¢ Brookhaven

National Laboratory
BNL-102124-2014-TECH
RHIC/AP/13;BNL-102124-2013-IR

LAMBDA MANUAL

W. MacKay

October 1993

Collider Accelerator Department
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical
note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for
United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

RHIC/AP/13
October 1, 1993

LAMBDA MANUAL

Waldo MacKay, Steve Peggs*,
Chris Saltmarsh, Todd Satogata
Brookhaven National Laboratory

Fady Harfoush, Jim Holt*, Leo Michelotti,
Francois Ostiguy, Al Russell
Fermi National Accelerator Laboratory

Eric Barr, Haregu Ferede,
Selcuk Saritepe, Garry Trahern*
Superconducting Super Collider

*Names marked with asterisks are primary contacts at their institutions.

il

Contents
The LAMBDA Collaborationouuiuuneeeeeeaa e 1
0. INTRODUCTION ..ottt 2
0.1 Preambleoiiouiiiiiii i 2
0.2 Environment Variables and Pathcoovuniinnii 3
1 USERS GUIDE ..ottt e e 5
1.1 SYBASE Interface for Lattice USerso.uouvuuesensse 5
L1T dbsfUSage .oovvreei e e 5]
1.2 SYBASE Interface for Lattice Designersooeueeernoonoeenno . 6
1.2.1 copy.in, copy.out - copy lattice files in or out of a lattice database 6

1.2.2 strength.in, strength.out - copy strength tables in or out of a lattice database 7

1.2.3 Lattice Table Formatsooooiiiinniini . 8
1.2.4 dwb - The Data WorkBenchoooiriioeiin 9
1.2.5 dbsf Detailsoovveeeeiiii 10
1 SUIVEY L 11
L WSSttt e e 13
1.4.1 lattice function NAmMeSuieeunneeine 15
1.4.2 Structure of the SDS output file from twissoovnornrrnennenn. .. 16
LS Match ..o 17
1.6 Graphical User Interface (GUL)cooiiiiiieiinn e 17

1.7 Bus, Support.Points Tables and the Wireup Program 19

iv

2. DEVELOPERS GUIDE ...ttt e 21
2.1 Directory Structureooieuiiiuini et 21
2.2 Flat format interface - flatinoo i i 22
2.3 BeamLine class interface - readercooiiiiieiiii 23
2.4 flatin data structuresoooii i 23
2.5 Survey data structuresc...uiiiin i 29

2.5.1 Twiss data structuresooooiiiiiiiie e, 33
2.5.2 BeamlLine data structuresooiiiii i 36

3. SYBASE SYSTEM ADMINISTRATORS GUIDEooovuanen 37
3.1 Relational Databases and SQL for Lattice Description 37
3.2 Creating a lattice databasecoooiiiiin i 49
3.3 3sql SCTIPtS .« .vii 49

4. REFERENCGES i e 51

5. APPENDIX

The LAMBDA Collaboration

The purpose of the LAMBDA collaboration is to develop a set of numerical models of
accelerator performance, in a manner that allows simultaneous independent development
by different authors at more than one site. Therefore, LAMBDA consists of several code
modules that share common data structures, but that are compiled and run separately. In
this sense the modules are ‘Loosely Associated’. The collaboration makes its source code
publicly available at no charge, and is open to the contribution of compatible modules by
code authors anywhere.

The following list is limited to “active” LAMBDA collaborators - past or present code
authors who will respond to e-mail questions about bugs or features in code modules. How-
ever, the collaboration is very grateful to many other accelerator physicists and computer
scientists, not on the list, who have also contributed ideas and time to the project. They
know who they are.

Please address any questions concerning the manual, or comments about errors and

omissions, to Steve Peggs, peggs@owl.rhic.bnl.gov .

Brookhaven National Laboratory (BNL)
Waldo MacKay mackay@owl.rhic.bnl.gov
Steve Peggs* peggsQowl.rhic.bnl.gov
Chris Saltmarsh salty@owl.rhic.bnl.gov
Todd Satogata satogata@owl.rhic.bnl.gov

Fermi National Accelerator Laboratory (Fermilab)

Fady Harfoush harfoush@calvin.fnal.gov
Jim Holt* holtQ@calvin.fnal.gov
Leo Michelotti michelot@calvin.fnal.gov

Francois Ostiguy ostiguy@calvin.fnal.gov

Al Russell russell@calvin.fnal.gov

Superconducting Super Collider (SSC)

Eric Barr barr@fremont.ssc.gov
Haregu Ferede haregu@fremont.ssc.gov
Selcuk Saritepe saritepe@fremont.ssc.gov
Garry Trahern* trahern@fremont.ssc.gov

*Names marked with asterisks are primary contacts at their institutions.

0. INTRODUCTION

0.1. Preamble

Traditional accelerator codes read the optical structure of an accelerator from an ASCII
lattice file that has been written by a lattice designer. There are two significant disadvan-
tages to this arrangement.

First, there are many different lattice file formats. It is practically impossible to main-
tain a consistent and accurate description of a given accelerator, even if it is only of modest
complexity, when the description exists in.several parallel lattice files. One solution to this
dilemma has been the voluntary adoption of a Standard Input Format (SIF) by many codes,
including COMFORT, DIMAD, MAD, TEAPOT, TRAN SPORT, and more[A]. This has
not been completely successful, since there are many useful codes that do not conform to
the SIF convention, and since there are minor SIF variants that lead to incompatibilities
even between compliant codes. Another solution is to expand the functionality of a single
code to satisfy a broad spectrum of user needs. This tends to result in large unwieldy
codes that are inaccessible to the independent code developer.

The second disadvantage is that the ASCII interface is a compromise between the highly
structured view of the lattice designer, and the flat nature of data input and storage. The
lattice designer sees the accelerator heirarchically - (the machine has 6 sextants; sextant
A has 23 cells followed by one low beta insertion; a cell has an F and a D half cell; an
F half cell has an F quadrupole followed by 2 dipoles; et cetera). However, the computer
stores the lattice information in a flat list (F' quad, dipole, dipole, D quad, dipole, dipole,
...) and prefers to read it that way. At one end of the spectrum of compromises the code
input routines are relatively simple, but the lattice designer is frustrated by having to edit
a flat file containing much repetition of (perhaps) thousands of elements. At the other
end of the spectrum, the lattice designer is satisfied, but the input routines that parse the
complex syntax are long and complicated.

LAMBDA attempts to sever this Gordian knot by separating the files that the lattice
designer edits from the ASCII or binary files that the accelerator code reads. A wide
variety of lattice input formats may be generated from a single central description of a
particular accelerator by using the utility dbsf. These formats include not only the most
popular (highly structured) formats used by existing lattice codes, but also a very simple
“flat” format. Independent code developers adopting the flat format can access existing

accelerator descriptions with a minimum investment in lattice input routines. Intermediate

0. INTRODUCTION 3

data storage - between designer ASCII files and lattice input files - is in the form of tables
in a database in a Relational Database Management System (RDBMS). Thus, there are
three different kinds of LAMBDA user - the lattice designer/user, the code developer, and
the database system administrator. This manual is divided into three sections, addressing
to their different needs.

A lattice user needs to know how to generate a lattice input file in a particular format
by invoking the utility dbsf to translate from a set of database tables to that format. For
example, in order to get a Proton Therapy Accelerator (pta) lattice file pta.standard
ready for input to MAD, the user types dbsf pta > pta.standard. (The pta accelerator
and database is used for example and demonstration purposes throughout this manual.) A
lattice designer also needs to know how to generate the database tables that are in a one-
to-one relationship with the ASCII files that he or she writes or modifies. This procedure
is highly automated, requiring knowledge of two simple commands copy.in and copy.out
described below (and possibly two other commands, strength.in and strength.out). No
knowledge of the RDBMS is required.

Only the database system administrator needs to understand how to manipulate the
RDBMS package itself, in order to activate database accounts, construct empty databases,
et cetera. LAMBDA currently uses SYBASE to store the lattice database tables. SYBASE
has been selected for site wide general use at BNL, for the next generation control system
device database at Fermilab, and for technical accelerator specification at the SSC. A
number of SYBASE isql scripts have been written, so that even a SYBASE novice can
perform the usual tasks that are required to properly maintain lattice databases.

0.2 Environment Variables and Paths

Five environment variables need to be defined, and two path directories need to be
added, in order to have full LAMBDA functionality. At Fermilab, for example, the user
should add the following lines to his or her .cshrc file

setenv LAMBDA /usr/local/lambda,
setenv DBSF_DB pta

setenv DSQUERY CALVIN

setenv SYBASE /ust/sybase

setenv SYBASE_HOST hobbes

set path = ($path SLAMBDA /bin $SYBASE/bin)

Of course, the environment variables need different definitions at different sites. The

following table shows the appropriate definitions at the time that this manual was written.

0. INTRODUCTION 4

Name BNL Fermilab _ SSC
LAMBDA [usr/local/lambda /usr/local/lambda
DBSF_.DB — pta, —

DSQUERY CALVIN SSCMOP
SYBASE /usr/sybase /usr/sakura/sybase
SYBASE_HOST hobbes sakura

The directories SLAMBDA /docs, SLAMBDA /demos and $LAMBDA / lattices/pta are

open to the public and contain files of general interest.

1. USERS GUIDE

1.1 SYBASE Interface for Lattice Users

1.1.1 dbsf Usage

It is assumed that the user has set up appropriate environment variables, as described

above. For example, on the accelerator subnets at Brookhaven and SSC, the SYBASE

server is available over the network from any workstaion. So once the SYBASE and
DSQUERY environment variables are defined, dbsf should work properly. As usual in the

UNIX environment, typing dbsf results in a response describing the expected command

line syntax, as follows

dbsf: mandatory key option missing
usage: dbsf [-CSMs8egfFbtp] [-V view_flags] [-T str_tbl name] key [source_db]

-C
-d
-S
-M
-S
-8
-e
&
-f
-F
-b

-t

-pP

-V view_flags
-T str_tbl_name
key

source_db

output an SDS file

add dimension info to SDS file

output a SYNCH format file

output a MAGIC format file

conform to MAD 4.03 standards

conform to MAD 8.1 standards

evaluate expressions

group parameter, element and beam definitions separately
produce old flat file format

produce new flat file format

try to produce gradient & brho vals for elements in SYNCH file
this option must be run in conjunction with -S

output a TRACE3D format file

output a TEAPOT format file

character flags indicating which view rules to apply

run with the specified strength table

the name of the item to be defined

db to search (default is environment variable DBSF_DB)

For example, the trivial query dbsf pi results in the following response for almost any

lattice database

TITLE

! pta pi 08/24/92 14:15
pi := 3.14159265358979

This trivially conforms to SIF syntax. A more interesting response comes by saying

1. USERS GUIDE 6

dbsf -ge pta pta > pta.standard or dbsf -F pta pta > pta.flat.
If the environment variable DBSF_DB for the source.db has been set to pta, the second

of these commands reduces to dbsf -F pta > pta.flat. For more information, type man

dbsf.

