

BNL-102183-2014-TECH RHIC/AP/75;BNL-102183-2013-IR

Magnetic Error Compensation and Computer Modeling in RHIC

J. Wei

October 1995

Collider Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Magnetic Error Compensation and Computer Modeling in RHIC

- I. Introduction
- II. Triplet (IR) region error compensation field quality issues.

 misalignment issues
- M. Arc region error compensation field quality issues misalignment issues
- IV. Computer modeling

TEAPOT filters tune diagram comparison, tracking

V. Conclusion

Jie Wei BNL Oct. 1995

I. Introduction

- * Large beam size at storage —

 triplet dominates, multipole dominates

 Au

 Au

 IBS growth strong;

 beam -beam au

 0.005, 0 cross angle mostly
- * Two-ring, separated mostly, small crosstall exception: triplet in common cryostat
- * high injection field, small persistant bz $B(skA)/B(0.6kA) \sim 8.5$ Small filament, small random
- * multi-layer correctors, common cryostat need good alignment
 - C-a-s Triplet

Injection (1 minute) $(A_u^{79+}, Y=(2.6))$

arc dominates (+ space charge. 0 ≥ 002)

arc dipole. b2, b4, and a1 arc quadrupole. b3, b5

Storage (10 hours) . (Au , Y = 107.)

triplet dominates (+ beam-beam, D: 0.015 + 0.004)

Q1 Q2, Q3, b3 b5 , a5, b2 (random)

1	injection	storage (p*=1m)
En (95%)	10 îi mm mr	40 T mmmr
0°6/6	0.43 × 10 ⁻³	0.89 = 10-3
Barc	50 m	50 m
β _{triplet}	145 m	1400 m
Ox are	2,5 mm	1.8 mm
⊄ _{× triple}	4.5 mm	9.3 mm

coil ID: arc 80 mm, triplet 130 mm reference radius (5/8): 25 mm. 40 mm

II. Triplet region error compensation

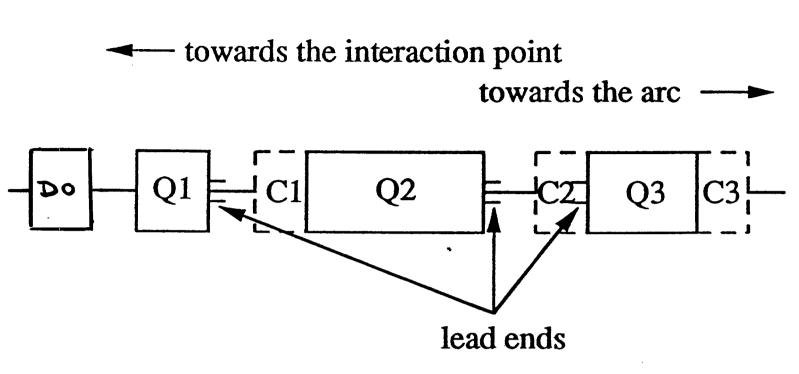


Figure 1 Schematic layout of the RHIC triplet, showing the quadrupoles, the orientation of the quadrupole lead ends, and the local correctors C1, C2, and C3.

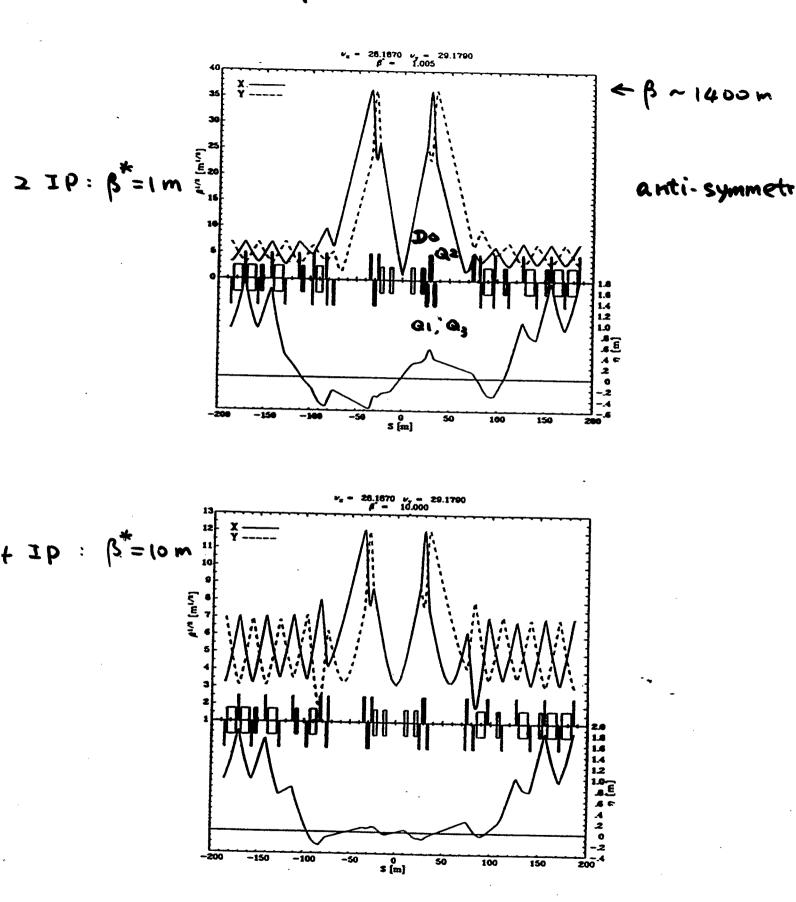


Fig. 11-6. Betatron and dispersion functions in the insertion region.

Field quality issues

error source

+ Q1, Q2. Q3 quadrupoles

lead end: bs: as

body: b3, b5 (systematic)

asym. in H, V plane

be (random)

* D\$ dipole

ends * body: b2, b4, a1

allowed asym. in V placement

cross talk: b1, b3, ...

QRK (Q3)

8

0.0

0.0

Table 2k(e)

Expected values	of body	harmonics	in 130	mm	Insertion Quadrupoles
QRK (Q2) at 500	0 A :	storage,	afte	r	shimming

[<bn> = mean, d(bn) = uncertainty in mean, sig(bn) = sigma for bn] d(an) siq(an) d(bn)sig(bn) <bn> <an> n 0 10. 10 0 0 10 1 2 0.5 0.0 0.1 1.2 0. 0.3 3 1.0 0.0 0 . 6 . 6 0.0 0.1 . 5 4 0.30. . 6 0.0 0.4 5 0.5 .5 6 0.12 .11 0.0 0.09 .12 0.0 7 .05 .05 0.0 0.03 .12 -0.2

0.0

0.0

0.05

0.03

.09

.03

Expected body harmonics at 660 A (same as above except for b5 and b9)

.05

.03

5 -4.7 0.5 .5 9 -0.2 0.2 .03

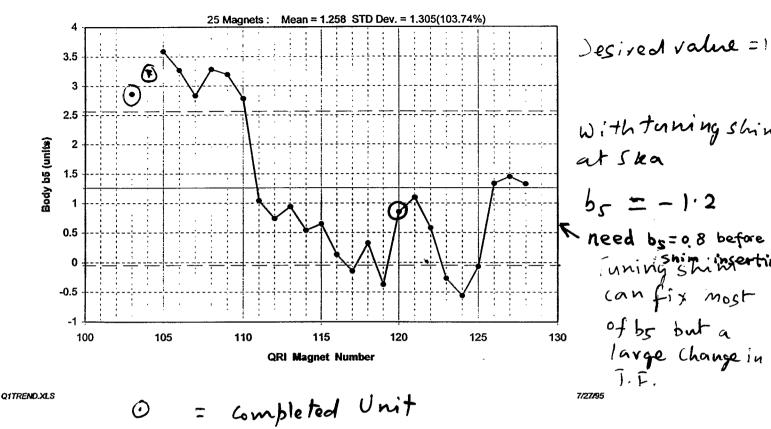
0.04

0.2

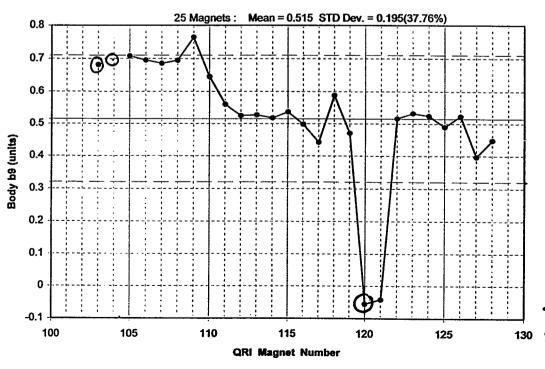
Expected body harmonics at 1450 A (same as above except for b5 and b9)

5 -2.2 0.5 .5 9 -0.1 0.2 .03

Expected values of harmonics in LEAD END at "ALL" currents (Unit-m) n <Bn> d(Bn) sig(Bn) <An> d(An) sig(An)

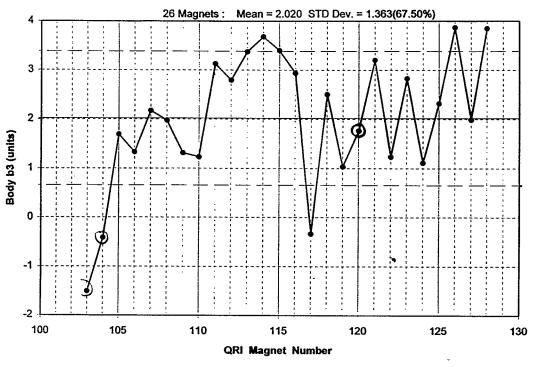

1 0 0 0 0 0 0 2 0.0 0.7 0.1 0.0 2. 1. 3 0.0 0.3 .3 0.0 0.4 .8 0.1 4 0.0 .3 0.0 0.3 .4 5 4.6 0.5 . 5 .3 . 2 6 . 0 0.01 .04 0.00.06 .06 7 0.0 0.04 .05 0.0 0.02 .01 8 0.0 0.04 .05 0.0 0.02 .02 9 -0.5 .05 .02 .03 0.2 .05

Expected values of harmonics in RETURN END at "ALL" currents (Unit-m)


		3		<u> </u>		
n	<bn></bn>	d (Bn)	sig(Bn)	<an></an>	d(An)	sig(An)
1	0	0	0	0	0	0
2	0.0	0.3	1.8	0.0	0.7	1.
3	0.0	0.1	.2	0.0	0.1	.3
4	0.0	0	.25	0.0	0.2	. 2
5	1.	0	.6	0.0	0.1	.1
6	0.0	0.06	.03	0.0	0.06	.02

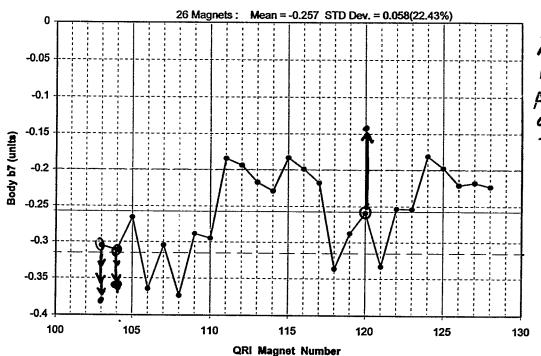
QI warm measurement

QRI (Q1) Storage Units -- Body b5 (Warm)



section for Q2, Q

QRI (Q1) Storage Units -- Body b3 (Warm)

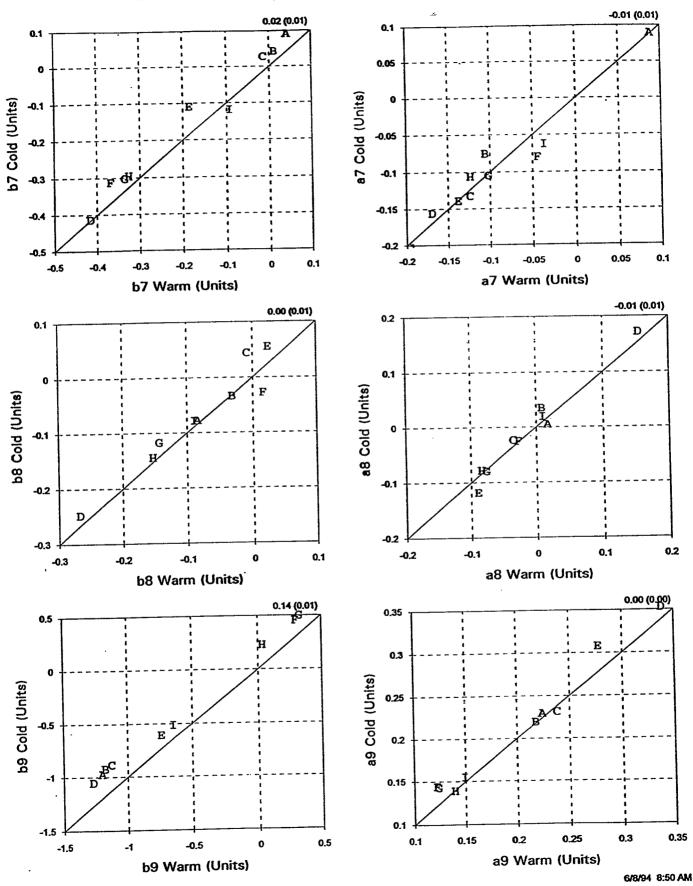

Tuning Shim can make all this zero

Q1TREND.XLS

O Completed Unit

7/27/95

QRI (Q1) Storage Units - Body b7 (Warm)

