
equation of state for a first order phase transition and for 2. we assume fast nucleation of 
the new phase with no supercooling or phase separation. All these are discussed in detail, 
say, in [3 - 51. For 3. we use the flows in [4] computed with the methods in [SI. For 4. we 
use the collision terms estimated in [3,6 - 71. The new element in the discussion is the 

' following solution for 5. 

Assume that we know the flow characterised by a certain initial temperature Ti and 
thermalisation time ri in a central collision of two equal large nuclei. As the first approxi- 
mation entropy is conserved in this flow. If mass effects are disregarded in the hadron gas 
at decoupling, the observed total rapidity density is given by (for T; > T,, the transition 
temperature ) 

1 



where a = 4.6 (for 2.5 flavours) and c = 3.6. If also the kaons were in thermal equilibrium, 
they would, for example, at .T = 140 MeV contribute ( K  + K) / (T  + K + R) = 0.32 to the 
entropy density. Knowing the flow is equivalent to knowing T(r ,  r )  and ur (T,  r )  and during 
the mixed phase the relative hadron volume fraction 

(3) 
42.25 

rdof = -* SQ 

SH 3 
-=  

The kinetic equations describing the evolution of the strangeness density now are as 
follows. In the initial quark-gluon plasma phase 

.- 

ar(n,u”) = tL”Lapns + ndaPd’ 
2 

= Rq(T(T,f))(1- (2) neq I, 

t 2 1 
up = ~ r ( ; , u r , O , - ) ,  r 7 r =  d m  

9 m 
2x2 T n”q(T) = -m2TK2(-), 

R,(T) is the collision term describing the gain and loss caused by the processes gg f-f sB 

is the rate of change of n, due ‘to the expansion of the fluid element in the comoving frame. 
We shall use the following approximation of ref. [3]: 

c and qq t+ sB 16- 71, upLapn, is the rate of change of n, in the comoving frame and n,6’pu’L 

2m, 1 4 

%(T) = 0.23 (z) eXP (- -jT- 1 fm4 
m, = 150 MeV 

and the initial condition (for all r < RA) 
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where T = Jm, r is the radial coordinate and SQ and s~ are the entropy densities at 
T = Tc, 

(4) 

where 

( 5 )  



In the mixed phase we have the pair of equations 

where nK = nK- + ngo. Note that the term giving the rate of change of n, due to the 
expansion of the fluid element in the comoving frame is missing in (7). The collision term 
Rh describes the effect of processes like KR t+ nn and and is only very phenomenologically 
known [3]. We shall use the simple approximation 

. 

where 0 is the pion annihilation cross section and which is a simplified version of the rate 
term in [3]. The initial condition for (7) at the interface between the quark and mixed 
phases is 

and thus the singularity h = 0 at the start of the mixed phase is cancelled. Finally, in the 
hadron phase the kinetic equation is just eq. (4) with n, and R, replaced by nK and Rh: 

The equations for the purely longitudinal scaling expansion are s a p l y  obtained from 
the above by the replacements 

d 
d t  ' upap -+ - 

The derivation of the mixed phase kinetic equations is based on the following argu- 
ments. Neglect first collisions entirely. Then the total amount of strangeness is conserved 
and in the mixed phase we have 
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a,{[(l- h)n, + hn~lu’) .  (11) 
This is one equation for n, and nK. To obtain separate equations for n, and n K  we 
must make further assumptions concerning the transmission of strangeness from the quark 
matter regions (droplets) to the hadron matter regions (bubbles) in the mixed phase. The 
discussion is actually similar to the discussion of the enrichment of net baryon number 
in the quark droplets in the quark-hadron phase transition in the early universe [8 - 91. 
We shall make the assumption that the quark-hadron interface is such that it transmits 
strangeness only in connection with a phase transition through the surface. Under sta- .- 
tionary conditions no strangeness would be transmitted and, e.g., the chemical potentials 
would not be equalised on both sides. The simplest scenario then is obtained by noting 
that the expansion in the mixed phase does not take place by decreasing n and T but 
by converting matter from dense quark droplets into less dense hadron bubbles at fured 
T = T,. Accordingly, the constancy of total strangeness is simplest to satisfy by assuming 
that stfangeness behaves just l i e  entropy density, Le., eq. (9) is satisfied with constant 
n, and ng over the entire mixed phase. Thus, without collisions, ufii3pns = 0. The cor- 
responding equation for n K  is obtained by inserting this to (11). This gives the kinetic 
equations (7) without the collision terms; adding them is straightforward. 