1.2 SYBASE interface for lattice designers

You must be logged on to the SYBASE_HOST to run the following commands. For ex-
ample, at Fermilab type rlogin hobbes. It is also assumed that appropriate environment

variables have been set, as described above.

1.2.1 copy.in, copy.out - copy lattice files in or out of a lattice database

copy.in and copy.out are executable scripts in the $LAMBDA /bin area, which is
included in the users path if the appropriate environment variables have been set, as

described above. The appropriate syntax is

Usage: copy.out <table name>
Copies the table <table_name> out from the database specified by the
environment variable DBSF_DB, to a file DBSF_DB.table_.name. If

<tablename> = ‘all’, all tables are copied out.

Usage: copy.in <tablename> <sybase_password>
[sybase_user_name]
Copies in to the table <tablename> in the database specified by the
environment variable DBSF_DB, from the file DBSF_DB.table_name. If

<tablename> = ‘all’, all tables are copied in.

as can be confirmed by typing simply copy.in or copy.out . For example, with the
DBSF_DB environment variable set to “pta”, try typing copy.out all. You do not need
to have a SYBASE login to use copy.out. File names are automatically prepended by
the name of the database. For example, typing copy.out strength generates the file
“pta.strength” from the “pta” database.

In order to use copy.in, you must have appropriate permissions on the database, since
database tables are overwritten. This means that you must have access to SYBASE as the
database owner, or as the system administrator. By default, your SYBASE login name
is assumed to be the same as your UNIX login name. The copy.in script automatically

rebuilds the name_location table, so that subsequent calls to dbsf will work - unless there

1. USERS GUIDE 7

is a logical or syntactical flaw in the files that have been read in. (See below for a discussion
of file and table formats). File names are expected to be prepended by the name of the
database. For example, the command copy.in geometry password will fail to refill the
table “geometry” in the “pta” database, unless there is a file named “pta.geometry” in the
local directory.

Uploading and downloading assumes that “bulk copying” has been enabled for the
lattice database by the Sybase system administrator or database owner, when the (empty)
database was created. It also assumes that the default user, “lattice_reader”, has access

to the database. In principle this is all transparent to the lattice designer.

1.2.2 strength.in, strength.out - copy strength tables in or out of a lattice

database

A single database may have many different strength tables associated with it. For
example, the Tevatron goes through as many as 17 “steps” during the “low beta squeeze”
from injection optics to collision optics (see $SLAMBDA /lattices /tev_92). Consequently, it
is necessary to be able to manipulate files with the format of strength tables, but with
arbitrary file name extensions after the database prepend. For example, the strengths for
step 12 of the Tevatron low beta squeeze are loaded into the “tev_92” database by saying
strength.in step.12 password, assuming that a file “tev_92.step_12” is present, and
that DBSF_DB has been set to “tev_92”.

Legal syntax for the scripts, which are also in $LAMBDA /bin, is essentially the same
as for copy.in and copy.out. Typing strength.in or strength.out produces

Usage: strength.in <table name> <sybase_password>
[sybase_user_name]
Copies in to the strength table <tablename> in the database specified by the
environment variable DBSF_DB, from the file DBSF_DB.table_name. The strength
table is either overwritten or, if necessary, created. You MUST be the database owner

to create a table.

and Usage: strength.out <table_name> Copies the strength table
<table_name> out from the database specified by the environment variable

DBSF.DB, to a file DBSF_DB.table_name .

1. USERS GUIDE 8

1.2.3 Lattice table formats

The ASCII files that copy.in (or strength.in) operates on must be properly formatted
in order for the newly constructed database to perform properly. This is the responsibility
of the lattice designer. A “hands on” way to learn the structure of the lattice tables,
and the way in which they interact is to study how the lattice design files in the di-
rectory SLAMBDA /lattices/pta relate to the “pta” lattice input files by applying dbsf
and copy.out appropriately. See the files in $LAMBDA /lattices/tev_92 for a relatively
complex accelerator. For a pedagogical and complete description the legal element types,
coordinate conventions, etcetera that dbsf conforms to, see the manual for MAD, version
8.03, and (for linac style elements) see the TRACE3D manual. For a terse description, see
the section “flatin data structures”, below.

There is a one-to-one correspondence between ASCII files and database tables. The
tables consist of several rows with a fixed number of columns. Usually the first column
is required to be filled with a unique “key” entry that is alphabetically sorted inside the
database. Therefore, saying copy.in all password, followed by copy.out all results in
alphabetized ASCII files. One row in a table corresponds to one line in an ASCII file,
terminated by a newline (carriage return). Columns in the ASCII files are separated by
tabs. Even if columns in a particular row are NULL (empty), the correct number of carriage
returns must be present. The two most common causes for copy.in or strength.in to fail
syntactically (with “bep” errors reported to the screen) are the wrong number of tabs on
a row, and a superfluity or a deficit of newlines.

Formal definitions of the table (and hence file) structures may be found in the directory
$LAMBDA /sybase/formats . For example, the contents of the file “geometry.fmt” are

4.0

4

1 SYBCHARD 20 “ “ 1 name

2 SYBCHAROD 15 “ “ 2 value

3 SYBCHARD 90 “ “ 3 definition
4 SYBCHARO 130 “\n” 4 comment

In this case the first column contains the “name” of a geometry variable, with a maximum
length of 20 characters, et cetera. The file SLAMBDA /lattices/pta/pta.geometry, reported
verbatim, is '

banglamb —0.177923 Horizontal Lambertson bend angle

bangle pi/ 8.0 Bend angle of a dipole (m)

11 0.36 Length of quad 1 in nozzle

1. USERS GUIDE 9

12 0.72 Length of quad 2 in nozzle

121 0.0 Length from quad 2 to 1 in nozzle

13 0.36 Length of quad 3 in nozzle

132 0.0 Length from quad 3 to 2 in nozzle

14 0.2 Length of quad 4 in nozzle

143 1.4 Length from quad 4 to 3 in nozzle

lbpm 0.0 Length reserved for a Beam Position Monitor (m)
ldcorr 0.1 Magnetic length of a dipole corrector (m)
ldipare 0.88 Magnetic arc length of a dipole (m)

dlamb ldiparc—Ilamb Length of drift complentary to Lambertson (m)
free 0.28 Length of free space for correctors, etcetera
Ihalf ldiparc+lquad+lfree Length of a regular half cell (m)

lhalfl llong+lquad+lfree Length of a long half cell (m)

llamb 0.4 Magnetic length of horizontally bending Lambertson (m)
Hong 2.18 Length of empty drift in long cells

Ipatient 1.2 Length from nozzle quad 1 to patient

lquad 0.14 Magnetic length of a quadrupole (m)

lquart 0.5*(lhalfl—lquad—14) Length of drift before quad 4in nozzle

lsext 0.1 Magnetic length of a sextupole (m)

Ix1 1.386 Length of first drift in lengthener (m)

1x2 1.227 Length of second drift in lengthener (m)

pi 3.1415926535897931 Well known geometric constant

Note that the columns do not line up, since the column entries have variable length.

1.2.4 dwb - the Data WorkBench

Direct access to a lattice database in SYBASE is possible through the proprietary dwb
X windows menu driven interface so long as the user has a SYBASE login and appropriate
permissions on the database in question. It is possible to completely avoid use of the
copy.in, et cetera, scripts, by using dwb and its various facilities. However, most lattice
designers use dwb only rarely (if at all) as a powerful debugging tool that allows access
to the guts of the database.

The use of dwb is described in great detail in the SYBASE manual “Data Workbench
Users Guide”, although it is possible to understand much of its functionality without refer-
ring to the manual. In order to use dwb, the user must be logged on to SYBASE HOST.

For example, a user at Fermilab, sitting at a workstation “garfield”, must say

1. USERS GUIDE 10

rlogin hobbes

cd appropriate_directory
setenv DISPLAY garfield:0.0
dwb

The third line here is commonly required to run X windows across a network. This fails
if “garfield” is not open to displays generated by “hobbes”. In this case type xhost+ on

“garfield”, a command which may also be included in the users “.xinitre” file.

1.2.5 dbsf Details

This section is included to illustrate and explain some of the less intuitive data base
to output format that dbsf implements. (The reader may want to peruse the SYBASE
System Administrator section before continuining.)

multipoles are included in the data base with their KnL and Tn multipole moments.
Blank or NULL fields are assumed to be zero. A ¢\’ in one of the Tn locations is meant
to designate a skew moment with angle PI/(2n+2). A ¢\’ in any field other than a Tn
field is reported as an error by the various output routines. Standard input format can
specify multipoles easily with skew moments represented by Tn values without numerical
assignments. That is, “mmm: multipole, k11 = 1, k2] = 2, t1, t2 = .1” where t1 is a skew
moment. SYNCH however can only designate multipoles with single multipole moments
and skew or 0 tilt values. This is overcome by declaring an NPOL for each moment with
the skew bit set if it is a skew, or alternately a ROT for arbitrary moment rotations. The
flat format prints the KnL and Tn values as a list of evaluated values. If the moment
is skewed, the value of PI/(2n+2) is evaluated and printed. MAGIC and Trace3d ignore
multipoles.

kicker elements are kicks in both planes. This is trivial in SIF as it is an element type.
However, SYNCH kicks are zero length, single plane elements. To solve this, a drift space
of length origlength/2 is declared, followed by a kick for each plane and another drift
space. These are combined into a beam line which is named after the original element.

extended data tables have been added to accommodate elements with more at-
tributes than will fit in the magnet_piece table of the database. The second function of
these tables is to prevent the overloading of the strength column of the magnet_piece table.
Currently, it is used to hold angles, multipole moments, kicks, frequencies and electrostatic
field attributes. In any case, if data is found in the extended tables for a given element, it
is used in place of the info in the magnet_piece table. In the case of multipoles and kickers,

additional info must be included or an error message is printed.

1. USERS GUIDE 11

1.3 Survey

The correct syntax for using the survey command is found by typing survey with no

arguments, with results as follows.
Usage: survey [-fhu] [-T transverse_size_file name] flat_file_name

‘flat file_name’ contains lattice information in ‘Aat’ format

‘transverse_size_ file_name’ contains transverse size information Default units are
meters

-f for output in international feet [1 inch = 2.54 cm]

-u for output in US survey feet [39.37 inches = 1 m]

-h turns off file headers

-T transverse_size_file name to read transverse sizes of elements

‘survey’ also expects to find a 'survey.cmd’ file containing commands

At least two input files must be present for survey to function properly. The first is
“flat file.name”, a lattice file describing a beam line in flat format, generated by saying,
for example, dbsf -F beam line > flat_file_name. The second is a control file, “sur-
vey.cmd”, which contains commands in a syntax described below. A third file describing
the shape and transverse size of magnetic elements of the beam line may also be input.
This file conforms to the format found in $LAMBDA /sybase/formats/magnet_size.fmt .
See SLAMBDA /lattices/pta/pta.magnet_size for a working example.