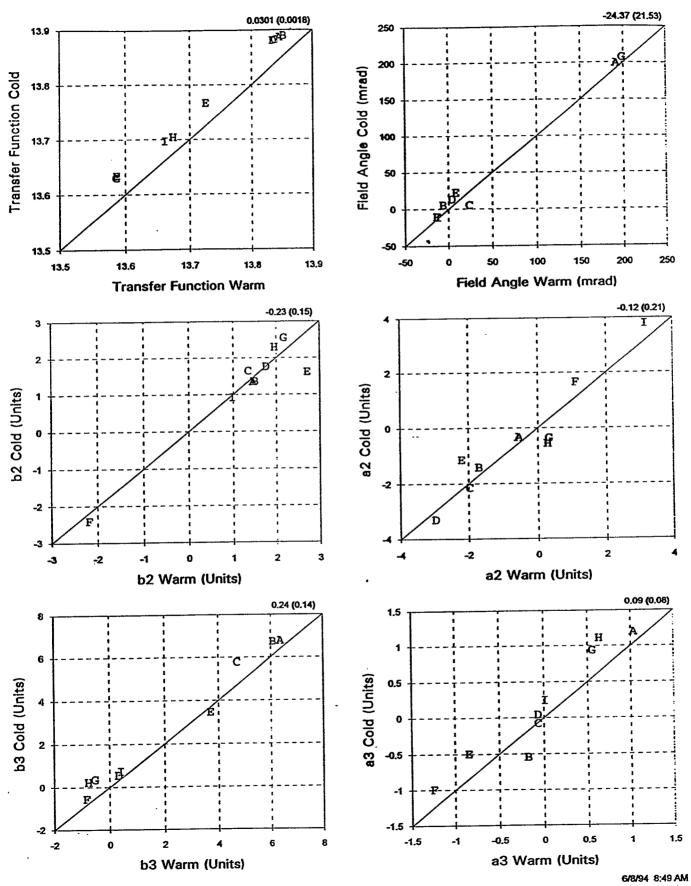


After (aRI 110-120 asymmtric tuning shim

Q1TREMD.XLS

G QRI104 29 34 36 H QRI104 71 77 78 I QRI120 44 67 68 (with Shims) (with Shims)

Warm-Cold Correlations for 13cm Insertion Quadrupoles (QRI) Warm = 10A in Dewar; Cold = 5000A, Avg. of Up and Dn Ramps



6/8/94 8:50 AM

G QRI104 29 34 36 H QRI104 71 77 78 I QRI120 44 67 68

(with Shims)

Warm-Cold Correlations for 13cm Insertion Quadrupoles (QRI)
Warm = 10A in Dewar; Cold = 5000A, Avg. of Up and Dn Ramps

Expected harmonics in D& dipole (5 KA)

Oct 18, 1993

EXPECTED_D10.TABLE4_D

Table 4(d)

Expected values of body harmonics in 100 mm Insertion Arc dipoles D0 at 5000 A: @ 31 mm radius

[<bn> = mean, d(bn) = uncertainty in mean, sig(bn) = sigma for bn]

n	<bn></bn>	d(bn)	sig(bn)	<an></an>	d(an)	sig(an)
1	0.4	0	0.8	-2. 5	1.	1.3
2	0	_2	2.3	-0.4	0	.5
3	0.2	0	.3	0	.3	1.0
4	0	5	6	0	.06	.2
5	0	.03	.1	-0.1	0	.26
6	0.0	.1	.1	0	.03	.1
7	0	.03	.1	0	.03	.1
8	0.0	.1	.1	Ö	.03	.1
9	0.0	.03	.1	ō	.03	.1

optimized at 5 kA,

b2, b4, b6 are stronger at lower currents

Cross talk between D& dipoles

10 cm coil ID (instead of 10 cm), minimized

b, < 0.5

 $b_3, b_5, \cdots < 0.3$

Figure of Merit" in IR error compensation

minimize "action kick"

$$\frac{\Delta J}{J} \sim \frac{1}{\beta} \sum_{n+1}^{\infty} b_{n+1}$$

$$\int_{advance}^{\infty} \frac{1}{\beta} \sum_{n+1}^{\infty} b_{n+1}$$

$$\int_{advance}^{\infty} \frac{1}{\beta} \sum_{n+1}^{\infty} \left(2 \sin \chi \cdot \cos^{n} \chi \right)$$
Advance

this has the same scaling as tune shift

for each triplet

using separated lead end, return end, and body harmonics

compensation method

only correct at top field. (sua)

- * coil, cross section iteration (≈ 2.1 mm level)

 body ends compensation on allowed harmoni

 use body a ends harmonics allowed

 weighted by β-function variation systematic

 + semi.
- * iron modification tuning shims (~1 mm level minimize body az, az, a4. as, bz, bz, b4. after warm measurement, actual (systematic + random thoose lead-end orientation & corrector

locations

low β for lead ends. C_3 , & C_2 , C_3 cancellation orthogonal locations (H, V) for correctors

- * Use local correctors, 62/62, 63/63, 64, 65/65

 correction based on magnetic measurements

 weighted by β-function variation "active" knob
- * sort "golden" magnets for β"= 1 m IP.

 Split tune, 90° phase advance between IP

ont-305-18

Coox tees

8691 K-00 A K

* body - end bs compensation

based on the minimization of "action kicks" over each triplet pair

$$\frac{\Delta J_x}{J_x} \sim b_n L \cdot \beta_x^{\frac{n+1}{2}} \cdot (2J_x)^{\frac{n-1}{2}} \cdot (2\sin \chi_x \cdot \cos \chi_x)$$

$$\Rightarrow \int_{FDF}^{G} \beta_x^3 b_5 ds + \int_{DFD}^{G} \dot{\beta}_x^3 b_5 ds = 0$$

$$\int_{PDF} G \beta_y^3 b_5 ds + \int_{DFD} G \beta_y^3 b_5 ds = 0$$

optimized lead end location

$$b_5 \ (body) = -0.17 \ B_{S_{Leed}} - 0.35 \ B_{S_{Teturn}}$$

$$-1.2 \ unit \ (m^{-1}) \ 4.6 \ (unit\cdot m) \ (m^{-1}) \ 1.0 \ (unit\cdot m)$$

- * works for any \$*
- * compensated within each triplet, using az, as cancellation to minimize b, (body)
- * same by body for all three guads of diff. length

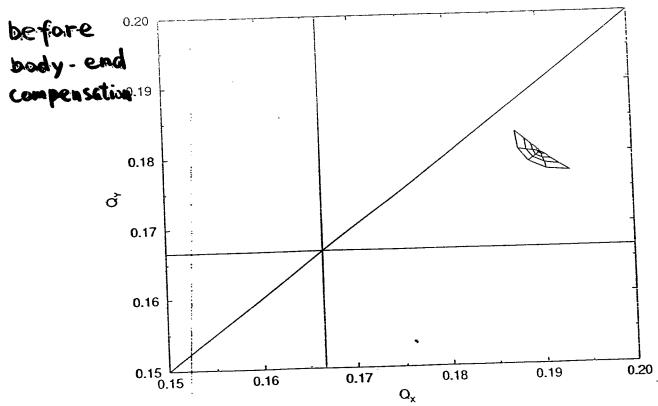
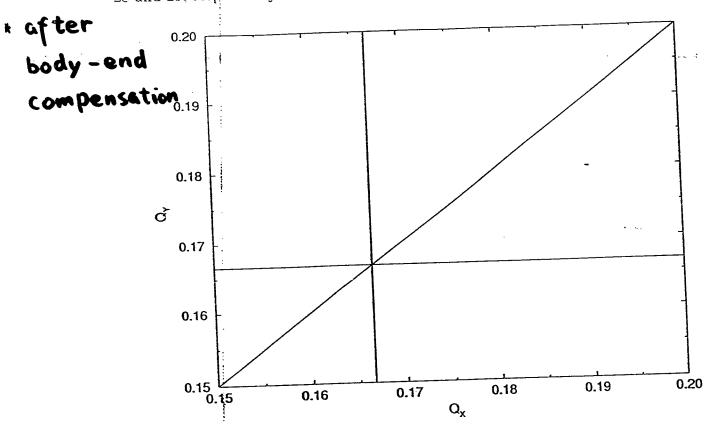
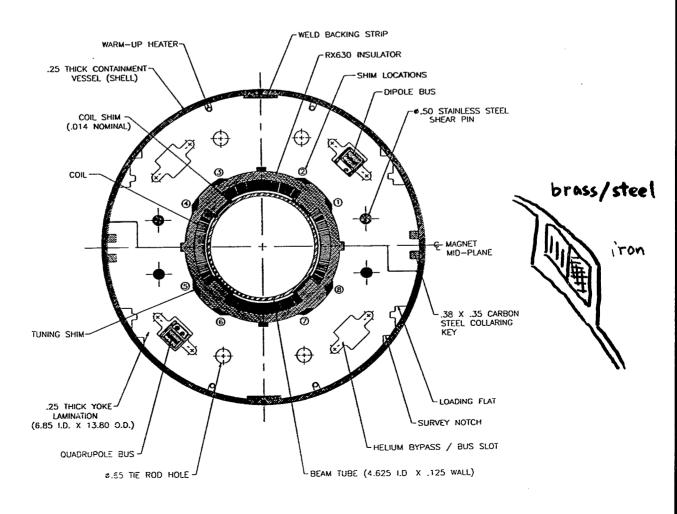


Figure 2: Tune shift of on-momentum particles with betatron amplitude from 0 to 5 σ with the 1 meter β^- storage lattice produced by one pair of triplet with lead end error $B_5 = 4.6$ unit m and return end error $B_5 = 1.0$ unit m. The horizontal and vertical integer tunes are 28 and 29, respectively.




Figure 3: Similar to Figure 2, with $b_5 = -1.2$ unit in the body for compensation.

- * tuning shims
 - * 8 shims in quadrupole symmetry, can correct 8 multipoles

a, a, a, a, b, b, b, (bs)

- * limited by shim thickness (3.1 mm) and feed-ups
- * shim size determined by warm measurement => \int_{a:}^{b_n ds=} \left(\text{in Simulation, assume 10% r.m.s. measurement error} \)

RHIC 13cm INSERTION QUADRUPOLE

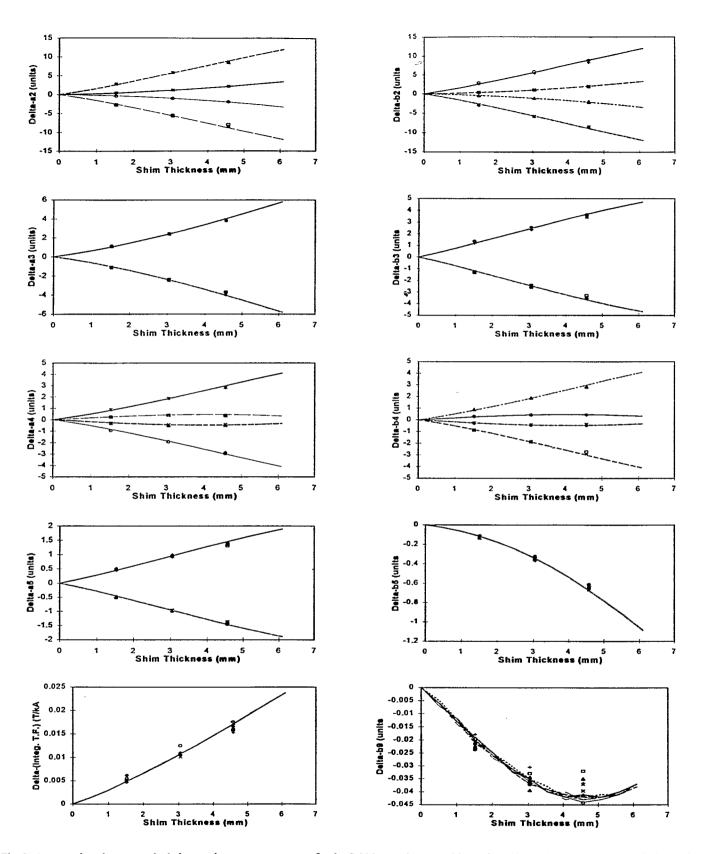


Fig. 3. A comparison between calculations and warm measurements for the field harmonics created by tuning shims. These are the changes in harmonics relative to the "no shim" or "zero iron thickness" case for each shim. The eight symbols represent the measurements for the eight tuning shim locations and eight lines are the calculations for these locations.

From : Ramesh Gupta : A. Jain, S. Kahn, G. Morgan, P. Thompson, P. Wanderer, E. Willen

Subj : Shim Experiment at 5 kA

There is a good agreement between the predicted (computed) and measured harmonics due to shims at 5 kA (the current for which the shims are designed). In magnet QRI104 eight shims of nominal thickness were inserted. The harmonics were measured with and without shims. Since the eight shims have the same thickness, then in a pure quadrupole field, the change would be expected only in the transfer function and b5, b9, ... harmonics.