The separation of the kinetic equation (11) can also be carried out by assuming that 
even a stationary quark-hadron interface transmits strangeness and that, accordingly, the 
chemical potentials on the two sides of the interface can equalize if the transmission is fast 
enough [lo]. The condition p~ = p, is equivalent to 

and the two kinetic equations for the mixed phase are now given by (11) .and (12). In [lo] 
the equations are rather formulated in terms of p’s than n’s. Since nz/nzQ is numerically 
close to rdof ,  the two sets of equations give very similar results. 

The kinetic equations (7) differ from those in [3] in that those in [3] contain the dilution 
term -n,/t for n, also in the mixed phase, although expansion. in: the mixed phase does--- 
not take place by dilution but by conversion. This leads to a singularity in the equation 
for nK at the start of the mixed phase, h = 0. 

Next we shall solve the above system of first order partial differential equations in 
the two variables r and r (or ordinary differential equations in t for the no transverse 
flow ZI, = 0 case) and calculate the ratio of the final total strangeness to the h a 1  total 
multiplicity given by the following integral over the decoupling surface with the surface 
element da, : 

(13) 
d N x / d ~  - - J nxu’hp 
dNtot /dY  J-nuP’dap ’ 
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This is an experimentally observable quantity. 

Before giving the numerical results, we shall describe the qualitative behaviour of 
strangeness during the expansion by working out the solution of the kinetic equations in 
the v, = 0 case for the limiting cases R = 0 and R = co (fig. 1). Let us define the total 
strangeness density (denoted by n without a subscript in the rest of the text) 

n = (1 - h)n, + hnK, (14) 

where h = 0 in the quark phase, T; < r < SQ, h is given by eq. (2) in the mked phase, 
TQ < T < TH = r d o f T Q  and h = 1 in the hadron phase, TH < T.  As we are interested in 
to what extent strangeness can remain in chemical equilibrium during the expansion, we 
shall work out how n/neq behaves. 

Initially nu = nd x n, = n%q(T;) and n/neq = 1. If R, = 0, n is just diluted by 
expansion and 

The density n is thus not able to decrease as fast as neq and n/ncQ gfows. If R, = 00, n = 
ne,. The ratio between the two outcomes at T = Tc = 200 MeV is 

(The numbers are for a flow with T; = 500 MeV, ~i = 0.5fm, corresponding to d iV /dy  = 
26A.) Thus, during the quark phase, n/neq may grow slightly, but the increase is at most 
about 10% 

In the mixed phase we have four cases to study: (&,Rh) = (O,O), (co, 0), (0, CQ) and 
(c0,co). In the last case dearly n/neq = 1. Consider then (%,Rh) = (0,O). Direct 
integration of (7) gives 

where 

x 8.1 (T, = 160 MeV). 
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Thus n/neq decreases during the mixed phase if there are no collisions. Physically this 
follows from the fact that initially n,/nK = rdaf. If there are no collisions, the.ratio n,/nK 
will remain constant and during the mixed phase we have 

. The ratio n/neq then decreases from the initial value re = n,/n:q to the final value 
r,(req/rdof) = nK/nz. The other two pairs of values of %,Rh are worked out simi- 

. larly (fig. 1) 

Finally, if Rh = 0 in the hadron phase, n/neq again starts increasing. This happens 
since nz decreases' more rapidly with T because of mass suppression than nK, which 
decreases only due to dilution. How far n/neq will have time to increase depends on the 
details of the decoupling process. From fig. 1 one might think that the h a l  prediction 
is very uncertain. This is so for n/neq, but the crucial number is actually n/s, which, in 
practice, is remarkably insensitive to the decoupling temperature (see fig. 3b). The reason 
for this is that, in realistic cases, Rh is large in the mixed phase but decreases very rapidly 
upon entering the hadron phase. In the hadron phase little happens to strangeness, both 
n and 8 are just diluted and n/s is constant. 