As many as five files may be output from survey, including three files in TOP-
DRAWER graphics format, if “survey.cmd” file contains the appropriate commands. A
file called “survey.log” is always output, to give the user a way to trace the operation
of survey should something go wrong. If the command keyword “survey” appears in
“survey.cmd”, then survey coordinates and angles are sent to the standard output. If the
command keyword “topdrawer” appears, then three files in TOPDRAWER graphics for-
mat are generated -“plan.top”, “side.top”, and “end.top”, representing three projections
of the beam line.

Figures 1, 2, and 3 show plots from three such graphics files that may be found in
the directory SLAMBDA /demos area. They would be produced, for example, by saying
survey -T pta.magnet_size pta.flat, when “survey.cmd” contained the following three

active lines, as well as several comments

! comment line following an exclamation mark

survey

1. USERS GUIDE 12

topdrawer !comment following an exclamation mark
stop

several more lines of comments and notes

Legal syntax in the “survey.cmd” file is demonstrated in the file
SLAMBDA /demos/survey.cmd. In the following formal descriptions of allowable syntax,
square brackets [] enclose optional arguments, and a pound sign # represents an alphanu-

meric number. The commands are case sensitive.

origin [x #] [y #] [z #] [fi #] [si #] [# theta] [s #]

Move the geometrical location of the beginning of the beam line to the specified location.
Coordinate conventions are exactly as described in the MAD manual, version 8.03 . Moving
the origin is useful when working in absolute coordinates, for example, relating several
beam lines to each other in laboratory site coordinates. It is also useful in making isometric
graphic projections that are often easier to visualize than the three simple projections of a
beam line. For example, Figure 4 is an isometric view of the PTA accelerator corresponding
to Figures 1 through 3.

print [element_name] ... [element_name] [all] [#s/e]
Print survey coordinates in the standard output file only at the named magnet elements
(and the beginning and end of the beam line). Including “all” or “#s/e” in the list of

names guarantees that coordinates will be printed at .all elements.

stop
No more of the “survey.cmd” file is read beyond this statement, and survey exits success-

fully.

survey
Coordinates are calculated, stored, and reported to the standard output after this com-

mand has been given.

topdrawer

Create the three TOPDRAWER graphics files “plan.top”, “side.top”, and “end.top”. This
command must be preceded by a “survey” command. To find out more about how to handle
TOPDRAWER graphics locally - for example, to make a landscape postscript file from a
portrait TOPDRAWER file - see the file $LAMDA /docs/topdrawer. README .

Anything after stop is ignored. Anything after an exclamation point ! anywhere in a

line is a comment. Blank lines are skipped. The following characters {// (a space), \t (tab),

1. USERS GUIDE 13

&, =, %} are interpreted as breaks between command line arguments . Command lines
may not include a newline (\n, carriage return). For more information, see the section

below titled “survey data structures”.

1.4 Twiss

The program twiss calculates lattice functions (Twiss functions, etc.) from a lattice
description which is either in the FLAT or SDS formats. Two input files must be present
for twiss to function properly. The first is an input file which specifies the lattice either in
FLAT or SDS format. The lattice_file file may be generated by the command:

dbsf -switch beam_line > lattice_file
where switch is either -F for the FLAT format or -C for the SDS format. The second
is a control file, twiss.cind , which contains commands in a syntax described below. A
third file may be specified inside the twiss.cmd structure, if the input Twiss parameters
to a beam line are the periodic conditions of a subsidiary line.

The correct syntax for running twiss is found by typing twiss with no arguments,

which results in the following message:

Usage: twiss [-ghsv] flat_file name
flat.filename is a beam line in ’flat’ or ’SDS’ format
-g to format standard output like ’tev_config’
-h to NOT send headers to standard output
-s to use shared memory rather than disk files
-v for verbose logging output to ’twiss.log’

twiss also expects to find a ’twiss.cmd’ file

For example, typing

setenv DBSF DB pta

dbsf -C pta

twiss -s pta.pta
would calculate lattice functions for the pta beam line from the pta database using an
SDS format input file.

In addition to stdout, as many as four files may be output from twiss, including a file in
TOPDRAWER graphics format, if the twiss.cmd file contains the appropriate commands.
A file called twiss.log is always output, to give the user a way to trace the operation of twiss
should something go wrong. If the command keyword twiss appears in twiss.cmd, then
Twiss functions are sent to the standard output. If the command keyword topdrawer

appears, then the TOPDRAWER graphics files twiss.top, side.top, and end.top are also

1. USERS GUIDE 14

generated. An SDS file Twiss is written with the values of the lattice functions at the
end of each element in the beamline. The -s switch causes twiss to use shared memory
rather than disk files for the lattice description input file and Twiss output file.

The twiss.cmd file consists of a list of action commands with arguments and com-
ments. A comment is considered to be anything on a line after an exclaimation point
M.

In the following formal descriptions of allowable syntax, square brackets ([]) enclose op-
tional arguments. An ellipsis (...) is used to indicate repeated arguments. The command
interpereter is case sensitive, so the commands should be typed in lower case as shown.
An idtalic font is used to indicate a choice of values. Specific file names are indicated by a
bold slanted font.

Here is a description of the possible commands, followed by the possible choices for
some of the command parameters.

1. deltap wvalue

Set the off-momentum parameter delta_p/p_nominal to a desired value.
2. gammat_sens
3. initial offset

where offset_par is one of the following offsets:

s_offset: s-offset
mu_x_offset: fz-offset
mu_y_offset: py-offset

4. initial [lattice_function value [,...]]
Set the initial Twiss parameters and beam envelope parameters at the beginning
of the main beam line to be these values. Another way to set them is to use the
periodic command (see below). Default values are beta_x = beta_y = 1.0, all
others zero. Acceptable entries for lattice_function are given in Section 1.4.1.

5. periodic [second_flat_filename]
Signifies that the initial Twiss parameters are to be taken from the periodic solution
of a beam line. If no additional argument is given, the periodic solution for the
main beam line is used, but if a second valid flat file name is given, then its periodic
solution will be used.

6. s_offset value
Adjust the initial azimuth of the beam line to the specified value.

7. twiss
T'wiss parameters are calculated, stored, and reported to the standard output after

this command has been given.

10.

11.

1. USERS GUIDE 15

football [football_par] [,...]
The football command propagates the beam envelope functions. It is similar to
the twiss command, except that it accepts arguments which specify the various
functions to be tabulated in the stdout output file. If no footbal l_par’s are specified,
it prints the standard ten functions: B, as, By, ay, 1z, 74, ps/ (27), and py/ (27).
The acceptable entries for football_par are discussed in Section 1.4.2.

topdrawer
Create the TOPDRAWER graphics files twiss.top. This command must be pre-
ceded by the command twiss . To find out more about how to handle TOP-
DRAWER graphics locally — for example, to make a landscape postscript file from
a portrait TOPDRAWER file. (See $LAMDA /docs/topdrawer. README.)

stop
No more of the file twiss.cmd is read beyond this statement, and twiss exits
successfully.

print [element_name]

print all

print start/end
Print survey coordinates in the standard output file only at the named magnet
elements (and the beginning and end of the beam line). Including all or start/end

in the list of names guarantees that coordinates will be printed at all elements.

Anything after stop is ignored. Anything after an exclaimation point (1) is ignored as

a comment. Blank lines are skipped. White space (tabs and spaces), as well as ampersands

(&), equals signs (=), and percent signs (%) are treated as breaks between arguments.

1.4.1 lattice_function names

Valid names for lattice_function are the usual uncoupled lattice functions (Twiss pa-

rameters and dispersion functions):

e ol

beta_x: Bz ()
beta_y: By (s)
alfa_x: ag ()
alfa_y: ay (s)
eta_x: Nz (8)
eta_y: 7y (s)
eta_xp: . (8)
ctayp: ()

and the beam envelope correlation functions:

9.

XX <.’U2>

10.
11.
12.
13.
14.

15.

16.
17.
18.
19.
20.
21.
22,
23.

24.

25.
26.
27.
28.
29.

XXp: (za')
Xy: (zy)
Xyp: (zy')
XZ: (zz)
Xu: (z6)
N
Xpy: (z'y)
Xpyp: (z'y')
Xpz: (z'2)
xpu: (z6)
yy: (y*)
Yyp: (yy")
yz: (yz)
yu: (y6)
YPYP: < (y’)2>
ypz: (y'2)
ypu: (y'6)
zz: (22)
Zu: (z6)
uu: (6%)

1. USERS GUIDE

16

Valid names for football_par are the same as for lattice_function with the additional

eta_z: (This is here for completeness, although it is not really Nz)-
eta_1: = 1, unless there is a longitudinal kick.

functions:

30. gamma. x: ¥z ()
31. gamma_y: Yy (8)
32.

33.

34. mu_x: piz ()
35. mu_y: Ly (8)

1.4.2 Structure of the SDS output file from twiss

The SDS output file Twiss contains two c-structures of the following typedef’s:

typedef struct { /* Recognized by SDS as ¢‘Twiss_input_file’’ */

char filename[40];
} flat_file;

typedef struct { /* Recognized by SDS as ¢ ‘Twiss’’ */

lattice_index;

int element_index;
int type-index;
double pathlen;
double beta. x;
double alfa x;
double gamma_x;
double beta.y;

1. USERS GUIDE 17

double alfa.y;
double gamma_y;
double eta _x;
double eta xp;
double eta y;
double eta_yp;
double eta_z;
double eta_l;
double mu_x;
double mu.y;
double bm_xx;
double bm_xxp;
double bm_xy;
double bm_xyp;
double bm_xz;
double bm_xu;
double bm_xpxp;
double bm xpy;
double bm_xpyp;
double bm_xpz;
double bm_xpu;
double bm_yy;
double bm_yyp;
double bm_yz;
double bm_yu;
double bm_ypyp;
double bm_ypz;
double bm_ypu;
double bm_zz;
double bm_zu;
double bm_uu;
} opticl];

1.5 Match

1.6 Graphical User Interface (GUI)

The LAMBDA graphical user interface (GUI) makes a bare-bones, no-frills, minimal
options set of primitive LAMBDA modules immediately available to a novice or infrequent
user as painlessly as possible. With it, he can pull a lattice out of the database,write it
to a file in a number of formats, and use the file as input to other LAMBDA modules.
On invocation, the interface appears iconified, as shown in the upper right of g. Upon
opening the icon, the user is presented with three primary buttons labelled “Lattice,”
“File format,” and “LAMBDA modules.” Briefly, the functions of these buttons are:

1. USERS GUIDE 18

* Lattice

The menu and submenus attached to this button allow the choice of a lattice that has
been installed in the database. When the desired lattice has been selected, its SYBASE
name appears in the “Lattice” text field, under “Current settings.” Rather than use this
button or the others, the user can simply write that name into the text field (if he happens

to know it). Entering a carriage return then selects it.