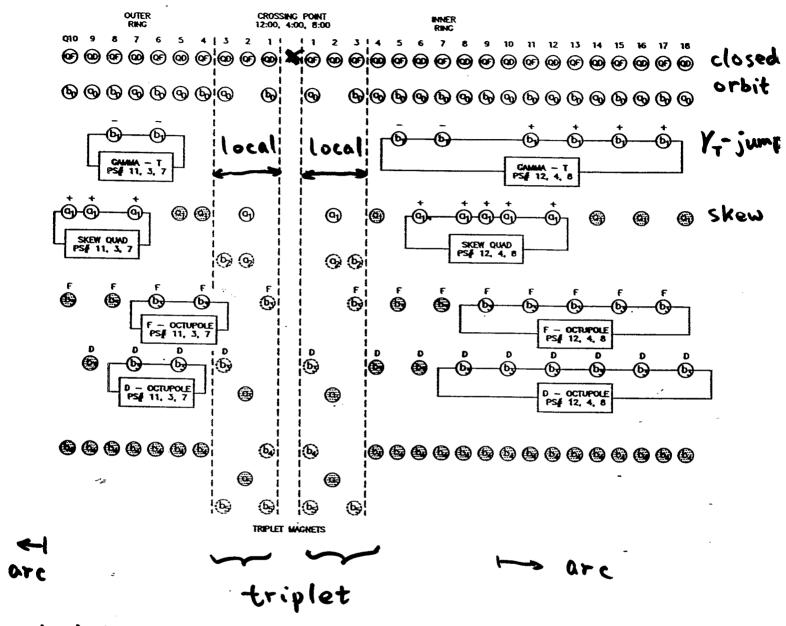
Enclosed are the tables prepared by Animesh Jain where he has listed the harmonics due to shims in QRI104 at 5 kA. He has obtained this from the two sets of measurements (a) harmonics without shims and (b) harmonics with shims. (b)-(a) gives harmonics due to shims. Animesh has divided the measurements in integral, body and ends parts.

Here is the comparison between the computed and measured change

T.F.	d(b5)	d (b9)	d(b13)	
(T/kA)	(unit)	(unit)	(unit)	
Measured (5 kA) .075 Computed (5 kA) .065 Measured (warm) Computed (warm) Since the overall transfer	-2.7 -2.4 r function	-0.29 -0.23 -0.3 -0.23 is about	+0.02 +0.02 •••3 •••2 13.6 T/kA,	the error

r is 0.7 part in 1,000 (I guess within the measurement accuracy).

It may be mentioned that the calculated harmonics are for the case when there is a perfect contact between the shim and the yoke. A good agreement between the measurements and calculations can also be seen that the shims were pulled towards the iron when the magnet was energized. I have also included the results of computations.


Non-zero harmonics in the lead end might be due to the interaction of shims with the leads. This simple explanation needs to be verified with calculations.

It may be pointed out that these shims were, though very close to the actual shims, were not exactly the same. The next step will be to do a detailed experiment with the actual shim where the harmonics due to the individual shims are obtained. That will give the coefficients to be used in fixing the harmonics in the future magnets.

- * Local b2 b3. b4. b5. a1 a2 correctors
 - b, & bs correctors. 2 per triplet most effective
 - * correct both errors from D4, and residual errors from triplet quadrupoles
 - * based on the minimization of action kicks over each triplet
 - * strength determined by cold measurement (assume 10% r.m.s. error in simulation) and design β function
 - a, correctors. I per triplet
 - * correct both magnetic error (triplet a D4)
 and misalignment effect
 - * minimize) JAx By a, ds
 - * Use the minimization of verticle dispersion

 5. Tepikian & 5. Peggs

 or by observing BPM turn-by-turn data
 "eigenmodes" F. Pilat et.al.

shaded: not power supplies connected.

Fig. 2-13. Corrector power supplies at 12, 4 and 8 o'clock.

ORDER, n	NORMAL, b _n	SKEW, an
0	C1 or C3	C3 or C1
1	-	C2
2	S, (C3)	S (C2)
3	B. S, C1, C3	S, (C2)
4	S, C1	S
5	B , S, C1, C3	`S, (C2)
6+	•	-

ble 4 The triplet quadrupole correction strategy.

B: body-ends compensation

S: turning shims effective

Cn: use Cn corrector

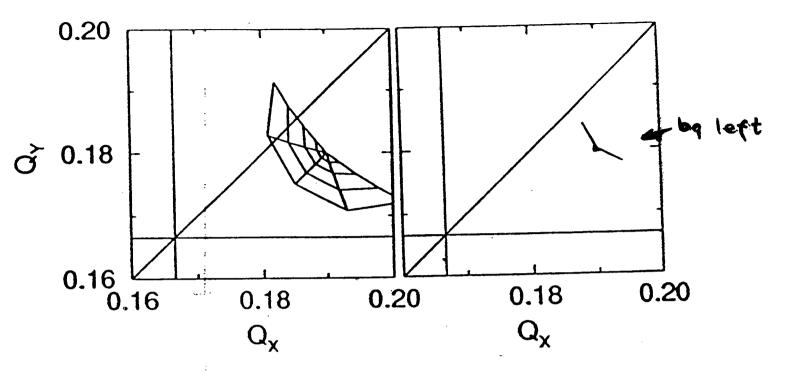
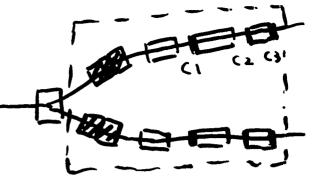



Figure 2 The tune footprint before and after correction, by shimming and excitation of the local correctors. The tune spread after correction is negligible compared to the tune spread due to linear chromaticity. (assume $\xi = -3 \rightarrow +2$)

error source

- * misalignments between 4 corrector layer
- * misalignments between quadrupole and attached correctors
- * misalignment between individual magnets one cryostat contains & elements of 2 rings
- * misalignment of the cryostat
- * warm cold play
- > center offset, roll, play

 high B, large closed orbit error

triplet dipole correctors are crucial.

Table 2: Effects of a transverse offset of the magnet center in the triplet assembly from its design beam trajectory. When not specified, it is assumed that $\beta^* = 1$ m at storage, the quadrupoles Q1, Q2, and Q3 are operating at 5 kA, and the various layers of the correctors C1, C2, and C3 are operating at 50 A.

	1 ~ ~		
Magnet	Offset	p = 1 m operation	Correction needed
	(mm)	(for $\beta^* = 2$ m operation)	(if available)
D 0	0.5	aperture reduction of 8% rms beam radius (11% rms beam radius at $\beta^* = 2$ m)	local triplet
Q1	0.5	closed orbit offset of 7 mm at arc^a (5 mm if $\beta^* = 2$ m)	a_0/b_0 corrector at 5 A
$\mathbf{Q}2$	0.5	closed orbit offset of 23 mm at arc^a (16 mm if $\beta^* = 2$ m)	a_0/b_0 corrector at 13 A
Q 3	0.5	closed orbit offset of 14 mm at arc^a (10 mm if $\beta^* = 2$ m)	a_0/b_0 corrector at 8 A
$C2$ (a_1)	1	equivalent to $4\times10^{-3}~I_{max}$ in a_0/b_0 b layer	
$C2, C3$ (a_2/b_2)	1	equivalent to $20 \times 10^{-3} I_{max}$ in a_1/b_1 b layer	
C1, C2, C3 (a_3/b_3)	1	equivalent to $30 \times 10^{-3} I_{max}$ in a_2/b_2 b layer	
C1 (b ₄)	1	equivalent to $60 \times 10^{-3} I_{max}$ in a_3/b_3 b layer	•
$C1, C3$ (a_5/b_5)	1	equivalent to $100 \times 10^{-3} I_{max}$ in a_4/b_4 b layer	

a) At arc section with $\beta = 50$ m.

b) The amount of feed-down produced is expressed relative to the maximum current I_{max} (Table 1) of the specified 13 cm corrector layer.

Table 3: Effects of a roll of the magnet along the beam trajectory in the triplet assembly. It is assumed that D0, Q1, Q2, and Q3 are operating at 5 kA, and the various layers of C1, C2, and C3 are operating at 50 A.

Magnet	Roll	Effects for $\beta^* = 1$ m operation	Correction needed
	(mrad)	(for $\beta^* = 2$ m operation)	(if available)
D0	0.5	closed orbit offset of 1.3 mm at arc (0.9 mm at $\beta^* = 2$ m)	a_0/b_0 corrector at 1 A
Q1	0.5	equivalent to $\Delta Q_{min} = 0.006$ a $(\Delta Q_{min} = 0.003 \text{ at } \beta^* = 2 \text{ m})$	a ₁ corrector at 3 A
Q2	0.5	equivalent to $\Delta Q_{min} = 0.026$ ^a $(\Delta Q_{min} = 0.013 \text{ at } eta^* = 2 \text{ m})$	a ₁ corrector at 7 A
Q3	0.5	equivalent to $\Delta Q_{min} = 0.016$ ^a $(\Delta Q_{min} = 0.008 \text{ at } eta^* = 2 \text{ m})$	a ₁ corrector at 5 A
C1, C3 (a ₀ /b ₀)	5	equivalent to $5\times10^{-3}~I_{max}$ in $b_0/a_0^{~b}$ layer	
C2 (a ₁)	5	equivalent to $10 \times 10^{-3} I_{max}$ in b_1/a_1 layer	
$C2, C3 \ (a_2/b_2)$	5	equivalent to $15\times10^{-3}~I_{max}$ in b_2/a_2 b layer	
$C1, C2, C3 (a_3/b_3)$	5	equivalent to $20 \times 10^{-3} I_{max}$ in b_3/a_3 layer	-
C1 (b ₄)	5	equivalent to $25\times10^{-3}~I_{max}$ in a_4 b layer	
$C1, C3$ (a_5/b_5)	5	equivalent to $30\times10^{-3}~I_{max}$ in b_5/a_5 layer	
1	1		

a) Minimum tune split due to linear coupling.

b) Relative to the maximum-current strength of the specified 13 cm corrector layer.

III. Arc region error compensation

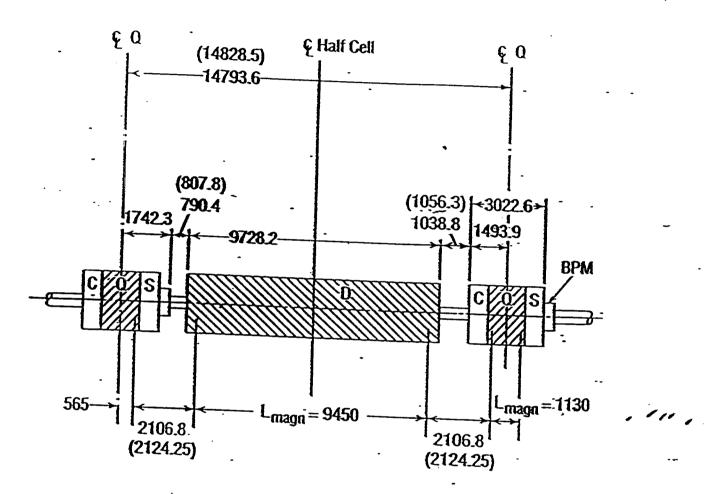


Fig. 11-2. Layout of inner(outer) arc half cell.

Field quality issues

error source

* arc dipole

integral transfer function variation ~3×10-4s integral field angle ~1 mr s.b.

be by allowed foldmass asym. in V

body field angle twist pol. proton

* arc quadrupole

ITF ~ 5 x 10 4 5.3.

IFA ~ -1.8 mr, systematic from ends

b5, G5, b3 A Allowed Asym. in H, V. plane

Table II

Some integral multipole harmonics of the RHIC dipoles measured at various test currents (mean±standard deviation in prime units⁶ at the reference radius of 2.5 cm).

	a_1	b_2	a_2	b ₄
30 A (warm)	0.1±1.5	4.8±1.4	-1.0 ± 0.2	0.0 ± 0.4
	0.7 ± 1.3	1.0 ± 1.4	-1.0 ± 0.2	-0.6 ± 0.5
1450 A (cold)	0.6 ± 1.2	2.9±1.4	-1.0 ± 0.2	-0.4 ± 0.5
5000 A (cold)	-1.3±1.4	1.4±1.5	-1.1±0.2	-0.1 ± 0.5

Some integral multipole harmonics of the RHIC quadrupole magnets measured at various test currents (mean±standard deviation in prime units⁶ at the reference radius of 2.5 cm).

	b_3	b_5	a_5
10 A (warm)	:-1.4±1.2	1.4±0.5	-3.7 ± 0.3
660 A (cold)	-0.7±1.7	-1.9 ± 0.6	-3.7 ± 0.4
1450 A (cold)	-0.7±1.7	0.5 ± 0.6	-3.7 ± 0.3
5000 A (cold)	-0.7±1.7	$5.6 {\pm} 0.6$	-3.8 ± 0.3

Table III
Warm measured means and standard deviations (SD) of
the integral and body transfer function, integral field

angle, body field angle standard deviation, and center offsets of the RHIC arc magnets.