The overall conclusion thus is that the final nK (= n K  just in the beginning of the 
hadron phase) will be near or at most a factor 0.5 times the equilibrium value. In thermal 
equilibrium we would have (gK counts the number of kaon types in nK; earlier we defined 
nK = n K -  + nRo, similarly gx) 

0.42 (T = 200 MeV) 

0.30 (T = 160 MeV) 
0.24 (T = 140 MeV). 

nK 

n, slr 
-= -  

The expected ratio NK-/NTc- is thus given by 0.5 ... 1 times 0.42 ... 0.24, depending on 
the decoupling temperature. Equivalently, the expected ratio ( N K + N ~ ) / ( N , + N K + N ~ ) ,  
summing over charges, would vary between 0.34 (Tdec  = 200) and 0.24 ( T d e c  = 140) to 
something less by a factor 2. There is a slight increase relative to the initial ns/ntot = 0.10, 
but not a large one. 

Numerical results for the evolution of the strangeness density for the case with trans- 
verse expansion are shown in figs. 2-3. For brevity, results are only presented €or the flow 
with T; = 500 MeV, ~i = 0.5 f rn  (corresponding to dN/dy = 26A for massless particles) 
and a &st-order phase transition with Tc = 200 MeV and rdof = 14 (fig. 2). If the 
equation of state is not of first order but a continuous one with as large a jump in entropy 
density ( s ~ / s ~  = 14), as indicated by lattice Monte Carlo calculations [ll], the overall 
pattern of the flow should be rather similar, only the large space-time region of constant 
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T = Tc = 200 MeV would be replaced by an equally large region in which T varies slowly 
around 200 MeV. 

* 

Figs. 3a and 3b show the ratios n/neq (eq. (14)) and 3.6n/s (3.6 is the appropriate 
factor for massless particles to convert s to multiplicity) with the rate terms as given in 
eqs. (5) and (8). Fig. 3c shows n/neq if the rate term in hadron phase is reduced by 
a factor 10 [ll]. Here neq and s are calculated directly from the flow; n is obtained by 
numerically integrating the kinetic equations (4-10). 

To obtain a number directly comparable with experiment, the flux across the decoup 
ling surface is calculated according to eq. (13). The numerical value of Nx/(N,+Nx+N&) 
(summing over charges) corresponding to Tdec = 140 MeV is, as can be estimated from 
figs. 3b and 3c, 0.15 for the full hadronic rate term Rh and 0.11 for the reduced term. 

These numerical results are in agreement with the qualitative discussion above (fig. 
1) and the estimates given on the basis of eq. (18). Because req/rdof < 1, the strangeness 
density falls below the equilibrium density in the mixed phase and remains the lower the 
smaller Rh is. In hadron phase a rapid increase of n/neq is seen. This happens because the.  
KI? reactions effectively freeze out due to the fast transverse expansion in the hadron phase 
leading to a situation where n decreases only because of the increase in volume, whereas 
neq decreases also due to  the mass effect. As a consequence of the above behaviour of n, 
n/s is essentially constant in the hadron phase and thus, in particular, the choice of the 
decoupliig temperature does not matter. 

The transverse flow affects the evolution of strangeness mainly by reducing the time 
scales in the problem. The quark phase is essentially unaffected. For the flow in fig. 2 the 
mixed phase in the u, = 0 case would last for 7.8 fm < T < 110 fm. The transverse flow 
reduces this timescale to less than 40 fm, which is essentially the same as the equilibration 
time scale (3). This leads to the factor of 2 uncertainty in the value of n/neq at the end of 
the mixed phase. The largest reduction in the time scales is in the lifetime of the hadron 
phase. Together with the rapid drop in densities,-caused by the shock at the mixed phase- 
hadron phase interface, this means that the transverse flow effectively cuts off the hadron 
phase from the processing of strangeness. 