* LAMBDA modules

Modules are invoked by choice within the “LAMBDA modules” menu. If the user has
not yet specified enough information to call a module, the GUI aborts the request and

asks for the necessary input. The Lambda modules which currently exist are:

survey Produces a two-dimensional pictorial representation of the accelerator or

beamline as it is geometrically laid out.

extract Uses the dbsf module to read a lattice from the database and write an ASCII
(or SDS) lattice file in a chosen format.

twiss Computes and graphs the linear lattice functions.

As other modules come into existence they will be added to the menu.

* File format

Selecting “extract” produces a lattice file in one of a number of formats. The “File

format” menu enables the user to select one of the four currently supported by dbsf: MAD,
SYNCH, SDS, and FLAT.

Figure 1 caption.Clicking on the “About Lambda” text field produces a short message
listing the authors of the various LAMBDA modules and how to contact them. The
Lambda GUI was programmed assuming OPEN LOOK widgets. It will work with a Motif
window manager, but it will not work on a DEC workstation since it is not compatible with
Digital’s mouse. The user must be logged on to a computer that has access to SYBASE
and dbsf. At Fermilab this is HOBBES.

1. USERS GUIDE 19

1.7 Bus, Support_Points Tables and the Wireup Program

As an optional structure we have provided the ability to describe the ganging of mag-
nets on power supply buses in the lattice database. This structures uses two additional
tables, bus and support_points, as well as the SDS output from DBSF. The program
WIREUP uses both the lattice SDS and these two tables to create another SDS dataset
which assigns to each element a bus name, a sequence number on that bus starting from
the point where the power supply bus enters the lattice, as well as a current (I) orientation.

A complete description of how to use the WIREUP program is contained in the
WIREUP manual page. Please refer to it for step by step usage and examples.

The SQL for the bus and support_point tables is

create table bus

(name char(20),

level char(1) null,
elements varchar(150) null,
comment, 130) null)

create unique clustered index %us_lnggx ofr bus(name)

go

create table support_points

(name char(20),

type varchar(20),

system_name varchar(20),

displacement varchar(20) null,
comment, varchar(130) null)
go

create rule level rule
as @level in (‘r",'1",¢’,'x’,‘0")

go

sp-bindrule level rule, “bus.level”

go

grant select on bus to public
grant select on support.points to public
go

1. USERS GUIDE 20

A bus is a pattern of magnets with the current either flowing to the right or the left
with respect to a given (say clockwise = right) direction through the lattice. The bus can
be described just like a beam line, i.e., as a sequence of elements, but unlike a beam line
the bus only includes the lattice elements which are on the specific bus. It it the job of
WIREUP to associate a given bus with the lattice. By assigning to each sub pattern of a
bus the level ‘r’ or ‘I, one can build up any current configuration with the proviso that a
given magnet is only on one bus.

To correlate the bus with the lattice requires the addition of markers to the lattice
description by modifying some of the beam lines or slots. There are two kinds of support
points that WIREUP understands. One is called ‘masterps’ and the other is “urnaround’.
In the magnet_piece table both of these bus support points are declared to be of type
marker. The turnaround marker is located at the left most part of its bus in the lattice
and the masterps marker is located at the point in the lattice where the power supply
line enters the lattice. The numerical sequencing of magnets on the bus will initiate at
the masterps location. These two markers need not be entered into the bus table. The
relation between the support_points table and the bus table is established by the value of
the system_name column of the support_points table. The system_name and bus name
should correspond for the appropriate support points.

Finally, for WIREUP to function properly the name column from the bus table must
be inserted into the name_location table. Because of the unique index on the name column
of the name_ location table, one must choose bus names that do not conflict with any other

names used in the lattice description.

2. DEVELOPERS GUIDE

2.1 Directory Structure

$LAMBDA /bin
$LAMBDA /demos
$LAMBDA /docs

$LAMBDA /gui

$LAMBDA /include
SLAMBDA /Iib

$LAMBDA /sybase

contains executables and scripts.

contains example files, and is a good place to play around in.
contains README files and useful documentation, including
this manual.

contains

contains all include files, include_file_name.h .

contains liblambda.a, a library of object files. It should be
unnecessary to link to object files in any other directory.
Source code for the various modulesis found in the appropriate
module directory, such as SLAMBDA /flatin, for example.
contains isql script files, and a subdirectory, /formats, that
contains the formal definitions of the lattice database

tanles/files. Obsolete scripts may be found in the /save subdirectory.

ADD DIRECTORIES AND COMMENTS

2. DEVELOPERS GUIDE 22

2.2 Flat format interface - flatin

The program DBSF can extract the database lattice information in two types of flat
formats. One is a flat ASCII format and the other is a flat SDS format. The “fatin”
function opens and reads the flat format file produced by dbsf, dynamically allocates
memory, fills the lattice structures and returns a pointer table so that the application can
access the data. The “flatin_sds” function does the same thing except the input file is an

SDS file. Both functions have the same passing parameters:
status = flatin(char * file_name, flatin_data *my_data);

where the “filename” is the name of the flat file and “my_data” is a pointer to the lattice
structures pointer table.

A sample program using the flatin function call is:

[FHRFEHIRRIEEEE This demo demonstrates and tests flatin.c functions Rk ok |

#include “flatin.h”

main(argc, argv)
int argc; char **argv; {
flatin_data my_flatin_data;

char *file_name;

char latfile NAME_MAX];

if ((arge 1= 2) {
printf(“Usage: flatin_demo flat_file_ name0);
printf(”flat_file name is a beam line in *flat’ format0); exit(1); } else {

file name = *(argv+1);

strepy(latfile,file_name);

}

if (flatin(latfile,&my flatin_data)) {
printf(“found4-5d parameters,4-5d elements,”,
my flatin_data.number_of parameters,
my flatin_data.number_of_elements);
printf(“5-5d elements in the beamline0,

my flatin_data.number_of lattices);

}

2. DEVELOPERS GUIDE 23

exit(0);
}

/***/

This program can found in $LAMBDA /flatin as flatin_demos.c

2.3 BeamlLine class interface - reader

2.4 flatin data structures

There are five structures which are used to describe a lattice. They are parameter,
element, atom, legal_type, and row.

The parameter structure as its name implies, holds the name and value of all of the
parameters extracted for a particular lattice. Also, if an element has more than a length,
strength and tilt, the additional values are stored in the parameter structure.

The element structure is the basic unit of the lattice. Each element has a name, a
type name as defined in the legal_type structure, and possibly a length, strength and tilt.
If length, strength or tilt is defined from a parameter then both the value and index into
the parameter structure variables are filled in. If there are additional parameters beyond
length, strength and tilt, then npars is nonzero and more_index points to the location in
the parameter structure where the additional parameters are located. These parameters
are placed consecutively.

An array of atom structures constitutes the lattice. In the structure is an index to
the pertinent element structure and an index to the element type. The other variables
are not used by flatin.

The legal_type structure is a pre-initialized structure which lists all of the available
element types and the characteristics associated with that element.

The row structure is also a pre-initialized structure which contains a list of the addi-
tional parameters for the elements which have more than length, strength and tilt.

The following is a direct reproduction of the file SLAMBDA /include/flatin.h.

**

#ifndef FLATIN_H
#define FLATIN_H

#define LATTICE_ BASE_LEVEL 0

of

2. DEVELOPERS GUIDE 24

#define LATTICE_SLOT_LEVEL 1
#define LATTICE_SUPERSLOT LEVEL 2

/™ These define the row_struct array without using can pointers: somewhat wasteful

space but will allow fairly easy

transport between programs and languages even without SDS
*/

#define NAME_MAX 64

#define COLUMN_MAX 22

/* These two are not needed if SDS is used. If SDS isn’t used, they should be derived

so we presume lattice_inits.h has been loaded..... */

#ifndef SDS_MAGIC
#define SDS_MAGIC
#define NUMBER_OF_COLUMN_ENTRIES sizeof(row)/sizeof(row_struct) -1
#define LEGAL_ TYPE_COUNT sizeof(legal_type)/sizeof(legal struct) #endif

typedef struct {
char name[NAME_MAX];
double value;

} parameter_struct;

typedef struct {

char name[NAME_MAX];
char type[NAME_MAX];
char sub_type[NAME_MAX];
double length;

double strength;

double tilt;

int typendex;

int npars;

int length.index;

int strength_index;

int tilt index;

int more_index;

} element _struct;

2. DEVELOPERS GUIDE

typedef struct {

double s;

int element_index;

int typeindex;

int occurence;/* not filled by flatin */
int level;/* not filled by flatin */

int hook.index;/* not filled by flatin */
int sense;/* not filled by flatin */

} atom_struct;

typedef struct {

char name[NAME_MAX];
int has_length;

int has_strength;

int has_tilt;

int has_more;

} legal struct;

typedef struct {
char name[NAME_MAX];
int cols;

char heading{ COLUMN_MAX][NAME_MAX];

} row struct;

typedef struct {
int morend;
double attribute{ COLUMN_MAX];

} more_struct;

typedef struct {
parameter_struct *parameter_ptr;
int number_of_parameters;
element_struct *element_ptr;

int number_of_elements;
atom.struct *atom.ptr;

int number_of_atoms;

legal struct *legal type_ptr;

25

int number_of legal types;

row_struct *row_ptr;
int number_of rows;
} flatin_data;

#endif /* FLATIN_H */

2. DEVELOPERS GUIDE 26

Seskeok sk sfeokoskok sk sk skokosk sk ok sk sk skeok sk skokesk sk sk sk skoskeskeok sk stk sk stk sk seske stk sk steskeokeskesk sk sk sk skokske sk stk skeok sk sk s skoke sk sk ok ok skokok sk ok

The pointer table of type flatin_data is the main interface with programs that call

flatin.

The structures legal type and row are filled with fixed values, read from the file
$LAMBDA /include/lattice_inits.h that is reproduced below.

Feakeskskokookok sk skoskeskok skok ok sk ok sk sk sk sk ste s sk sk sk sk sk stttk skeskesk sk sk sk ok ok o sksk st sk sk sfe e s s s sk sk sk sk sk sk sk sk sk sk s sk sk ok sk sk sk kst sk ok

#ifndef LATTICE_INITS_H
#define LATTICE_INITS_H

legal_struct legal type[] = {

“un
?