	DRG	QRG	SRE
Integ. trans. func.			
(relative SD)	3.0×10^{-4}	4.8×10^{-4}	1.8×10^{-3}
Body trans. func.	·.		
(relative SD)	3.1×10^{-4}		
Integ. field angle			
$(Mean \pm SD)$ (mr)	-0.5 ± 0.8	-1.8±0.4	0.0±0.3
Body field angle			
SD (Mean) (mr)	0.8		
Center offset X_0			
Mean±SD) (mm)		0.03 ± 0.06	0.02 ± 0.09
Center offset Y_0			0.02
Mean±SD) (mm)		0.13±0.06	0.03 ± 0.03

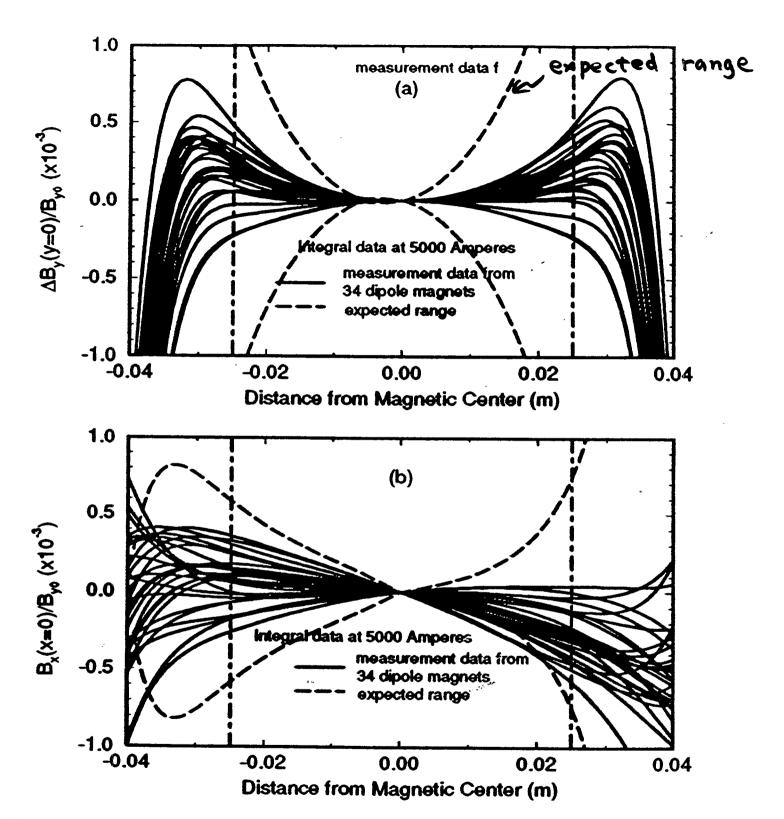


Figure. 2. RHIC dipole magnet a) vertical field profile at horizontal midplane and b) horizontal field profile at vertical midplane.

Compensation method

- * cross section iteration at design & early production stage no by, by corrected minimize systematics at injection * storage
- * quick feed-back from BNL to builder
 When ITF drops 10⁻³, fixed in 2 weeks
 ~ 20 magnets
- * Sort dipoles on ITF, minimize corrector strength
- * spare "silver" magnets
- * use correctors
 - ao/bo. a, (b3, b4)

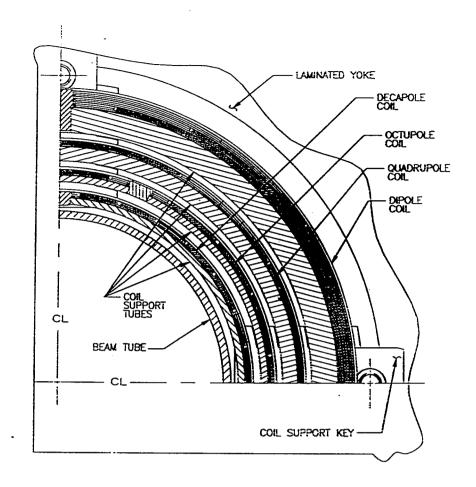
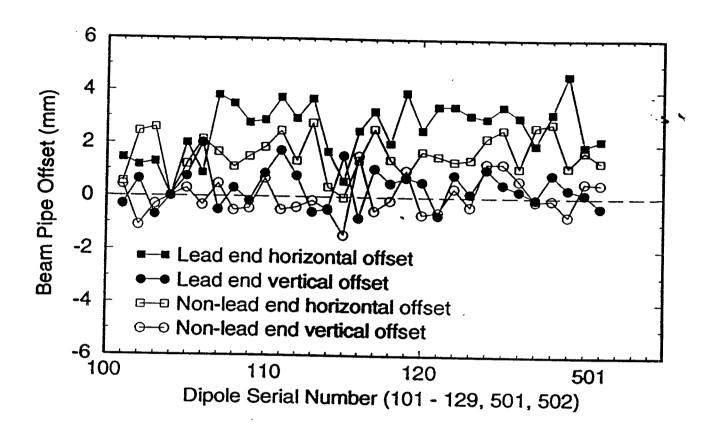


Fig. 1-11. Arc corrector coil cross-section.

Table 1-19. Operating Parameters of Arc Correctors

Multipole	Inductance (mH)	Ι _{ορ} (A)	Field @ 2.5 cm (T)	L _{eff} (m)	I _Q (A)	b,
Decapole	4.3	59.0	0.0154	0.575	202	44.6
Octupole	6.9	50.6	0.0164	0.571	198	47.5
Quadrupole	25.0	49.8	0.0675	0.555	190	195.7
Dipole	687	52.2	0.5903	0.508	160	• 3 • 1


Misalignment issues

error source

- t dipole: displacement of iron center line
 w.r.t. beam trajectory (sagitta complication
 pipe mismatch,
- * relative alignment error between sextupole, quadrupole, corrector.

each cryostat contains c.a, s, (BPM)

- * transverse a longitudinal plays in cryostat
 "springs" inserted
- => center offset, roll, play

igure 3: Beam-pipe position measurement data from the survey of 31 dipole (DRG) agnets performed before July 1995.

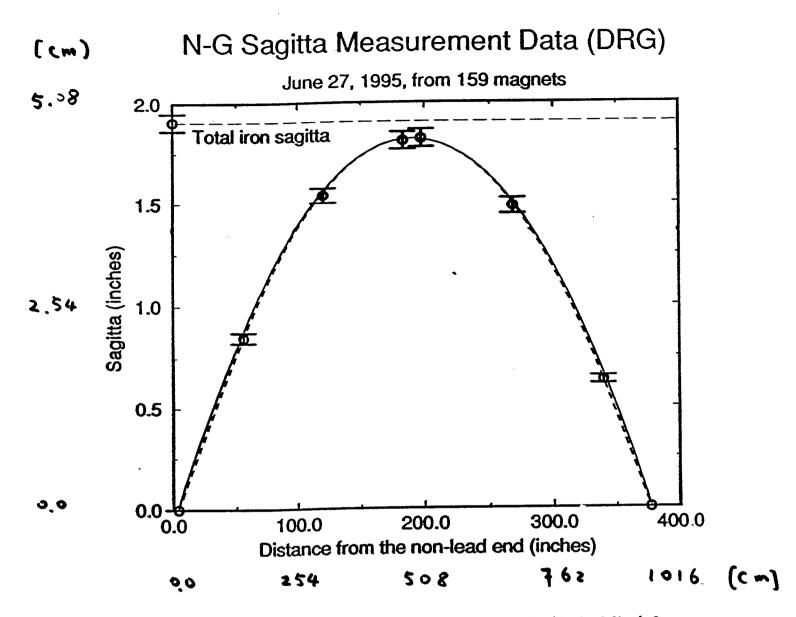


Figure 1: Single arc (solid line) and arc plus straight ends (dashed line) fits to measurements of the iron profile.

mechanically measured at 8 locations

Iron (field) center displacement

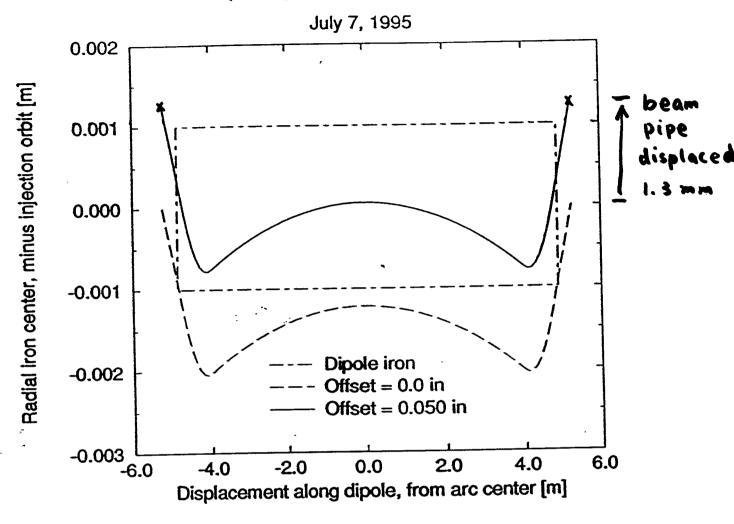


Figure 2: The radial displacement of the iron center line, relative to the injection trajectory, for dipole placement with the recommended radial offset of 50 mils (solid line), and no offset (dashed line). A positive radial displacement means that the magnet is moved away from the ring center. The end points of the curves are the "beam tubes" referred to in Tables 1 and 2.

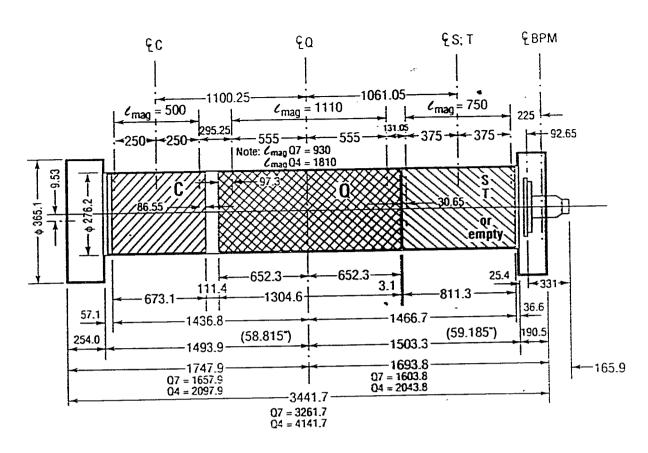
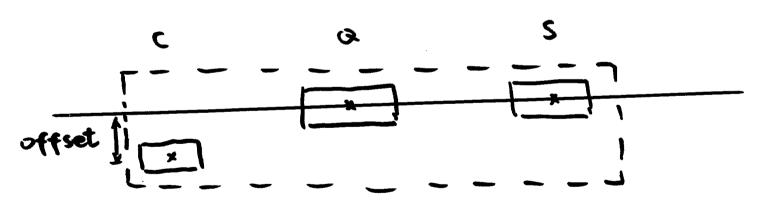
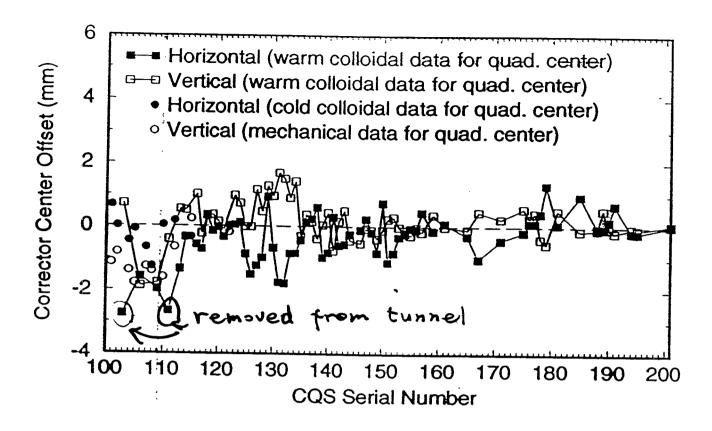
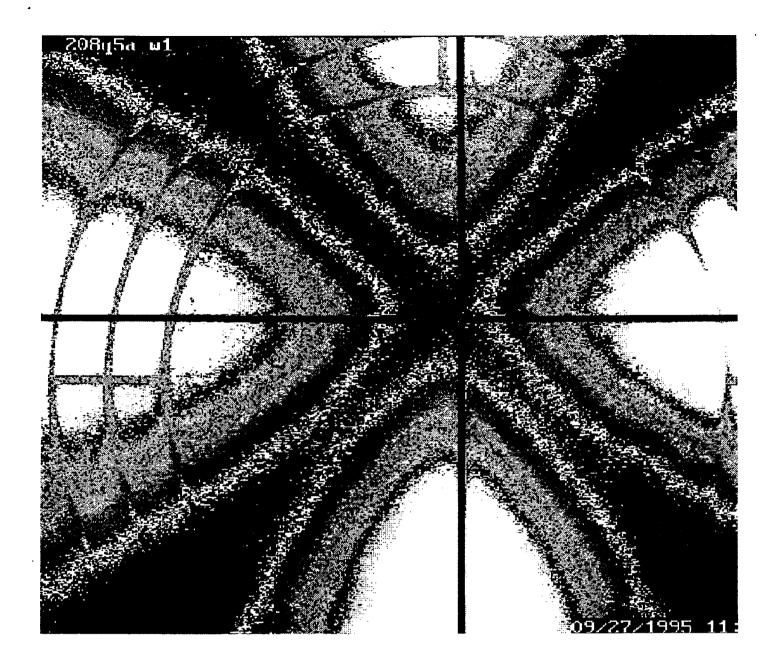




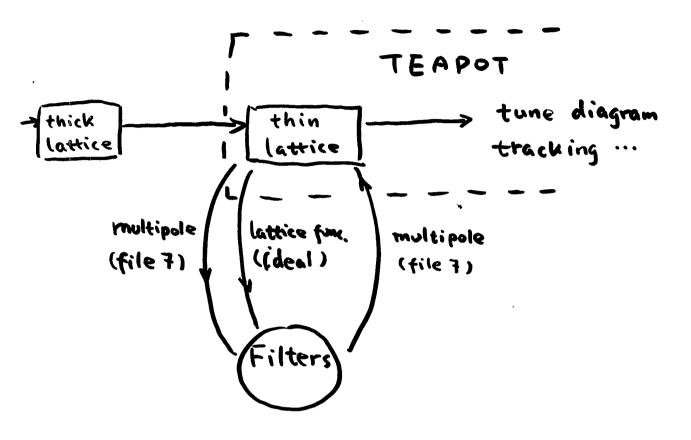
Fig. 1-5. Corrector, quadrupole, sextupole (CQS) assembly. Lamination length is shown.

igure 2: Corrector center offset from the ideal beam orbit determined by averaging the rarm-measured positions of the four corrector mechanical fiducials.

compensation method


- 1* accurately determine magnetic center use colloidal cell measurement
 - * correct dipole and quadrupole roll individually during installation
 - * align Cas by centering a and S.