Finally, with the calculated nK we may also discuss the predicted transverse momenta 
of kaons and, in particular, the mass effect. This question has earlier been discussed by 
assuming that nK = nZ(T,) along the decoupling curve [12]. The inspection of contour 
curves in figs. 3 shows, that on a large fraction of the decoupling curve, which for Tdec = 
140 MeV is shown as the dashed-dotted l i e ,  nK varies very little. This means, that the 
decoupling integral for the kaon multiplicity satisfies 

where nK/n? denotes the roughly constant value of this ratio on the main part of the 
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decoupling curve. Similarly, only the normalization of the decoupling integral for the 
PT -distribution [5,12] may change appreciably, but the shape and the resulting average 
value of transverse momentum, (pT), remain almost the same when n~ instead of n z  is 
used. The actual numerical results show a small decrease of (PT) (from 1.040 GeV for 
n z  to 0.996 GeV for nK with full Rh) and a sharpening of the PT -distribution. This 
can be understood to result from the fact that the region around the collision axis, where 
transverse velocity is small is, due to the longer timescale, relatively richer in strangeness 
( n ~  > nz) than the outer regions which flow fast and decouple so rapidly that nK does 
not reach the equilibrium value. 

Summarising, we have derived kinetic equations for the evolution of strangeness in tbe 
central region of an ultra-relativistic nuclear collision and solved them numerically for a 
longitudinally scaling and tranversally cylindrically symmetric expansion. The conclusion 
is that the strangeness density evolves close to or at most a factor 2 below the equilibrium 
density at the end of the mixed phase. In hadron phase the rapid increase of the volume due 
to the transverse flow leads to a rapiq freeze out of the strangeness annihilation reactions, 
making the final amount of strangeness rather independent of the other properties of the 
hadron phase. Depending on the details of the rates of the strangeness reactions and time.. 
scales of the flow, the final K/?r ratios will be L.3 times those obsemed in NN collisions. 
This conclusion is the same as that obtained with kinetic equations Ill] based on slightly 
different assumptions of the transport of strangeness through the quark-hadron interface. 

kaons are insensitive to the rate of strangeness reactions and the total amount of kaons. 
The shape of the PT -distribution and the average value of the transverse momentum of .” 

Acknowledgements: We thank J. Kapusta, T. Matsui and L. McLerran for discussions 
and correspondence. 
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Figure capt Ions 

Fig. 1 Qualitative behaviour of the total strangeness density n (eq. (14)) relative to its equi- 
Iibrium value nzcp  for possible combinations of vanishing or infinite strangeness equili- 
bration rates R, &d Rh in the. quark and hadron phases for the c+e of no transverse 
velocity. The quantities r,-joj,rcp,r,,rQ and ra are defined in the text. In realistic 
cases, Rh is large in the mixed phase and decreases rapidly after entering the hadron 
phase. Thus the hal value of n/ncQ will lie between the .Rh = 0 curves. To predict 
experimentally measurable quantities, n/s is needed and this ratio is constant in the 
hadron phase. 

Fig. 2 Curves of constant energy density in units of GcV/fms for a flow with T; = 500 MeV, 
ri = 0.5jrn and a first order phase transition with T, = 200 MeV and r d o j  = 14 [4] 
plotted in the proper time (here t) YS radial coordinate r plane. The mixed phise lies 
between the thicker curves with t = EQ = 3.6 and t = C H  = 0.20. The dashed-dotted 
curve corresponds to  T = 140 MeV, an approximation t o  the decoupling temperature. 

Fig. 3a The ratio n/ncq (n is the total strangeness density) for the flow in fig. 2 and with the 
rate terms es given in the text. The lines for Q , C H  and decoupling temperature are 
as in Eg- 2. The Iines close to the light cone are a n  artifact of the grzphics. 

3b The ratio n l (3 .6~)  for the flow in fig. 2 and with the rate terms as given in the text. 

3c The ratio riincq for the flow in fig. 2 and with the hadron phzse rate term in eq. (8) 
reduced by a factor 10. 

R, = Rh' /  

1 I 

Fig.1 
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