“drift”,
“hmonitor”,
“ymonitor”,
“monitor”,
“instrument”,
“wiggler”,
“rbend”,
“sbend”,
“quadrupole”,
“sextupole”,
“octupole”,
“multipole”,
“solenoid”,
“rfcavity”,
“elseparator”,
“SI‘Ot » ,

[43 ”
yrot”,

0,0,0,0, /* NULL element */

1,0,0,0, /* length */

1,0,0,0, /* length */

1,0,0,0, /* length */

1,0,0,0, /* length */

1,0,0,0, /* length */

1,0,1,0, /* length, tilt */

1,1,1,1, /* length, angle, tilt, more */
1,1,1,1, /* length, angle, tilt, more */
1,1,1,0, /* length, k1, tilt */

1,1,1,0, /* length, k2, tilt */

1,1,1,0, /* length, k3, tilt */

0,0,0,1, /* more */

1,1,0,0, /* length, ks */

1,0,0,1, /* length, more */

1,1,1,0, /* length, e, tilt */

0,1,0,0, /* angle */

0,1,0,0, /* angle */

2. DEVELOPERS GUIDE 27

“hkick”, 1,1,1,0, /* length, hkick, tilt */

“vkick”, 1,1,1,0, /* length, vkick, tilt */
“kicker”, 1,0,1,1, /* length, tilt, more */
“marker”, 0,0,0,0,

“ecollimator”, 1,0,0,1, /* length, more */
“rcollimator”, 1,0,0,1, /* length, more */
“thend”, 1,1,1,1, /* length, angle, tilt, more */
“thinlens”, 0,0,0,1, /* more */

“tank”, 1,0,0,1, /* length, more */
“edge”, 0,0,0,1, /* more */

“pmq”, 1,0,0,1, /* length, more */
“rfqcell”, 1,0,0,1, /* length, more */
“doublet”, 1,0,0,1, /* length, more */
“triplet”, 0,0,0,1, /* more */

“rfgap”, 0,0,0,1, /* more */

“special”, 1,0,0,0, /* length */
“rotation”, 0,1,0,0, /* angle */
“beamline”, 1,0,0,0, /* length */

“slot”, 1,0,0,0, /* length */

“end_of list”, 0,0,0,0

b

row_struct row[] = {

1324 () L W W W Wy W Wy wn
] ?) ? ? ? ? ? ? b

LCTZ R o} A (5 L 13 B {4 LR 3 43} BE14) YT VR 72 B 73 VRN PO 1) “un
? ? ? J ? ? ? ? ? ? ? ? ?

111 : ” 149 . ” 5 ”» W W UM W WY WY (132 [122 B 14}] 6@ W W
ecollimator”, 2, “xsize”, “ysize”, “”, vy oy Ty TR e e

(ST (TP RN 14) B A4} B (4}
) ? 3 ? ?

«©»
?

(1 2 13 3 ” o« : A LA (2 R 14 (3) 1T B (4T B4 RS L N 72 VR T S T LS P20 “” wn un
1(1(:1{(31' ? 521 }11{1(:1{ ? ‘[1(1(: ? ? ’ 9 9 ? I ? ? ? 9 ’ ? I ? ?

6@ W W Wy
? ? ? ? ?

“multipole”, 20, “k01”, “k1P’, “k2I”, “k3I”, “kdl”, “k5I”, “k6l”, “k71”, “k&I", “kal”,
“407, 417, “427,

“637, “447, 457, 467, 4T, 487, g, W«

“rbend”, 9, “k].”, “k2”, “k3”, “el”, “62”, “ﬁl’lt”, “hgap”, “hl”, “h2”, “”, “”, “”, “”,

(12200 {3 N {4} B {$}]
? ? ’ ’

WML W W wy
? ? ? ? ?

(132

[133]

[13}]

2. DEVELOPERS GUIDE 28

[43 : 2 [13 b ” [14 M ” (134 (132 [43)] [132] [132] (132 «w» [14)] “©n” [144] [1%)) [132] [13] [132]
rcollimator”, 2, “xsize”, “ysize”, “7, «7, @ @

b ? b 9 ? I ? ? ? ?

W W WU u»

? K ? b
©»

?
“I'fca,Vity” , 7, (Cvolt” , ((lag,7 , ((harmon”, ((‘betrf” , ((pg” , ((Shun 2 , ((tﬁll” , “77, “n , [13)] , «“»” ,
@ Wy w»

? ? ?
W UM uUe

? 7 ?
@2 WU W un

b ? ? ?
“Sbend” , 9, “kl” , ((k277 , (Ck377 , ((617? , ((e2” , ((ﬁnt » , ((hgap” , ((h]_”, ((h277 , [132) , ©” , “» , “un ,
WU wn

b ’ ?
(A3 17 B14 B {5

? ? ? ?
(134

?

“tbend”, 22, “bO”, “aO”, “bl”, “al”, “b2”, ua2n’ “b3”, “a3”, “b4”, “a,4_”, “b5”, cca5aa,

((‘b677 , ((a67’,

[453]

o“n»

(132

“»

((b7”, “817”, “b877 , ((a8’7 , “bg” , ((ag” , ((‘blo” , ((al 077 ,

[44 . ” [43 ” 113 »” 44 ” [1%}] [1%2] [1%)] [14)) (A4} 1)) (1%} 113} [13}] ({5} 1)) [1%)]
thinlens”, 3, “xfocal ocal”, “zfocal
? ? ? ? ? ? ? ? bl b b ? ? ? ? bl)

@ W w»
? ? ’

(132144
? ?

wn
?

143 ” (290 4 ” 1451 “»” (132 “» [132] [1%}] (15} (132 (13 “©» [13M) “” (1%} w”
doublet”, 1, “distance_between”, “, « w1 w @ g oy, R e

W W un

H ? 2
Wi U

’ ?
“u»

?

“triplet”, 5, “strength_outer_quad”, “length_outer_quad”, “distance_between”,

“Strength_inner_quad”, C(length-jnner-quad7’, ((77, (477, “77, “77’ L(”’ “77, ((’7’ ((”’ “77, “77, (C”,

W» W w»
? ? ?

“»
?

“»
?

“edge”, 5, “rotation_angle”, “radius”, “gap”, “fringe_field1”, “fringe field2” «» «» «n

LSRR (22 R {2} {4 P BN 13 P AN 13 A4 BIN73 L 72 LR 72 L B71) B3 VR 72)
? ? ? ? ’ ? b) ? ? ? ? ?

«©»
?

44 » 14 ** b 113 " 44 bil 44 ” (13} (13} (15>} [4%}} [1%)) (43} (442} (43} 1%} (13}
rigeell”, 4, “V/(x**2)", “AV”, “phase”, “type”, @, « @ @ @ w @ @ wn wn

[1227 13 Y R {4

? ? b
€@ WU wUn

b I ?
(132

?

“rfgap”, 5, “effective_gap_voltage”, “phase”, “emittance_growth flag”,

2. DEVELOPERS GUIDE 29

((energy_gain_ﬂag7’ , ((harmonic” , (132 , «“» , [{%3] ,

(125 B 1% b R4 R 1% & B 1% B 1%) B 1%) B 1%} B 1% » B 1% Y B R 14 B {4 4]
? ? ? ? ? ? ? ? ? ? ? H 2

“»
?

[43 ” ({54 3 ” WU M P2 I 14 Y R4 D B 15 14 b B 15) BN {4 F A 15 AN 15 B {5 - B 15 Y B {4 B {4}]
pmq”, 2, “inner.radius”, “outer_radius”, “?, 7 @7« @ o wm e an s

W U wUn
? ?)

W U W WU
? b 2 ?

(134
?

“tank”, 3, “effective_accel_gradient”, “inj/exit_phase”, “number_of iden_cavities”,

@I L W« «U»
? ? k) I ?

(12X 1S X R {5 R 1 b RS b B (% AN 1% F RN 15 X B 1%) B 15 Y B 1 12 Y A 1Y ¥
? ? ? ? ? ? ? 2 ? 2 b 9 b

b
#tendif /* LATTICE_INITS_H */

kkoke sk sk sk skskok ko sk ok ok sk sk sk sk ko skoskeok sk sk skok sk ok sk sk ok sk sk kot skok sk ok sk sk osk sk sk sk skokosk ko sk s ki sk ki sk sk skok sk skok sk sk

2.5 Survey data structures

The following are direct reproductions of the files SLAMBDA /include/survey.h and
$LAMBDA /include/survey_dict.h.

ok skokskokokofok sk ook ok kool ok stk sk doksk ok ok sk stk stk kol sk sk sk koo ok kol sk skt skl sk sk ok eokok ok sk ko skokok sk ok ok

#ifndef SURVEY _H
#define SURVEY_H

#define TRUE 1

#define FALSE 0

#define ARC_SEGMENTS 4

#define BUFF_MAX 7 128 *
#define HEADER_PERIOD 50

#define MAX_TOKEN_SIZE 132

#define MAX_TOKEN_COUNT 100

#define TOP_BUFF_MAX 1024

#define METERS 0

#define INTERNATIONAL_FEET 1

#define US_FEET 2

2. DEVELOPERS GUIDE

#define RBEND 7
#define SBEND 8

typedef struct {
double *R;
double **S;
double **T;
double int_width;
double ext_width;
double int_height;
double ext_height;
int repout;
int sizeout;
int nrep;

} local matrix_struct;

typedef struct {
double X;
double Y;
double Z;
double fi;
double si;
double theta;
double **W,

} coord_struct;

typedef struct {
FILE *topx;
FILE *topy;
FILE *topz;
double *temp;
coord struct *c_ptr;
element_struct *e_ptr;
local matrix_struct *1_ptr;

} top_struct;

typedef struct {

2. DEVELOPERS GUIDE

time_t time_stamp;

char flat file_name[NAME _MAX];
char size_file name[NAME_MAX];
double s_off;

double xmin;

double xmax;

double ymin;

double ymax;

double zmin;

double zmax;

double height_max;

double width_max;

double **init_FI;

double **init_SI;

double **init_THETA;
coord_struct *coord_ptr;
flatin_data *flatin_ptr;

local matrix_struct *locmat_ptr;

} survey_data;

/* */
/* external functions and objects */

/* */

extern double *dim1();
extern double **dim2();

extern legal_struct legal type[};

extern double pi, twopi;

#endif /* SURVEY_H */

seskoksteskok ko kok ek stk skok sk kskoskok sk sk sksk ok sk kok skok skok sk sksk sk shok sk sk ke sk sk sk sk skokosk sk ok ok sk ok ok

$LAMBDA /include/survey_dict.h

skeok skok ook skeok skesk skeok sk skeokok skl skokskok skok sk sk sk sk sk sk ki skok shok sk sk sk sk ks skesk stk skokook skesk skokoskskok sk sk

2. DEVELOPERS GUIDE

#ifndef SURVEY DICT_H
#define SURVEY_DICT_H

#define DICT_SIZE 64
#define MAX_TOKEN _SIZE 132
#define MAX_TOKEN_COUNT 100

typedef char token[MAX_TOKEN _SIZE];
typedef struct {

token piece[]MAX_TOKEN_COUNT];

} array_of tokens;

enum command_type {no_keyword,
print,mv_origin,stop,survey,topdrawer,cmd_error;

typedef struct {

enum command._type dict[DICT_SIZE];

token word[DICT_SIZE];