 * Ralign C using welding "choreograph"


 * quick feed-back from AP group to

magnet division

See corrector offset trend

IV. Computer Modeling

TEAPOT filters:

IR correction

split thick dipole, add feeddown

Comparison between analytical formula & TEAPOT

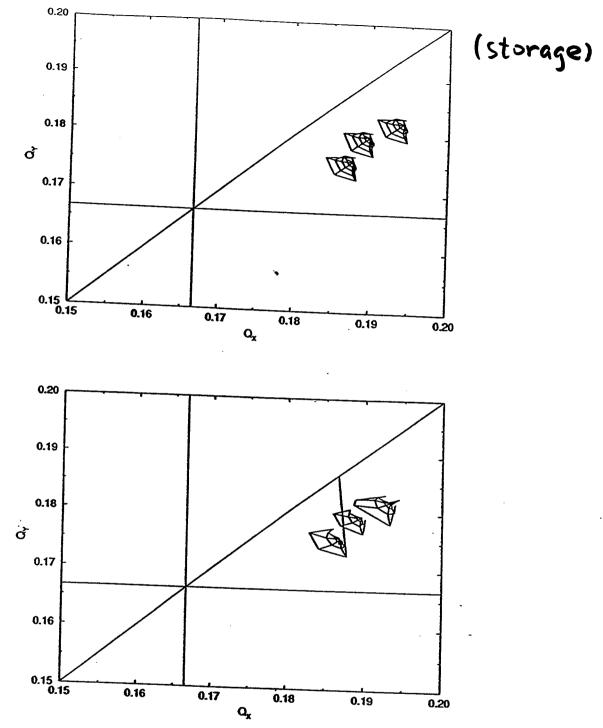
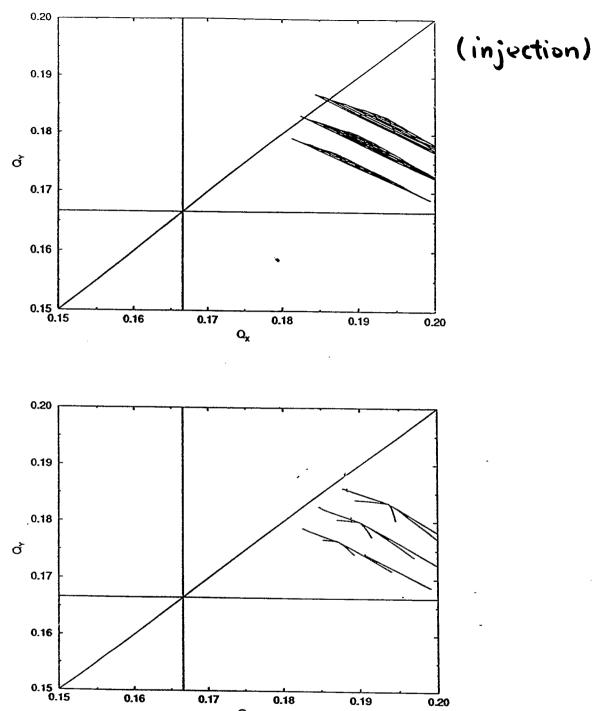



Figure 2: Tune shift of particles of momentum deviation $\Delta p/p = 0, \pm 2.5 \ \sigma_p$ and betatron amplitude from 0 to 5 σ with the storage lattice and the multipole error in Table 1 when the tuning shims are inserted, calculated a) by using the perturbation methods with HARMON output; b) from the TEAPOT tracking data.

(1993 data)

Comparison between analytical formula & TEAPOT

0.20

Figure 4: Tune shift of particles of momentum deviation $\Delta p/p=0,\pm 2.5\sigma_p$ and betatron amplitude from 0 to 7 σ with the injection lattice and the multipole error for MAC93 tracking run seed #0, calculated a) by using the perturbation methods with HARMON output; b) from the TEAPOT tracking data. Tuning shims are inserted, but octupole and decapole corrections are not.

 Q_{x}

Au⁷⁹⁺ Storage in RHIC

a systematic < a./bn> only

-	Baseline a	Baseline	Baseline	Baseline	Baseline
		$\& \text{ random}^b$	$\pm db_3 \; (\max)$	$\pm db_9 \; (\max)$	$\& { m random}^b$
			(triplet) ^c	$(\text{triplet})^d$	$\&\ db_n$ e
$\Deltaeta_{x, ext{trip}}/eta_{x, ext{trip}}$	0.09 ± 0.02	0.09 ± 0.02	0.09 ± 0.02	0.09 ± 0.02	0.09 ± 0.02
$\Deltaeta_{y, ext{trip}}/eta_{y, ext{trip}}$	0.20 ± 0.15	0.21 ± 0.15	0.20 ± 0.15	0.20 ± 0.15	0.20 ± 0.15
$\Delta eta_x^*/eta_x^*$	-0.03 ± 0.01	-0.03 ± 0.01	-0.03 ± 0.01	-0.03 ± 0.01	-0.03 ± 0.01
\Deltaeta_y^*/eta_y^*	0.10 ± 0.09	0.10 ± 0.08	0.10 ± 0.09	0.10 ± 0.09	0.10 ± 0.09
$\Delta D_{x,max} ext{ (m)}$	0.07 ± 0.05	0.08 ± 0.08	0.07 ± 0.05	0.07 ± 0.05	0.07 ± 0.05
$\Delta D_{y,max} (\mathrm{m})$	0.9 ± 0.5	1.0 ± 0.5	0.9 ± 0.5	0.9 ± 0.5	1.0 ± 0.5
$\frac{ \text{Shim size} (\text{mm})}{(\text{maximum})^f}$	1.35 ± 0.03	2.69 ± 0.09	1.55 ± 0.03	1.35 ± 0.03	2.56 ± 0.06
$\frac{\text{Corrector strength:}^g}{ a_{1,max} \text{ (Amp.)}}$	18 ± 3	19 ± 4	18 ± 3	18 ± 3	19 ± 4
$ b_{3,max} \; ext{(Amp.)}$	0.8 ± 0.1	0.9 ± 0.5	0.8 ± 0.1	0.8 ± 0.1	0.8 ± 0.1
$ b_{4,max} \; ({ m Amp.})$	0.1 ± 0.0	3 ± 1	0.1 ± 0.0	0.1 ± 0.0	0.5 ± 0.2
$ b_{5,max} ~({ m Amp.})$	10 ± 2	15 ± 2	10 ± 2	10 ± 2	15 ± 2
Tune shift: $\Delta Q_{max}(5\sigma) \ (\times 10^{-3})$ (before corrections) ^h $\Delta Q_{max}(5\sigma) \ (\times 10^{-3})$	3.0 ± 0.1 3.1 ± 0.4	5.7 ± 1.6 4.0 ± 1.5	6.5 ± 0.3 3.9 ± 1.0	5.4 ± 0.3 5.5 ± 0.8	7.5 ± 1.2 5.5 ± 0.8
(after corrections) ^h D. Aperture $(\sigma_{x,y})$	5.8 ± 0.4	4.0 ± 1.5 5.1 ± 0.2	5.5 ± 0.3	5.3 ± 0.8 5.1 ± 0.2	5.6 ± 0.8
$(\Delta p/p=0)^i \ ext{D. Aperture } (\sigma_{x,y}) \ (\Delta p/p=2.5\sigma_p)^i$	$\underbrace{5.1 \pm 0.2}$	4.9 ± 0.2	$\underline{5.0 \pm 0.2}$	4.6 ± 0.2	5.3 ± 0.4

Table 1: The study is based on Au⁷⁹⁺ ions stored at 100 GeV/u with 95% normalized transverse emittance $\epsilon_N = 40\pi$ mm·mr, r.m.s. momentum spread $\sigma_p = 0.00089$, and $\beta^* = 1$ m. The value listed corresponds to "mean \pm r.m.s." calculated from the four cases of random number seeds #0, 1, 2, and 3.

30 k turns, 100 sync. osc. period (1993 data)

0 WT. 20 4

V. Conclusion

Triplet:

- * An effective triplet compensation requires the knowledge of fringe fields + warm-cold correlation
- * Magnetic field quality can be optimized individually after measurement of coldmass
- * Triplet correctors are crucial for misalignment correction

Arc :

- * field quality can be improved and maintained at design and production.
 "Cost negative": no need for decapole correction
- * Accurate survey techniques like the colloidal cell measurement is essential for good alignment

Acknowledgements

The authors would like to thank G. Ganetis for many helpful discussions.

- S. Peggs, R. Gupta, M. Harrison, A. Jain, P. Wanderen, References S. Tepilian, D. Trbojevic, et.al.
- [1] J. Wei and M. Harrison, Tune Shift Due to Magnetic Multipoles in RHIC, XV Intern. Conf. High Energy Accel. (Hamburg), p.1031 (1992).
- [2] J. Wei, R. Gupta, and S. Peggs, Magnetic Correction of RHIC Triplets, Proc. 1993 Particle Accelerator Conferences, Washington, D.C., p. 258 (1993).
- [3] J. Wei and S. Peggs, Requested Systematic Body b₅ Multipoles in RHIC Triplet Quadrupoles, Note RHIC/AP/18 (1993).
- [4] J. Wei, S. Peggs, S. Tepikian, P.A. Thompson, and D. Trbojevic, Effects of CQS and Dipole Misalignments in RHIC, Note RHIC/AP/71 (1995).
- [5] F. Pilat, private communications (1995).
- 6. S. Peggs, S. Tepikian, D. Trbojevic, J. Wei,
 The warm Iron Geometry of Average RHIC
 Dipole, RHIC/AP/62 (1995)
- 7. J. Wei, M. Harrison, S. Peggs, P. Thompson, D. Trbojevic An estimate on the effect of RHIC Triplet Misalignment, RHIC/AP/72 (1995)
- 8. J. Wei, F. Dell, S. Peggs, T. Satogata, S. Tepikian Comparison of Pertubation Method and TEAPOT Tracking on Tune Shift Calculation, RHIC/AP/5 (1993)

1

CQS179;

Tue Sep 19 16:50:45 1995 Survey information for 'CQS' magnet CQS179; (Model) \$; (BPM type) Horizontal

BNL optical measurement of the fiducials [Inches]:

(x - radially inward;

y - longitudinal; z - vertical upward)

M8(z) :

0.005

(** means more than either 2SD from the mean)

	Mean	Standard deviation	Measured	Dev. from mean (sigma)
M1(x):	46.567	40.084	-0.012	-1.2
M4(x):	47.364	40.773	-0.011	-1.2
M5 (x) :	36.966	40.078	-9.621	-1.2
M8(x):	37.772	40.763	-9.609	-1.2
M1(y) :	47.348	40.753	-0.002	-1.2
M4 (y) :	155.296	40.742	107.954	-1.2
M5 (y) :	47.411	40.809	0.002	-1.2
M8(y):	155.367	40.808	107.963	-1.2
M1(z) :	-6.702	5.765	-0.004	1,2
M4(z) :	-6.700	5.769	-0.003	1.2
M5(z):	-6.713	5.774	-0.019	1.2
MR (+) .	-6.703	5 701	-0.017	1 2

BNL magdiv mechanical measurement of the fiducials [Inches]:

(** means more than either 2SD or 20 mil from mean)

Mean Standard Measured Dev. from mean deviation (sigma) M1(x) : -0.005 0.007 -0.006 -0.2 M4(x): -0.002 0.007 -0.005 -0.3 M5(x): -9.605 -9.611 0.011 -0.6 M8(x): -9.593 0.019 -9.602 -0.5 M1(y) : 0.000 0.000 0.000 NaN M4 (y) : 108.000 0.000 108.000 NaN M5 (y) : 0.002 0.001 0.002 -0.2 M8 (y) : 108.002 0.001 108.002 -0.2 M1(z) : -0.003 0.005 -0.004 -0.3 -0.000 M4(z): 0.008 -0.001 -0.1 -0.005 M5(z) : 0.009 -0.017 -1.3

-0.017** -0.9

magdiv mechanical measurement of the flats [Inches]:
(** means more than either 2SD or 20 mil from mean)