} command_struct;

command_struct command = {

{no keyword, print, mv_origin, stop, survey, topdrawer, cmd_error }, {7,

“print”, “origin”, “stop”, “survey”, “topdrawer” } };

enum origin_type { x, y, 2, fi, si, theta, s_off, origin_error }; typedef struct

{
enum origin_type dict[DICT_SIZE];
token word[DICT_SIZE];

} origin_struct;

origin_struct origin = {

{x, ¥, , fi, si, theta, s_off, origin_error},
{“x”’ “y”, “Z”, “ﬁ”’ “Si”, ((thetaﬁ’ ((S”}

b

enum mark_type {all, mark named_element};
typedef struct {

enum mark_type dict{DICT_SIZE];
token word[DICT_SIZE];

} mark_struct;

mark struct mark = {

2. DEVELOPERS GUIDE

{all, all, mark named_element},

{((a1177, “#S/e”}
¥

#endif /* SURVEY_DICT_H */

Feskokokokdokodskokofeokokokskokskokskskskoksk o ok ok koot skok sekeofok ok stk sk sk skok s sk s ok sk skoskokoskskok sk sk sk s sk kst sk

2.5.1 Twiss data structures

33

The following are direct reproductions of the files $LAMBDA /include/twiss.h and

$LAMBDA /include/twiss_dict.h .

kst sk ok sk otk skok e okoskok sk sk s speosksk sk sk stesk sk stk skskok sk sk sk sk sk ok sk sk sk ok kst stk sk sk ok sk stk sk sk sk sk sk sk sk ok ok sk ok

#ifndef TWISS_H
#define TWISS_H

#define FALSE 0
#define TRUE 1
#define BUFF_MAX 128

#define HEADER_PERIOD 50
#define TOP_BUFF_MAX 1024

#define RBEND 7
#define SBEND 8

#define QUADRUPOLE 9
#define SEXTUPOLE 10

typedef struct {
double **matrix;
int repout;

} magmat_struct;

typedef struct {
double beta_x;
double alfa_x;
double gamma. x;
double beta_y;
double alfa_y;

double gamma.y;
double eta_x;
double eta_xp;
double one_x;
double eta_y;
double eta_yp;
double one_y;
double psi_x;
double psi_y;

} optic_struct;

typedef struct {
double co._x;
double co_xp;
double co_y;
double co_yp;
double co_dt;
double co_delta;
} clorb_struct;

typedef struct {

time_t time_stamp;

2. DEVELOPERS GUIDE

char flat_file name[NAME_MAX];

double delta;

double s_offset;

double beta.x_max;
double beta_y_max;
double eta_x_min;

double eta.x_max;
double eta_y_min;

double eta_y_max;

double quad_strength_max;
clorb_struct init_clorb;
optic_struct init_optic;
double **transfer_matrix;
clorb_struct *clorb_ptr;
flatin_data *fatin_ptr;

34

/*

/*
/*

/*

2. DEVELOPERS GUIDE 35

magmat_struct *magmat_ptr;
optic_struct *optic_ptr;

} twiss_data;

*/

externals */

*/

extern double pi, twopi, twopinv;
extern double *dim1();
extern double **dim2();

extern legal struct legal type[];
#endif /* TWISS_H */

skt stesteate e kot ofokokote kst stttk stk skok sk sk skksk sk sk skoskskok sk sk skok sk sk skt sfkskolokok sk sokoksk ok kol sk sk ok ok

$LAMBDA /include/twiss_dict.h

sk skok ke sk ki sk sk skoke sk sk skl sk skoksk skok sk kol sk skoiesk skokokekosk sk ok sk sk skokesk skeokeskokok ok skokeok sk skokeskskokok sk skskosk skokok

#ifndef TWISS_DICT_H
#define TWISS_DICT_H

#define DICT SIZE 64
#define MAX_TOKEN_SIZE 132
#define MAX_TOKEN_COUNT 100

/*

*/

dictionaries */

/*

*/

typedef char token[MAX_TOKEN_SIZE];
typedef struct {
token pieceMAX_TOKEN_COUNTY;

} array_of_tokens;

enum command_type {no_keyword, deltap, init_condx, offset, periodic, print,

stop, topdrawer, twiss, cmd_error};

2. DEVELOPERS GUIDE 36

typedef struct {

enum command.type dict{DICT_SIZE];

token word[DICT _SIZE];

} command_struct;

command_struct command = {

{no keyword, deltap, init_condx, offset, periodic, print, stop, topdrawer,

twiss, cmd.error, {*”, “delta”, “initial”, “s_offset”, “periodic”, “print”, “stop”, “top-
drawer”,

“twiss” } };

enum twiss_type beta_x, beta_y, alfax, alfa_y, eta x, eta_y, eta_xp, eta_yp,
twiss_error};

typedef struct {

enum twiss_type dict[DICT_SIZE];

token word[DICT_SIZE];

} twiss_struct;

twiss_struct twiss_names = {

{beta_x, beta_y, alfa x, alfa_y, eta_x, eta_y, eta_xp, eta_yp,

twiss_error},

{ “beta_X” , ((bet a—y” , (Calfa_x77 , (talfa_y77 , “eta’_}(” , “et a_y7? , “eta_}{p” , “eta_yp” } };

enum mark type {all, mark named_element};
typedef struct {

enum mark_type dict[DICT _SIZE];
token word[DICT _SIZE];

} mark_struct;

mark_struct mark = {

{all, all, mark named_element},

{“all”, “4s/e”}

}

#endif/* TWISS_DICT . H */
Frokkokkkk ok ok ok koo sokskok ok sk bk ok ok o skoloksk ks sksk ok o sk ok ok ko

2.5.2 BeamLine data structures

3. SYBASE SYSTEM ADMINISTRATORS GUIDE

Standard Query Language (SQL) is used inside an RDBMS to get information that a
user desires from database tables. SQL is (almost) universally adopted by all RDBMS ven-
dors, including SYBASE. Scripts conforming to the SQL syntax, and stored in an ASCII
file, may be loaded into the Data Workbench, and even stored as part of the database itself.
Interactive access to SYBASE database information is also possible from the usual com-
puter environment by invoking “isql” scripts, which consist mainly of commands in SQL
syntax. Useful examples of these may also be found in the $LAMBDA /sybase directory.

A third way to access SYBASE database information is to embed calls from the pro-
prietary “DB-Library” in a piece of application code. The code dbsf, for example, uses
DB-Library calls in order to parse the lattice database structure. RDBMS manufacturers,
including SYBASE, are in the process of adopting the “Embedded SQL” standard. If and
when it is possible to rewrite dbsf using such standard embedded calls, LAMBDA will
cease to be tied to a single RDBMS product.

For more details, or to go beyond the following “cockbook” procedures, see the various
SYBASE manuals.

According to convention, the login name of the SYBASE system administrator is “sa”,

and SQL scripts become “procedures” when they have been copied into the Data Work-
bench.

3.1 Relational Databases and SQL for Lattice Description

The basic data structure used in a relational database is that of a table. The table
is made of a finite set of columns and an arbitrary number of rows. The data type of
each column is fixed when the table is created. An application program such as DBSF
(User’s Guide, section 1.1.1) which uses these tables must understand the data structure
of the table. In this section we list the database related code which DBSF knows how to
interpret. (By the way, the program name is actually 'dbsf’, but we will capitilize it here
for emphasis.) This code, specific to relational databases, is known as Structured Query
Languange or SQL. We will not give a primer on the SQL language here, but while it is
not a difficult language to learn, it is a highly nontrivial matter to use SQL efficiently. We
believe the SQL listed below is fairly straightforward if not efficient, but for those who wish
to learn more about SQL, the book ‘The Practical SQL Handbook’, by Sandra L. Emerson,
Marcy Darnovsky and Judith S. Bowman of Sybase, Inc. (1989, Addison-Wesley) is very
helpful. All of the SQL discussed in this chapter is incorporated into scripts that can be
found in the $LAMBDA /sybase directory.

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 38

To construct tables appropriate to describe an accelerator lattice, we have abstracted
from the MAD 8.1 beam line notation and element types as well as the TRACE3D element
definitons. Comments on each table definition where appropriate will follow the SQL
‘create’ statements. We have chosen to use MAD and TRACES3D as the primary standard
for element types since experience has shown that the types used by these codes can be
mapped to other accelerator codes by DBSF.

Some general comments on the structure of the database are needful. There are five
basic tables used to describe a lattice: geometry, strength, magnet_piece, beam_line and
slot. Two utility tables, name location and name_alias, are required by DBSF. In addition,
there are 23 secondary tables which can be used to store all the additional parameters
needed to define lattice elements a la MAD and TRACESD.

In general, all columns in every table in the database have character data type. If
the user enters a number (e.g. 3.4e-3) in a certain column, it is interpreted as a string by
the database. However, when DBSF extracts information from the database, such strings
are interpreted correctly as numerical data. (Note: all calculations with real numbers in
DBSF use double precision.)

Finally, the units used in the database tables are those appropriate to MAD and
TRACES3D. For tables used within the MAD schema, MKSA units are accepted, and for
TRACE3D tables, CGS units are appropriate. Please refer to the MAD or TRACESD

manuals for more detailed descriptions of the element types used by these programs.

create table geometry

(name char(20),

value char(15) null,
definition varchar(90) null,
comment varchar(130) null)
create unique clustered index geometry_index on geometry(name)
go

create table strength

(name char(20),

value char(15) null,
definition varchar(90) null,
comment varchar(130) null)
create unique clustered index strength_index on strength(name)
go

The geometry and strength tables are used to store the definitions of parameters such
as length and magnetic strength of various elements. In cases where these parameters are
used frequently in the description of several lattice elements, it is convenient to define a

parameter here. There is only one geometry table, but there is the possibility of defining

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 39

multiple strength tables corresponding to different operating conditions (injection, ramp-
ing, collision, etc.) by using the -T option of DBSF. DBSF uses the columns name and
definition. Both of these columns must be filled. The column, value, is optional and can
be used to keep track of the values of a parameter if an algebraic expression is inserted

into the definition column.