0.025

	Mean	Standard	Measured	Dev. from mean
		deviation		(sigma)
MP1 (x):	0.000	0.000	0.000	NaN
MP2(x):	-0.001	0.002	-0.001	0.1
MP3 (x):	0.005	0.004	0.011	1.3
MP4(x):	0.000	0.000	0.000	NaN
MP5(x):	:-9.602	0.003	-9.600	0.7
MP6(x):	-9.603	0.004	-9.599	0.9
MP7(x):	-9.595	0.004	-9.593	0.5
MP8(x):	-9.601	0.002	-9.599	1.4
ML1(x):	0.002	0.002	0.005	1.9
ML2(x):	-0.001	0.006	0.005	0.9
ML3(x):	-0.007	0.006	-0.001	1.2
ML4(x):	0.001	0.004	0.006	1.4
ML5(x):	-9.600	0.003	-9.596	1.1
ML6(x):	-9.602	0.006	-9.598	0.7
ML7(x):	-9.607	0.006	-9.597	1.6
ML8(x):	-9.602	0.005	-9.594	1.6

MP1 (y) :	0.000	0.000	0.000	NaN
MP2 (y) :	36.000	0.000	36.000	NaN
MP3 (y):	71.000	0.000	71.000	NaN
MP4 (y):	108.000	0.000	108.000	NaN
MP5 (y):	0.002	0.001	0.002	-0.2
MP6(y):	36.002	0.001	36.002	-0.2
MP7(y):	71.002	0.001	71.002	-0.2
MP8(y):	108.002	0.001	108.002	-0.2
ML1(y):	0.000	0.000	-0.001	-1.5
ML2 (y):	36.000	0.000	35.999	-1.5
ML3 (y):	71.000	0.000	70.999	-1.5
ML4(y):	108.000	0.000	107.999	-1.5
ML5(y):	0.002	0.001	0.001	-1.0
ML6(y):	36.002	0.001	36.001	-1.0
ML7 (y):	71.002	0.001	71.001	-1.0
MLS(y):	108.002	0.001	108.001	-1.0
MP1(z):	0.000	0.000	0.000	NaN
MP2(z):	-0.002	0.006	-0.006	-0.7
MP3 (z):	-0.009	0.007	-0.015	-0.9
MP4(z):	0.000	0.000	0.000	NaN
MP5(z):	0.000	0.000	0.000	NaN
MP6(z):	-0.004	0.006	-0.009	-0.8
MP7(z):	0.005	0.005	-0.002	-1.5
MP8(z):	-0.000	0.004	-0.007	-1.6
ML1(z):	-9.602	0.002	-9.602	0.0
ML2(z):	-9.601	0.007	-9.604	-0.5
ML3(z):	-9.606	0.008	-9.612	-0.8
ML4(z):	-9.599	0.002	-9.599	-0.3
ML5(z):	-9.602	0.002	-9 .603	-0.4
ML6(z):	-9.602	0.007	-9.607	-0.8
ML7(z):	-9.591	0.007	-9.598	-1.0
ML8(z):	-9.599	0.006	-9.606	-1.2

Transformation between magdiv mechanical and survey optical data: ξ

(** means more than either 2SD or 20 mil from mean)

	Mean	Standard deviation	Measured	Dev. from mean (sigma)
T_theta	t		0.000	· -
T_psi	:		0.000	
T_phi	1		-0.000	
T_x[In]	:		0.008	
T_v[In]	:		0.022	
T_z[In]	t		0.000	
T_rms[In]	:		0.002	

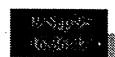
Transformation between magdiv mechanical and local beam system:

		Mean	Standard 1 deviation	deasured	Dev. from mean (sigma)
Theta	t		1	L.928	
Psi :	t		-0.7	726	
Phi :	ì		1.9	571	
Х :	1		-0.0	000	
Y :	ı		-0.0	000	
Z :	1		-0.0	000	
rms :	ı		0.0	000	

Raw warm colloidal data [Inches]: (5 points for each CQS element)

	Ar W. C		112	1.4		
(** means more than either 25D or 20 mil from mean)						
	Mean	Standard deviation	TOWN THEORY			
Count :	5.000	0.000	(sigma) 5.000 NaN			
Mean(x)	: -0.026	0.018	-0.041 -0.8 🦸			
S.D.(x)	: 0.003	0.003	0.010** 2.6			
Mean (y)	73.054	0.000	73.054 0.0			
S.D. (y)	1 12.847	0.000	12.847 NeAt			
Mean(z)	: 0.012	0.007	0.022 1.5			
S.D.(2)	: -0.026 : 0.003 : 73.054 : 12.847 : 0.012 : 0.002	0.001	0.022 1.5 0.003 0.2			
	of the indivi	dual compone				
(magdiv	coordinate sy	/stem: x - r	dially inward;			
/ =		Z - V	ngitudinal; rtical upward)			
(Except		measurement	, the y data is from the des	ign value)		
	Mean	Standard deviation	Measured Dev. from mean (sigma)			
Quadrupo	le center fro	m warm colle	idal data [mm]:			
(** mean	e to magdiv o	coordinate sy	stem)			
			r 1 mm from the mean)			
(x)	: -122.096 : 1376.299 : -121.964	0.252	-122.499 -1.6			
(Y)	: 1376.299	0.000	1376.299 0.0			
(Z)	: -121.964	0.201	-121.717 1.2			
yuadrupo.	le center fro	m mechanical	data [mm]:			
(## mean	e to magdiv c	cordinate sy	stem)			
			r 1 mm from the mean)			
(x)	: -121.955	0.098	-121.835 1.2			
(Y)	: 1376.299	0.000	1376,299 0.0			
(Z)	: -121.946	0.137	-121.835 1.2 1376.299 0.0 -122.087 -1.0			
(relative	e center from e to magdiv c	mechanical	data (mm):			
(** mean	e to mayurv c	tther 2 CD o	r 1 mm from the mean)			
(x)	: -121.918 : 315.250	0.043	-121.858 1.4 315.250 0.0 -121.956 -0.2			
(Y)	: 315.250	0.000	315.250 0.0			
(Z)	: -121.950	0.022	-121.956 -0.2			
Corrector	r center from	mechanical	iata [mm]:			
(relative	maddiv c	oordinata ev	ram)			
(** means	s more than e	ither 2 SD o	1 mm from the mean)			
(x)	: -121.933	0.058	-121.836 1.7			
(y)	1 2476.551	0.000	2476.551 0.0			
(z)	2476.551 : -121.907	0.061	-122.000 -1.5			
Beam posi	tion monitor	center from	machanical data [mm]:			
(relative	e to magdiv c	pordinata ev	tem\			
(** means	more than e	ther 2 SD o	1 mm from the mean)			
(x)	: -121.763	0.357	-121.739 0.1			
(ያ)	: -286.851		-287.773 -2.0			
(z)	: -122.428	0.300	-122.638 -0.7			
Provide contract	•					
individua	l warm collo	ldal data [m	1]:			

(relative to local beam coordinate system)


(** means more than either 2 SD or 1 mm from the mean)

```
COLW1 x:
            -122.085
                        0.309
                                   -122.603
                                              -1.7
 COLW2 x:
            -122.112
                        0.270
                                   -122.567
                                              -1.7
 COLW3 X:
            -122.106
                        0.280
                                   -122.684** -2.1
 COLW4 X:
            -122.092
                        0.217
                                   -122.394
                                              -1.4
 COLWS x:
            -122.086
                                   -122.256
                        0.223
                                              -0.8
 COLW1 v:
            958.977
                       0.417
                                  958.323
                                            -1.6
 COLW2 y:
            1165.361
                        0.422
                                  1164.698
                                             -1.6
 COLW3 y:
            1371.746
                        0.427
                                  1371.073
                                              -1.6
 COLW4 Y:
            1578.130
                        0.432
                                  1577.448
 COLWS y:
            1784.514
                        0.437
                                  1783.823
 COLW1 z:
            -122.006
                        0.224
                                  -121.624
 COLW2 z: -121.992
                                                           reviewed 1
Acceptance
                        0.209
                                  -121.700
 COLW3 z: -121.959
                       0.215
                                  -121.726
                                               1.1
 COLW4 z: -121.938
                       0.206
                                  -121.726
                                               1.0
 COLW5 z: -121.927
                       0.192
                                  -121.802
BNL magdiv magnetic measurement of the field angles [m rad]:
(** means more than either 2SD or 2 mrad (Q, S) or 10 mrad (C) from zero)
                     Standard
                                 Measured Dev. from zero
                     deviation
                                              (sicma)
 Quad :
            -1.971
                     0.531
                                 -1.940
                                            0.1
 Sext :
            -0.846
                     0.335
                                 -1.070
                                           -0.7
 Corri :
            -6.290
                     3.435
                                -10.010** -1.1
 Corr2 :
            -5.940
                     4.934
                                -11.410** -1.1
 Corr4 :
            -4.165
                     4.043
                                 -6.040
                                           -0.5
 Corr5 :
            -5.109
                     2.349
                                 -4.650
                                            0.2
Difference and offset information:
(magdiv coordinate system: H - radially inward;
                     V - vertical upward;
                     Standard Measured Dev. from zero
           Mean
                     deviation
Quadrupole center (colloidal - mechanical) [mm]:
(relative to magdiv coordinate system)
(** means more than either 2 SD or 0.25 mm from 0)
             -0.141
                       0.252
                                   -0.664** -2.1
 (V)
             -0.018
                                   0.371** 2.2
        :
                       0.176
 TOTAL :
              0.260
                       0.204
                                   0.761** 2.4
Corrector (mechanical) offset from beam system origin [mm]:
(relative to local beam coordinate system)
(** means more than either 2 SD or 1 mm from 0)
              0.347
                                   1.327** 1.9
  (V)
              0.071
       :
                       0.392
                                   -0.531 -1.5
 TOTAL :
              0.626
                       0.366
                                   1.430** 2.2
Beam position monitor (electrical) offset from beam system origin [mm]:
(relative to local beam coordinate system)
(** means more than either 2 SD or 1 mm from 0)
              0.054
                       0.308
                                   -0.244
                                            -1.0
 (V)
     :
             -0.486
                       0.291
                                   -0.547
                                             -0.2
 TOTAL :
              0.592
                       0.236
                                   0.599
                                             0.0
```

statistical report

jwei@bnl.gov

(CQS)

CQS statistics

Tue Sep 19 16:34:35 1995
Survey statistics for 'CQS' magnets:

Data from MAGBASE and SURVBASE
The following magnets from SURVBASE are represented:

CQS150 CQS165 CQS175 CQS176 CQS178 CQS179 CQS181 CQS185 CQS189 CQS190

(total 10 elements)

Survey information for 'CQS' magnet

BNL optical survey measurement of the fiducials [Inches]:

and opered survey measurement of the fiddersts (inches):

		Mean	Standard deviation	Magnet counted	
M1 (x)	t	46.567	40.084	10	
M4 (x)	ı	47.364	40.773	10	
M5 (x)	t	36.966	40.078	10	
M8(x)	1	37.772	40.763	10	
M1(y)	:	47.348	40.753	10	
M4 (y)	t	155.296	40.742	10	
M5 (y)	:	47.411	40.809	10	
M8(y)	:	155.367	40.808	10	
: - :	:	-6.702	5.765	10	
M4(z)		-6.700	5.769	10	
M5 (z)	1	-6.713	5.774	10	
M8(z)	:	-6.703	5.781	10	

Date mandre manhanism's manuscraph of the fillings of the states.

BNL magdiv mechanical measurement of the fiducials [Inches]: (magdiv coordinate system: x - radially inward;

y - longitudinal;

z - vertical upward)

(Except for colloidal measurement, the y data is from the design value)

		Mean	Standard deviation	Magnet counted
M1 (x)	ŧ	-0.005	0.007	10
M4(x)	1	-0.002	0.007	10
M5 (x)	1	-9.605	0.011	10
M8(x)	1	-9.593	0.019	10
M1(y)	ŧ	0.000	0.000	10
M4 (y)	t	108.000	0.000	10
M5 (y)	:	0.002	0.001	10
M8 (y)	ı	108.002	0.001	10
M1(z)	1	-0.003	0.005	10
M4(z)	1	-0.000	0.008	10
M5(z)	1	-0.005	0.009	10
M8(z)	:	0.005	0.025	10

magdiv mechanical measurement of the flats [Inches]:

	Mean	Standard	Magnet
		deviation	counted
MP1 (x):	0.000	0.000	10
MP2(x):	-0.001	0.002	10
MP3 (x):	0.005	0.004	10
MP4 (x):	0.000	0.000	10
MP5 (x):	-9.602	0.003	10
MP6(x):	-9.603	0.004	10
MP7(x):	-9.595	0.004	10
MP8(x):	-9.601	0.002	10

ML1 (x):	0.002	0.002	10
ML2(x):	-0.001	0.006	10
ML3(x):	-0.007	0.006	10
ML4(x):	0.001	0.004	10
ML5 (x):	-9.600	0.003	10
ML6(x):	-9.602	0.006	10
ML7(x):	-9.607	0.006	10
ML8(x):	-9.602	0.005	10
MP1(y):	0.000	0.000	10
MP2 (y):	36.000	0.000	10
MP3 (y):	71.000	0.000	10
MP4(y):	108.000	0.000	10
MP5(y):	0.002	0.001	10
MP6 (y) :	36.002	0.001	10
MP7 (y):	71.002	0.001	10
MP8 (y):	108.002	0.001	10
ML1 (y):	0.000	0.000	10
ML2(y):	36.000	0.000	10
ML3 (y):	71.000	0.000	10
ML4(y):	108.000	0.000	10
ML5(y):	0.002	0.001	10
ML6(Y):	36.002	0.001	10
ML7(y):	71.002	0.001	10
ML8(Y):	108.002	0.001	10
MP1(z):	0.000	0.000	10
MP2(z):	-0.002	0.006	10
MP3 (z):	-0.009	0.007	10
MP4(z):	0.000	0.000	10
MP5(z):	0.000	0.000	10
MP6(z):	-0.004	0.006	10
MP7(z):	0.005	0.005	10
MP8(z):	-0.000	0.004	10
ML1(z):	-9.602	0.002	10
ML2(z):	-9.601	0.007	10
ML3(z):	-9.606	0.008	10
ML4(z):	-9.599	04.002	10
ML5(z):	~9.602	0.002	10
ML6(z):	-9.602	0.007	10
ML7(z):	-9.591	0.007	10
ML8(z):	-9.599	0.006	10
4			

Transformation between magdiv mechanical and survey optical data:

	Mean	Standard deviation	Magnet counted
T_rms[In]:	0.002	0.001	10

Raw warm colloidal data [Inches]: (5 points for each CQS element)

	Mean	Standard deviation	Magnet counted
Count :	5.000	0.000	10
Mean(x):	-0.026	0.018	10
S.D.(x):	0.003	0.003	10
Mean(y):	73.054	0.000	10
S.D.(y):	12.847	0.000	10
Mean(z):	0.012	0.007	10
S.D.(z):	0.002	0.001	10

Centers of the individual components: (magdiv coordinate system: H - radially inward;

PROBLEM STORE

************ Distribution statistics for 'DRG' magnets *****************************

Tue Oct 10 13:22:04 1995

Harmonic data were read from file '/home/owl/public/magdiv_data/sds/sel5.sds'

The following magnets are fully or partially represented: DRG101 DRG102 DRG103 DRG104 DRG105 DRG106 DRG107 DRG108 DRG109 DRG110 DRG111 DRG112 DRG113 DRG114 DRG115 DRG116 DRG117 DRG118 DRG119 DRG120 DRG121 DRG122 DRG123 DRG124 DRG125 DRG126 DRG127 DRG128 DRG129 DRG130 DRG131 DRG132 DRG133 DRG134 DRG135 DRG136 DRG137 DRG138 DRG139 DRG140 DRG141 DRG142 DRG143 DRG144 DRG145 DRG146 DRG147 DRG148 DRG149 DRG150 DRG151 DRG152 DRG153 DRG154 DRG155 DRG156 DRG157 DRG158 DRG159 DRG160 DRG161 DRG162 DRG163 DRG164 DRG165 DRG166 DRG167 DRG168 DRG169 DRG170 DRG171 DRG172 DRG173 DRG174 DRG175 DRG176 DRG177 DRG178 DRG179 DRG180 DRG181 DRG182 DRG183 DRG184 DRG185 DRG186 DRG187 DRG188 DRG190 DRG191 DRG192 DRG193 DRG194 DRG195 DRG196 DRG197 DRG198 DRG199 DRG200 DRG201 DRG202 DRG203 DRG204 DRG205 DRG206 DRG207 DRG208 DRG209 DRG210 DRG211 DRG212 DRG213 DRG214 DRG215 DRG216 DRG217 DRG218 DRG219 DRG220 DRG221 DRG222 DRG223 DRG224 DRG501 DRG502 DRG503 DRG504 DRG505 DRG506 DRG507 DRG508 DRG509 DRG510 DRG511 DRG512 DRG513 DRG514 DRG515 DRG516 DRG517 DRG518 DRG519 DRG520 DRG521 DRG522 DRG523 DRG524 DRG525 DRG526 DRG527 DRG528 DRG529 DRG530 DRG531 DRG532 DRG533 DRG534 DRG535 DRG536 DRG537 DRG538 DRG539 DRG540 DRG541 DRG542 DRG543 DRG544 DRG545 DRG546 DRG547 DRG548 DRG549 DRG550 DRG551 DRG552 DRG553 DRG554 DRG555 DRG556 DRG557 DRG558 DRG559 DRG560 DRG561 DRG562 DRG563 DRG564 DRG565 DRG566 DRG567 DRG568 DRG569 DRG570 DRG571 DRG572 DRG573 DRG574 DRG575 DRG576 DRG577 DRG578 DRG579 DRG580 DRG581 DRG582 DRG583 DRG584 DRG585 DRG586 DRG587 DRG588 DRG589 DRG590 DRG591 DRG592 DRG593 DRG594 DRG595 DRG596 DRG597 DRG598 DRG599 DRG600 DRG601 DRG602 DRG603 DRG604 DRG605 DRG606 DRG607 DRG608 DRG609 DRG610 DRG611 DRG612 DRG613 DRG614 DRG615 DRG616 DRG617 DRG618 DRG619 DRG620

statistical

Test current (Amps)	Up, Down, Warm	average	standard deviation	no. of elements evaluated	
Effective 1	Magnetic W	Length [m]	0.0022		
	Ü	9.4218	0.0041		
	Ü	9.4235	0.0031		
	บั	9.4154	0.0000		
1450.0	ซ	9.4308	0.0034		
2400.0	Ü	9.4291	0.0049		
5000.0	บ	9.4414	0.0036		
6800.0	Ü	9.4386	0.0000		
Mechanical	_	9.7170	0.0017	241	
			[Tm/kA] (>< means	from intfield	table)
30.0	W	6.65348	0.00273	243	
30.0	_	6.65479		240 ><	
	U	6.66657	0.00373	11	
	U	6.67015	0.00264	51 ≻ <	
660.0		6.69135	0.00263	50 × 1	
1405.0	ŭ	6.66506	0.00000 0.00214	51 ×	
1450.0	Ü	6.67716	0.00214	50 🔀	
1450.0	_	6.68624	0.00211	50 ×	
2400.0	U	6.67397 6.67984	0.00200	50 🔀	
2400.0 5000.0	ם ט	6.41767	0.00197	50 × 51 ×	
5000.0		6.42042	0.00242	50 ×	
6800.0	. บ	6.06393	0.00000	1	
0000.0	J	0.00333	3.30000	-	

Body Trans	fer Fun	ction [T/kA]		
30.0	W	0.70418	0.00022	243
570.0	U	0.70757	0.00036	11
660.0	U	0.70785	0.00033	55
1405.0	U U	0.70789	0.00000	1
1450.0	U	0.70800	0.00030	52
2400.0	U	0.70780	0.00015	8
5000.0	Ŭ	0.67971	0.00032	54
5000.0 6800.0	U	0.64246	0.00000	1
Integrated	Field	Angle [mrad]		
	W	-0.7208	0.7348	243
570.0	Ü	-0.6400	0.7145	11
660.0	Ü	-1.0010	1.0413	50
1405.0	ŭ	0.7900	0.0000	1
1450.0	์ บ	-1.0448	1.0188	50
2400 0	11	-1.3025	0.9140	8
5000.0	ti	-1.0818	1.0439	51
6800.0	Ū	-0.8400	0.0000	1
Dade Blaid	3==10	Arranaga Immadi		
30.0	W	Average [mrad] -0.5840	0.7624	243
570.0	Ü	-0.4464	0.8322	11
570.0	11		1.0836	55
660.0 1405.0	tt	-0.9145 1.1400	0.0000	1
1460.0	**	-0.9842	1.0544	52
2400.0	ŭ .		0.8800	8
1450.0 2400.0 5000.0	**	-0.9441	1.0793	54
6800.0	บ	-0.7100	0.0000	1
	_			
Body Field		Maximum Absolute	Deviation	[mrad]
30.0	W	1.1111	0.5563	243
570.0 660.0 1405.0 1450.0 2400.0	.,	1.2409	0.6234	11 55
4405.0		1.1515 0.4300	0.6304	1
1405.0	"	1 1602	0.0000 0.6332	52
2400.0	••	1.1692 0.7113	0.0332	8
2400.0	ช	1.1580	0.6373	54
5000.0 6800.0	Ü	0.5100	0.0000	1
0.000	U	0.5100	0.0000	•
		Standard Deviati		
30.0	W	0.6820	0.3405	243
570.0	U	0.7645	0.4075	11
660.0	U U	0.6940	0.3825	55
1405.0	U	0.2300	0.0000	1
1450.0	U	0.7085	0.3839	52
1450.0 2400.0 5000.0	U	0.4587	0.2009	. 8
	-	0.7013	0.3838	54
6800.0	U	0.3300	0.0000	1
Center Off	set X_	(mm) 0		
Center Off	set V	nm1		
-ander off		- (100)		
1 A V				
N-G Mechan				
Field Angl	e Aver		0 0753	241
		-0.0547	0.0753	241
Field Angl	e Stan	dard Deviation [m		
•		0.9645	0.5363	241
Pield and			mradl	
		r (Max Mir.) I		
rieta Migi	e iwis	t (Max Min.) (2.3679	1.2733	241

V - vertical upward;

L - longitudinal) (Except for colloidal measurement, the L data is from the design value)

Mean	Standard	Magnet	£
	deviation	counted	٧,

Quadrupole center from warm colloidal data [mm]:

(relative to magdiv coordinate system)

Н	:	-122.096	0.252	16
V	1	-121.964	0.201	10
T.		1276 200	0 000	4.

Quadrupole center from mechanical data [mm]: (relative to magdiv coordinate system)

H		-121.955	0.098	10
٧	:	-121.946	0.137	10
t.		1376.299	0.000	10

Sextupole center from mechanical data [mm]: (relative to magdiv coordinate system)

Н	:	-121.933	0.058	10
v	:	-121.907	0.061	10
Ť		2476 664	0.000	

corrector center from mechanical data [mm]: (relative to magdiv coordinate system)

Н		-121.933	0.058	10
٧	:	-121.907	0.061	10
t.	1	2476.551	0.000	10

Beam Position Monitor center from mechanical data [mm]: (relative to magdiv coordinate system)

H	ŧ	-121.763	0.357	10
٧	:	-122.428	0.300	10
Ť.		-296 951	0 471	1.0

Individual colloidal data [mm]: (relative to magdiv coordinate system)

COLW1	X:	-122.085	0.309	10
COLW2	X:	-122.112	0.270	10
COLW3	X:	-122.106	0.280	10
COLW4	Хŧ	-122.092	0.217	10
COLW5	x:	-122.086	0.223	10
COLW1	y٤	958.977	0.417	10
COLW2	٧ı	1165.361	0.422	10
COLW3	ÿ٠	1371.746	0.427	10
COLW4	y١	1578.130	0.432	10
COLW5	y١	1784.514	0.437	10
COLW1	Z ı	-122.006	0.224	10
COLW2	2:	-121.992	0.209	10
COLW3	Z:	-121.959	0.215	10
COLW4	Z:	-121.938	0.206	10
COLW5	2:	-121.927	0.192	10

BNL magdiv magnetic measurement of the field angles [m rad]: (relative to base plate fiducials):

		Mean	Standard deviation	Magnet
Quad	:	-1.971	0.531	10
Sext	t	-0.846	0.335	10
Corr1	1	-6.290	3.435	10
Corr2		-5.940	4.934	8
Corr4	2	-4.165	4.043	8
Corr5	ŧ	-5.109	2.349	8

Difference and offset information:

(magdiv coordinate system: H - radially inward; V - vertical upward;

L - longitudinal)

(Except for colloidal measurement, the L data is from the design value. The beam system is defined by quad center measured by warm colloid and sextupole center measured mechanically)

Mean	Standard	Magnet
	deviation	countral

Quadrupole center (colloidal - mechanical) [mm]: (relative to magdiv coordinate system)

Н	1	-0.141	0.252	10
v	:	-0.018	0.176	10
L	:	0.000	0.000	10
TOTAL		0.260	0.204	10

Corrector (mechanical) offset from beam system origin [mm]: (relative to local beam coordinate system)

H	1	0.347	0.525	10
٧	1	0.071	0.392	10
L	:	0.000	0.000	10
ፈጥርጥ	f. ·	0.626	06366	1.0

Beam position monitor (electrical) offset from beam system origin [mm]: (relative to local beam coordinate system)

H ·	t	0.054	0.308	10
v	:	-0.486	0.291	10
L	:	-0.000	0.000	10
TOTAL	t	0.592	0.236	10

INTEGRAL harmonics in Units

Normal narmonics							SKew narmonics					
		Expected			Meas	Measured		Expected			Measured	
	n	<	D <b:< th=""><th>sig()</th><th>o) </th><th>sig(b)</th><th><a></th><th>D<a></th><th>sig(a)</th><th><a></th><th>sig(a)</th></b:<>	sig()	o) 	sig(b)	<a>	D <a>	sig(a)	<a>	sig(a)	
	:	0.0 Amp	. W	(from	243	elements)						
	0				10000.0	0.0				0.0	0.0	
	1	0.0	0.4	0.8	0.2	0.4	0.0	1.0	1.3	-0.1	1.61	
	2	4.0	4.0	2.3	3.8	1.7	-1.1	0.1	0.5	-1.1	0.2	
	3	0.0	0.2	0.3	-0.0	0.1	0.0	0.3	1.0	0.0	0.5	