If the user wishes to add extra strength tables, then one must first create these tables
using the same SQL as above but with a change in the table name. This name can be as
desired since the user must specify the new name in the -T option if she wishes to have
that data incorporated in the output. As a general rule we advise the user to first enter
all strength definitions in the default strength table. Then after creation of the new table,
either fill it by first using the SQL syntax ‘insert new_strength select * from strength’ and
then change those strength values appropriate to the new table or by using the bulk copy
utilities (or the strength.in script described in the User’s Guide, section 1.2.2) to load
a table with new values from disk. It is VERY important that each ‘name’ in the various

strength tables occur uniformly. Otherwise DBSF may fail.

create table magnet_piece

(name char(20),

type varchar(20),

tilt varchar(10) null,
length_defn varchar(60) null,
strength_defn varchar(60) null,
engineering_type varchar(20) null,
comment varchar(130) null)

create unique clustered index magnet_piece_index on magnet_piece(name)
go

The magnet_piece table is used to define each primitive element in the lattice. MAD
8.1 and TRACE3D element types are accepted. The ‘engineering_type’ column is espe-
cially useful for programs such as MAD or TEAPOT which interpret this extra label (e.g.
IR or KVKD) as deserving special attention.

create table beam_line

(name char(20),
elements varchar(150) null,
comment varchar(130) null)

create unique clustered index beam line_index on beam line(name)
go

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 40

create table slot

(name char(20),

pieces varchar(150) null,
comment varchar(130) null)
create unique clustered index slot.index on slot(name)

go

create table superslot

(name char(20),

pieces varchar(150) null,
comment varchar(130) null)
create unique clustered index superslot_index on superslot(name)
go

The beam_line, slot and super_slot tables are used to define the strings of elements
in the lattice in a way similar to other accelerator codes (MAD, SYNCH, DIMAD, etc.)
which allow this kind of syntax. The list of elements or pieces are entered as strings of
names separated by blanks. Commas as separators in the list are not accepted by DBSF.

We have introduced these three beamline tables in the database to provide an extra
layer of structure. While accelerator codes do not differentiate between these three, engi-
neers quite often need this distinction. It is common to describe the physical and magnetic
properties of a component in the lattice as follows: (drift, magnet, drift). In this case the
three elements define a physical slot with the magnet part of the slot having its length
defined as the effective magnetic length. So one would introduce this ‘line’ in the slot table
instead of the beam line table. Such ‘slots’ can be then be concatenated and entered into

the beam_line or super_slot tables.

create table name_location

(name char(20),

table_name char(30) null)

create unique clustered index name location_index on name location(name)
go

create table name_alias

(standard name char(20),
synch_name char(5) null,
comment varchar(130) null)

create unique clustered index standard name_index on name_alias(standard name)
g0

The name_location and name_alias tables are used by DBSF. The name_location ta-
ble records the element name (beamline or primitive) and the table name it is defined

in. As DBSF unravels a beamline into its components, it uses the name_location table as

a look up table. The name_location table is filled by a script in the $LAMBDA /sybase

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 41

directory (buildnl) which first empties the name_location table and then rebuilds all en-
tries. THE NAME_LOCATION TABLE MUST BE FILLED CORRECTLY FOR DBSF
TO RUN PROPERLY. The script copy.in (User’s Guide, section 1.2.1) will rebuild the
name_location table automatically.

The name_alias table is used primarily for SYNCH users. SYNCH has a 5 character
limit on names while the database supports up to 20 characters per name. Consequently,
if a SYNCH user wishes to truncate names in a specific way, the user should introduce
appropriate names for those elements whose names are too long for SYNCH. Otherwise,
DBSF will create a unique 5 character name in the SYNCH output if the user does not
provide one in name_alias. There is a SQL script in the S$LAMBDA /sybase directory
(update_name_alias) which should be run when all other tables are filled and which loads
the first column (standard_name) of the name_alias table automatically. The first column
must be filled in order for DBSF to work with the SYNCH output option.

SECONDARY TABLES

The tables below are to be used whenever a primitive lattice element needs the extra
parameters allowed by MAD or TRACE3D. Please refer to the MAD 8.1 or TRACE3D
manuals for explanations of the various columns defined below.

NOTE: In order for DBSF to run properly when using the secondary tables, at least
the name and type of every primitive element must first be entered in the magnet_piece
table. Then DBSF can match the corresponding entry in one of the tables below. It is
NOT necessary to use these secondary tables in all cases if the columns in the magnet_piece
table are sufficient to describe the element. However, element types such as ‘multipole’ do

require the use of the multipole table.

create table bend

(name char(20),

length varchar(60) null,
angle varchar(60) null,
tilt varchar(10) null,
quad_strength varchar(20) null,
sxtp_strength varchar(20) null,
octp_strength varchar(20) null,
entrance_angle varchar(20) null,
exit_angle varchar(20) null,
field_integral - varchar(20) null,
half_gap varchar(20) null,
entrance_curv varchar(20) null,
exit_curv varchar(20) null)

create unique clustered index bend_index on bend(name)
go

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 42

create table rfcavity

(name char(20),

length varchar(60) null,
voltage varchar(20) null,
phase_lag varchar(20) null,
harmonic_number varchar(20) null,
rf_coupling varchar(20) null,
rf_power varchar(20) null,
shunt_imped varchar(20) null,
fill_time varchar(20) null)

create unique clustered index rfcavity.index on rfcavity(name)
go

create table multipole

(name char(20),

KOL varchar(20) null,
K1L varchar(20) null,
K2L varchar(20) null,
K3L varchar(20) null,
K4L varchar(20) null,
K5L varchar(20) null,
K6L varchar(20) null,
K7L varchar(20) null,
K8L varchar(20) null,
K9L varchar(20) null,
TO varchar(20) null,
T1 varchar(20) null,
T2 varchar(20) null,
T3 varchar(20) null,
T4 varchar(20) null,
T5 varchar(20) null,
T6 varchar(20) null,
T7 varchar(20) null,
T8 varchar(20) null,
T9 varchar(20) null)

create unique clustered index multipole index on multipole(name)
go

create table closed_orbit_corrector

(name char(20),

length varchar(60) null,
tilt varchar(10) null,
horz_angle varchar(20) null,
vert_angle varchar(20) null)

create unique clustered index closed _orbit_corrector_index on closed_orbit_corrector(name)
go

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 43

NOTE: In MAD, closed orbit correctors are typed as HKICKER, VKICKER or KICKER.
One of these three types must be entered in the magnet_piece table for closed orbit cor-

rectors.

create table collimator

(name char(20),

length varchar(60) null,
xsize varchar(20) null,
ysize varchar(20) null)
create unique clustered index collimator_index on collimator(name)
go

create table drift

(name char(20),
length varchar(60) null)
create unique clustered index drift_index on drift(name)

go
create table quadrupole

(name char(20),

length varchar(60) null,
strength varchar(60) null,
tilt varchar(10) null)

create unique clustered index quadrupole_index on quadrupole(name)
go

create table sextupole

(name char(20),

length varchar(60) null,
strength varchar(60) null,
tilt varchar(10) null)
create unique clustered index sextupole_index on sextupole(name)
go

create table octupole

(name char(20),

length varchar(60) null,
strength : varchar(60) null,
tilt varchar(10) null)
create unique clustered index octupole_index on octupole(name)
go

create table solenoid

(name char(20),

length varchar(60) null,
strength varchar(60) null)
create unique clustered index solenoid_index on solenoid(name)
go

create table monitor
(name char(20),

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 44

length varchar(60) null)
create unique clustered index monitor_index on monitor(name)
go

create table elseparator

(name char(20),

length varchar(60) null,
efield_strength varchar(60) null,
tilt varchar(10) null)

create unique clustered index elseparator_index on elseparator(name)
go

The following two tables are not part of the MAD or TRACE3D conventions. They

are, however, modelled after the collimator element of MAD.

create table aperture

(name char(20),

shape char(1),

xsize varchar(30) null,

ysize varchar(30) null,

centerx varchar(30) null,

centery varchar(30) null)

fg:reate unique clustered index aperture_index on aperture(name)
o

create table magnet_size

(name char(20),

shape char(1),

xsize varchar(30) null,

ysize varchar(30) null,

centerx varchar(30) null,

centery varchar(30) null)

Ex(‘)eate unique clustered index magnet_size_index on magnet_size(name)

The aperture and magnet_size tables allow the user to describe the inner and outer
transverse dimensions of a lattice element. Since every primitive element in a lattice
possesses both inner and outer dimensions, this table in principle has as many entries as
there are generic primitive elements. These two tables are currently used by DBSF in the
- Cd option which produces the SDS output with the addition of the information in the
aperture and magnet _size tables. None of the standard accelerator codes (except perhaps
for DIMAD) can use this information at present, so it is not printed in any of the other
output options.

The meaning of the columns for these tables is as follows. In analogy with the MAD
usage for the COLLIMATOR element, we support an elliptical and rectangular shape for

both the inner and outer shapes. The xsize and ysize columns specify the distance to the

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 45

edge of the shape from the center of the ellipse or rectangle along the major and minor
axis. The columns centerx and centery allow the user to specify the position of the beam
with respect to the center of the shape. So, for example, the values -0.025 and 0.01 in the
aperture table would put the beam 2.5 cm to the left along the x axis and 1 cm above the

center along the y axis of the aperture.
create table optics_data

(name char(20),

t0 varchar(80) null,
t1 varchar(80) null,
t2 varchar(80) null,
t3 varchar(80) null,
t4 varchar(80) null,
t5 varchar(80) null,
6 varchar(80) null,
t7 varchar(80) null)

create unique clustered index optics_data_index on optics_data(name)
g0

create table survey_data

(name char(20),

deltax varchar(40) null,
deltay varchar(40) null,
deltaz varchar(40) null,
theta varchar(40) null,
phi varchar(40) null,
psi varchar(40) null)

g(‘)eate unique clustered index survey_data_index on survey_data(name)

Since there are particular cases of accelerator components whose fields are not described
simply by the usual magnet types, there is a need for a more generalized description of
a tranfer function. A new type of element, the tcelement has been defined to satisfy this
need. Two new tables in the database have been defined: “survey_data” which contains
constants for the “survey” program, and “optics_data” which contains file specifications
for SDS format files of the optical transfer function constants.

In the “survey_data” file, each row corresponds to a single tcelement with the seven
column entries name, deltax, deltay, deltaz, theta, phi, psi. The first column
contains the name of the element, and the other six constants describe the effect on the
design trajectory as specified in the documentation for the MAD program.

The “optics_data” file also contains a single row for each tcelement. Each row contains
the name entry followed by eight fields (t0, t1, t2, 3, t4, t5, t6, t7)for specifying
the file names for the SDS files. At present only the t1 entry is used for the linear transfer

matrix elements in the program “twiss”. (For the RHIC database these files reside in

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 46

/usr/local/Holy Lattice/tcelements

The tcelement SDS files contain data in the form of a C structure:

struct
char indices[8];
double value;

element[];
The eight indices run from 0 to 5 corresponding respectively to coordinates (z, z', y, v/,
z, 6). Only nonzero coefficients are stored in the SDS file.

The optical transfer function may be desribed by the Taylor series
6 6

6
. . 1 .
Xi(s1) =T+ Y T{Xj(s0) +5 2 ¥ T3 X; (s0) X (s0)
j=1 =1 k=1

6 6)
* %ZZZT%HXJ (s0) Xk (s0) X1 (s0) + -,

Ti=1k=11=1
where T is a constant offset vector given by the “t0” file, T is the Jacobian matrix given
by the “t1 file, and the higher order tensor T, is given by the “t,” file.

Trace3d TABLES
The following tables are used specificly by TRACES3D. Please refer to the TRACE3D

manual to understand the columns in each table.

create table thinlens

(name char(20),

xfocal varchar(20) null,
yiocal varchar(20) null,
zfocal varchar(20) null)
create unique clustered index thinlens_index on thinlens(name)
go

create table pmq

(name char(20),

bfld_grad varchar(20) null,
length varchar(20) null,
inner_radius varchar(20) null,
outer_radius varchar(20) null)
create unique clustered index pmq.-index on pmg(name)

go

create table doublet

(name char(20),

bfld_grad varchar(20) null,
length varchar(20) null,
dist _between varchar(20) null)

create unique clustered index doublet_index on doublet(name)
go

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 47

create table triplet

(name char(20),
bfld_grad_outer varchar(20) null,
length_outer varchar(20) null,
dist_between varchar(20) null,
bfld_grad_inner varchar(20) null,
length_inner varchar(20) null)
greate unique clustered index triplet_index on triplet(name)

)
create table edge
(name char(20),
angle varchar(20) null,
radius varchar(20) null,
gap varchar(20) null,
fringe_factorl varchar(20) null,
fringe_factor2 varchar(20) null)
Ereate unique clustered index edge.index on edge(name)

o
create table rfgap
(name char(20),
eff_gap_voltage varchar(20) null,
phase varchar(20) null,
egflag varchar(20) null,
dW Aflag char(1) null,
harmonic char(1) null)
greate unique clustered index rfgap_index on rfgap(name)

o
create table rigcell
(name char(20),
V_div_rsquared varchar(20) null,
AV varchar(20) null,
length varchar(20) null,
phase varchar(20) null,
type_cell char(1) null)
create unique clustered index rfqcell index on rfqcell(name)
go
create table tank
(name char(20),
accel_grad varchar(20) null,
length varchar(20) null,
phase varchar(20) null,
iden_cav varchar(20) null)
create unique clustered index tank index on tank(name)
go

This concludes the description of the SQL code needed to create the lattice database
tables. Once the user has filled the tables appropriately, access must be granted so that

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 48

other users and applications can use the data. The following SQL provides the necessary
access to the above tables. In particular the user, ‘lattice_reader’, is added to each lattice

database in order to allow DBSF to function properly.

sp-adduser guest
sp-adduser lattice_reader
go

sp-adduser is a SYBASE stored procedure which adds the given user to your database.
The user ‘guest’ is a special user name in SYBASE. The addition of this user allows all
SYBASE users in the ‘public’ group to access your tables if you grant read permission to
the public group. The guest user eliminates the need to add each SYBASE user to your

database.

grant select on geometry to public
grant select on strength to public
grant select on magnet_piece to public
grant select on beam.line to public
grant select on name_location to public
grant select on slot to public

grant select on name_alias to public
grant select on rfcavity to public
grant select on bend to public

grant select on closed_orbit_corr ector to public
grant select on multipole to public
grant select on collimator to public
grant select on drift to public

grant select on quadrupole to public
grant select on sextupole to public
grant select on octupole to public
grant select on solenoid to public
grant select on monitor to public
grant select on elseparator to public
grant select on aperture to public
grant select on magnet_size to public
grant select on optics.data to public
grant select on survey._data to public
go

TRACES3D permissions

grant select on thin_lens to public
grant select on pmgq to public
grant select on doublet to public
grant select on triplet to public
grant select on edge to public
grant select on rfgap to public
grant select on rfqcell to public
grant select on tank to public

go

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 49

The above statements grant select (i.e., read only) privilege to each of the lattice
database tables. All the sql described above is contained in the main_setup script contained
in the SLAMBDA /sybase directory. The user need not execute any of the above sql

statments separately if this script is used to create the database tables and permissions.

3.2 Creating a lattice database

1. To create an empty database, “DATABASE_NAME”
Enter the Data Workbench by typing dwb and logging in as “sa”, in the
“master” database.
Run the SQL command create database DATABASE_NAME (and be
prepared to wait a minute or less)
If desired, (YES !) enable bulk copying in and out of database tables by per-
forming the commands in section 2, below.
Change the database context to DATABASE NAME
Run the SQL command sp_changedbowner OWNER_NAME to change
the owner of the database to the login name of the appropriate owner.
Create the tables, add appropriate users, and grant appropriate permissions,
by performing the commands in section 3, below.

2. To enable bulk copying in and out of tables
Enter the Data Workbench by typing dwb and logging in as “sa”, in the
“master” database.
Run the SQL command sp_dboption DATABASE_NAME, bulkcopy,
true
Run the SQL command sp_-dboption DATABASE_NAME, trunc, true
Change the database context (“Set DB Context”) to DATABASE_NAME
Run the SQL command checkpoint

3. To create lattice tables, add users, and grant permissions
Temporarily copy the isql script $LAMBDA /sybase/main_setup. to your local
directory.
Edit the first line of your copy of the script, to name the database of interest,
which you must own. For example use DATABASE_NAME

Invoke the script by saying isql -U username -P password < main_setup.

3.3 isql scripts

Although it is possible to upload ASCII files of pure SQL commands into the Data

Workbench, it is usually more convenient to modify the file to become an isql script that

3. SYBASE SYSTEM ADMINISTRATORS GUIDE 50

can be run from the regular computing environment. For example, to run an isql script
SLAMBDA /sybase/script_name.i, first copy the script into a local directory and then edit
the first line to name a database that you own. For example, edit use pta to become use

my_database_name. Then say

isql ~-U username -P password < script_name.i

The following useful isql scripts are available in $LAMDA /sybase.
script name brief description

trace3d_setup. Create optional tables for linac description, using
Trace3D formats.

build nl. Rebuild the “name_location” table that serves as an index
table to dbsf. This is especially useful if a small number of
changes have been performed inside the Data Workbench -
that is, without having to use copy.in or copy.out.

revoke_all.i Revoke all permissions on all tables to public

main_setup. Create all tables, add lattice_reader as a user, grant select
permissions to public. See section 3, above.

busql creates bus table information for wireup program.

create_view_rules creates tables needed to use view option in dbsf.

4. REFERENCES

A Standard Input Format agreement.

5. APPENDIX

plot_twiss.man Tue Sep 21 15:20:38 1993

PLOT_TWISS(1) USER COMMANDS PLOT_TWISS(1)

NAME
plot_twiss - plots lattice functions from program "twiss*

SYNOPSIS
plot_twiss [-s]

OPTIONS
plot_twiss recognizes the standard Xtoolkit switches,

as

well as the -s switch which indicates that the input is to

come from shared memory.

DESCRIPTION

This program reads the output SDsS file *Twiss* from the pro-
gram "twiss*. With the -s switch it reads from shared
memory; whereas, without the -s switch it reads *Twiss" from

the current path.

The following keys may be entered either into the window

or

into "stdin". (Note that "stdin' requires a carriage return

after the character.)
a: unzoom to the whole lattice
"h*: print a help message to "stdout"
"p*: output plot to PostScript file *plot_twiss.ps*
"g": quit
'r*: reread the data and plot again

"plot_twiss*® draws the horizontal and vertical beta func-
tions in the upper portion of the window and the horizontal

and vertical eta functions in the lower portion.

s

schematic of the magnetic elements are shown in the middle
of the window. Clicking on one of the elements will select
that element (highlit by red) by writing the element number
to "stdout"; this can be used to generate a pair of glish
events for example to show the input and output parameters
with *sid*. By having glish send an 'r" to “stdin®,
"plot_twiss® may be triggered to replot the data after a

change has been made.

As a default, the left mouse button will zoom the left boun-
dary of the plots if the cursor is in the upper or lower
portions of the window (not in the middle *lattice" sec-
tion). The middle button will zoom the right side, and the

right button unzooms the plot (same as "a").

X-RESOURSES

The user can customize ‘*plot_twiss* with the following

resourses in the *.Xdefaults* file:
plot_twiss.background: black
plot_twiss.geometry: 300x200
*plot_twiss.translations: *#augment\0
<BtnlDown>,<BtnlUp>: zoomleft ()\n\
<Btn2Down>,<Btn2Up>: zoomright ()\n\

sun Release 4.1 Last change: 23 August 1993

PLOT_TWISS (1) USER COMMANDS PLOT_TWISS{1)

<Btn3Down>, <Btn3Up>: unzoom{)*

Setting the background color stops the slightly annoying
white flash when the window is first mapped; the background
is set to black eventually, so you shouldn’t waste time try-

plot_twisgs.man Tue Sep 21 15:20:38 1993

ing to change the color. The other settings can be changed
to whatever you want. Southpaws may want to swap the first
and third buttons, if they have remapped the buttons via
something like:

xmodemap -e "pointer=3 2 1¢

SHARED MEMORY
In order to place files into shared memory you need to do
the following:

1) Create a directory "shardat® in your home directory,
~/shardat.

2) Create empty files in "~/shardat®” for each file to
be placed into shared memory. For example, *Twiss"®
for the "Cwiss" output file and
*ags_to_rhic.a2yellow" for the flat-sSDs file
ags_to_rhic.a2yvellow”. (You can use ‘“touch to

create empty files.)
3) Generate the sSDS files in your work area, e.d.,

setenv DBSF DB ags_to_rhic #to tell dbsf which database
dbsf -C aZyellow #create *ags_to_rhic.a2yellow*
f2sm ags_to_rhic.a2yellow #copy it to shared memory
twiss -s ags_to_rhic.a2yellow #run twiss in shared memory

You could also run "twiss" without the *-s* switch and then
use *f2sm* to copy "Twiss" to shared memory.

The following programs are useful for dealing with shared
memory files:

wshm -— lists files in shared memory

srm filename -~ delete a file from shared memory

clearshm -- delete all files from shared memory

f2em filename -- copy filename into shared memory

sm2f filename -- copy filename from shared memory

sid -s filename -- Salty’s SDS spreadsheat

sid -w -8 filename -- Run "sid"* in edit mode

smd [-s] filename [object #] -- ascii dump of sSDs file.
SEE ALSO

The LAMBDA twiss manual

BUGS

sun Release 4.1 Last change: 23 August 1993 2

PLOT_TWISS(1) USER COMMANDS PLOT_TWISS(1)
If I knew of any bugs, don’'t you think I'd fix them? (Ha!
Ha! Ha!)
There are however a few undocumented features which I won't
describe, so that they may remain undocumented, See if you
can find them.

AUTHOR
Waldo MacXay

COPYRIGHT

Copyright (C), 1993 by the author.

Permission to wuse, copy, modify, and distribute this
software and its documentation for any purpose so long as it
remains FREE, provided that the above copyright notice
appear in all copies and that both that copyright notice and

plot_twisgs.man Tue Sep 21 15:20:38 1993

this permission notice appear in supporting documentation.

Sun Release 4.1 Last change: 23 August 1993