	*******	Nest Para			
4 0.5 1.0 5 0.0 0.0 6 0.3 0.2 7 0.0 0.0 8 0.3 0.1 9 0.0 0.0 10 -0.5 0.0	0.1 0.0 0.1 0.1 0.1 -0.0 0.1 0.1 0.1 -0.0 0.1 -0.5	0.0 0 0.1 -0 0.0 0 0.1 0 0.0 0	0.2 0.1 0.2 0.0 0.1 0.3 0.1 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1	0.2 0. -0.0 0. -0.1 0. 0.0 0. 0.0 0. -0.0 0.	.0
570.0 Amps U 0 1 2 3 4 5 6 7 8 9 10	(from 10000.0 0.2 -1.9 0.0 0.0 0.0 -0.1 -0.0 0.0 0.0 -0.6	0.3 1.3 0.1 0.5 0.0 0.1 0.0	·	0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0	3 2 4 1 2 0 1 0 0
2 0.0 4.0 3 0.0 0.2 4 0.0 1.0 5 0.0 0.0 6 0.0 0.2	(from 10000.0 0.8 0.1 2.3 0.3 0.0 0.6 -0.4 0.1 0.0 0.2 -0.1 0.1 -0.0 0.1 0.2 0.1 0.1 -0.6	0.0 0.2 0 2.0 -1	1.0 1.0 1.3 1.1 0.1 0.5 1.0 0.3 1.0 1.2 0.1 0.2 1.3 0.1 0.3 1.4 0.0 0.1 1.5 0.0 0.1 1.6 0.0 0.1 1.6 0.0 0.1 1.7 0.0 0.1 1.8 0.0 0.1 1.9 0.0 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4! 2 4 1 2 0 0
1405.0 Amps U 0 1 2 3 4 5 6 7 8 9 10		1 elements) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000
1450.0 Amps U 0 1 0.0 0.4 2 1.7 4.0 3 0.0 0.2 4 0.2 1.0 5 0.0 0.0 6 0.1 0.2 7 0.0 0.0 8 0.3 0.1 9 0.0 0.0 10 -0.5 0.0	10000.0 0.8 2.3 0.3 0.6 0.1 0.0 0.1 0.0 0.1 0.0	0.2	0.0 1.0 1.3 1.1 0.1 0.5 1.0 0.3 1.0 1.2 0.1 0.2 1.0 0.1 0.3 1.1 0.0 0.1 1.0 0.0 0.1 1.0 0.0 0.1 1.0 0.0 0.1 1.0 0.0 0.1 1.0 0.0 0.1	-0.1 0 -0.0 0 0.0 0	. 4 . 2 . 4
2400.0 Amps U 0 1 2 3 4 5	(from 10000.0 -0.0 4.1 0.0 -0.8 0.0			1.5 1 -1.1 0 -0.1 0 0.2 0	.0 .3 .2 .4 .0

0.1

-0.0

0.0

0.0

-0.6

10000.0 0.0

55 elements)

660.0 Amps U (from

0.0

0.0

0.0

6800.0 Amps U (from

1 elements)

0.0

0.0

0.0

0.0

-0.9

0.0

0.0

0.0

10000.0

0.2

-7.9

	3 . 00	31.0								
	1 (8)	40								
					on and a series of the					****
3				0.1	0.0				-0.6	0.0
4				0.3	0.0				0.1 -0.0	0.0
5				0.0	0.0				0.0	0.0
7				-0.0	0.0				0.0	0.0
8				0.0	0.0	•	1,		0.0	0.0 0.0
9 10				0.0 -0.6	0.0				0.1 -0.0	0.0
				Unit met		++++++	+++++	+++++	++++++	•+++++
		N xoect		rmonics	ired	p.	xpecte	skew har		ured
n	-	D 	sig(b)	< <p><<p><</p></p>	sig(b)	<a>~	D <a>	sig(a)		
0	O.O Amp	8 M	(IIOM	0.0	element	:= }			0.0	0.0
1	-2.0	2.0	1.0	0.0 0.7* 19.21 -0.01	0.9	2.0			-2.3l	1.8*
2			2.0	0.7* 19.21 -0.01 -0.4* 0.1 1.1 -0.0 -0.1	1.0	-10.0			-10.1	0.4
3	0.3 1.0	0.2	0.2 0.2	-0.01	0.2	0.0 2.0		1.0	-0.1 2.2	0.1
5			0.2	0.1	0.1	0.0	1.0	0.2	2.2 -0.1 -0.8	0.1
6		0.5	0.1	1.1	0.1	-0.9	0.2	0.2	-0.8	0.1
7 8			0.1	-0.0	0.0	0.0	0.1	0.1	0.0	0.0
ق و			0.2	1.1 -0.0 -0.1 0.0	0.0	0.0	0.1	0.1	0.2 -0.0 -0.0	0.0
10	0.1	0.1	0.1	-0.1	0.0	-0.1	0.1	0.1	-0.0	0.0
57	0.0 Amp	s U	(from	11	element	: a)				
0			•	0.0	0.0	•			0.0	0.0
1 2				-0.2 18.9	1.1				-2.8 -10.1	1.7
3				0.2	0.2				-0.1	0.2
4				-0.4	0.2				2.3	0.1
5 6				0.0 1.1	0.1				-0.1 -0.8	0.1
7				0.0	0.0				-0.0	0.0
8				-0.0	0.0				0.2	0.0
9 10				-0.0 -0.1	0.0				-0.0 -0.0	0.0
6	50.0 Am <u>r</u>	s U	(from	0.0	elemen 0.0	te)			0.0	0.0
1	-2.0	2.0	1.0	-0.4	0.9	2.0	4.0	1.0	-2.31	1.7*
2	17.0	2.0	2.0	18.7	0.9	-10.0		1.0	-10.0	0.4
3 4		0.2	0.2 0.2	0.1 -0.2*	0.2 0.2		1.0		-0.1 2.2	0.3 0.1
5	0.0		0.2	-0.2* -0.0	0.1	0.0	1.0	0.2	-0.0	0.1
6	1.0	0.5	0.1	1.1	0.0	-0.9	0.2	0.2	-0.8	0.1
7		0.1	0.1	0.0 -0.1	0.0	0.0	0.1	0.1 0.1	-0.0 0.2	0.0
8	-0.2 -0.2	0.2	0.1	-0.1	0.0	0.0			-0.0	0.0
10	0.1	0.1	0.1	-0.1	0.0	-0.1	0.1	0.1	-0.0	0.0
• •	AE A 3-	"	1 8 mam		. elemen	he1				
0	05.0 Amj	ν π υ	(LI OM	0.0	0.0	 ;			0.0	0.0
				-1.3	0.0				-1.7	0.0
2				18.8 0.1	0.0				-9.9 -0.1	0.0
3 4				-0.7	0.0				2.2	0.0
5				0.1	0.0				-0.2	0.0
1 2 3 4 5 6 7			•	1.0 0.0	0.0				-0.9 -0.1	0.0
8				0.0	0.0	•			0.2	0.0
8				0.0	0.0				-0.0	0.0
10				-0.1	0.0				-0.0	0.0

1450.	. O Amne		(from	51	el ement	:=1				
0	. v Anga		(LI OM	0.0	0.0	,			0.0	0.0
1	-2.0	2.0	1.0	-0.3	0.9	2.0	4.0	1.0	-2.41	1.7*
2	17.0	2.0	2.0	18.5	0.9	-10.0	1.0	1.0	-9.9 -0.1	0.4
4	1.0	0.5	0.2	-0.2*	0.2	2.0	0.5	0.3	2.2	0.1
5	0.0	0.2	0.2	-0.0	0.1	0.0	1.0	0.2	-0.0	0.1
6	1.0	0.5	0.1	1.1	0.0	-0.9	0.2	0.2	-0.8	0.1
7	0.0	0.1	0.1	0.0	0.0	0.0	0.1	0.1	-0.0	0.0
9	-0.2	0.2	0.2	-0.0	0.0	0.0	0.1	0.1	-0.0	0.0
LO	0.1	0.1	0.1	51 0.0 -0.3 18.6 0.1 -0.2* -0.0 1.1 0.0 -0.1 -0.1	0.0	-0.1	0.1	0.1	-0.0	0.0
1400	eqmA 0.	U	(from	-0.1 0.0 -0.3 17.6 -0.0 -0.1 0.0 1.1 -0.0 -0.1 -0.1	element	:s)			0.0	0.0
1				-0.3	0.7				-2.4	1.4
2				17.6	1.0				-9.7	0.3
3				-0.0	0.2				-0.1	0.2
5				0.0	0.1				0.0	0.1
6				1.1	0.1				-0.9	0.1
7				-0.0	0.0				-0.0	0.0
9				-0.0	0.0				-0.0	0.0
10				-0.1	0.0				0.0 -2.4 -9.7 -0.1 2.1 0.0 -0.9 -0.0 0.2 -0.0	0.0
000	.0 Amps	U	(from	-0.1 53 0.0 -0.5 22.1 0.0 -0.4* 0.0 0.9 0.0 -0.0 -0.0	element	:s)			0.0	
1	-2.0	2.0	1.0	-0.5	1.0	2.0	4.0	1.0	-1.4	1.8*
2	21.0	2.0	2.0	22.1	0.9	-10.0	1.0	1.0	-9.9	0.4
3	0.3	0.2	0.2	0.0	0.2	0.0	1.0	1.0	0.1	0.3
5	0.0	0.3	0.2	0.0	0.1	0.0	1.0	0.2	0.0	0.1
6	1.0	0.5	0.1	0.9	0.0	-0.9	0.2	0.2	-0.9	0.1
7	0.0	0.1	0.1	0.0	0.0	0.0	0.1	0.1	-0.0	0.0
9	-0.2	0.2	0.1	-0.0	0.0	0.0	0.1	0.1	-0.0	0.0
ro	0.1	0.1	0.1	-0.1	0.0	-0.1	0.1	0.1	-0.0	0.0
5800	.0 Amp	B U	(from	0.0 1.2 26.3	element	ts)			0.0	0.0
1				1.2	0.0				-2.5	0.0
2				26.3	0.0				-10.5	0.0
2 3 4				0.4 0.4 0.2	0.0				-0.2	0.0
4				0.4	0.0				-0.1	0.0
				1.0	0.0				-0.9	0.0
5 6									0.0	0.0
5 6 7				0.0	0.0					
5 6 7 8				0.0	0.0				0.3	0.0
5 6 7 8 9				0.0 0.0 -0.0 -0.1	0.0 0.0 0.0				0.3 -0.0 -0.0	0.0
5 6 7 8 9 10	+++++	++++	++++++	1.0 0.0 0.0 -0.0 -0.1	++++++	****	++++	+++++	0.0 -2.5 -10.5 -0.2 2.3 -0.1 -0.9 0.0 0.3 -0.0	0.0 0.0 0.0
5 6 7 8 9 10	+++++ RN END	mult	ipoles	in Unit	+++++++ meters	++++++			· · · · · · · · · · · · · · · · · · ·	0.0 0.0 0.0
5 6 7 8 9 10	RN END	mult	ipoles	in Unit	+++++++ meters			skew has	monics	
5 6 7 8 9 10 ++++ RETU	RN END	mult	ipoles Normal h	in Unit	sured	 E	 Expect	Skew has	rmonics Meas	0.0 0.0 0.0 ++++++
5 6 7 8 9 10 ++++ RETU	RN END E 	mult M Apact D 	ipoles Normal h	in Unit	sured sig(b)	F <a>	 Expect	Skew has	rmonics Meas	ured sig(a
5 6 7 8 9 10 ++++ RETU	E 	mult pect D s	ipoles Vormal i ed sig(b) V (from	in Unit	sured sig(b) 43 eleme 0.0	<a>>	ixpect D <a>	Skew has ed sig(a)	rmonics Meas	******** **ured **sig(**********************************
5 6 7 8 9 10 ++++ RETU	E .0 Amp	mult xpect D <b:< td=""><td>vipoles Normal had sig(b) v (from 1.0</td><td>in Unit : narmonics Mea 0.0 0.2:</td><td>sured sig(b) 43 eleme 0.0 0.6</td><td><a>> nts) 3.0</td><td>Expect D<a></td><td>Skew has</td><td>rmonics Meas</td><td>sured sig(a</td></b:<>	vipoles Normal had sig(b) v (from 1.0	in Unit : narmonics Mea 0.0 0.2:	sured sig(b) 43 eleme 0.0 0.6	<a>> nts) 3.0	Expect D <a>	Skew has	rmonics Meas	sured sig(a
5 6 7 8 9 10 ++++ RETU	E .0 Amp	mult xpect D s	Vormal had sig(b) Vofrom 1.0 1.0 0.1	in Unit: in Unit: in Wea 2 0.0 0.2i 3.8** -0.0i	sured sig(b) 43 eleme 0.0 0.6 0.9 0.2	**************************************	0.5 0.5 0.3	Skew has ed sig(a) 1.0 1.0 0.5	monics Meas <a> 0.0 -0.0** 0.4*	0.0 1.6* 0.3
5 6 7 8 9 10 ++++ RETU n 0 1 2	E .0 Amp 1.4 -3.0 0.3 0.8	mult xpect D s V	vipoles Vormal had beig(b) vi (from 1.0 1.0 0.1 0.2	in Unit in uni	sured sig(b) 43 eleme 0.0 0.6 0.9 0.2	3.0 -0.8 0.2	0.5 0.5 0.3	Skew has ed sig(a) 1.0 1.0 0.5	monics Meas <a> 0.0 -0.0** 0.4* -0.0	0.0 1.6 0.3 0.3

		yerik.	1000							*********
6 7 8 9 10	0.0 0.0 -0.2 -0.2	0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 0.1	0.1 -0.0 -0.1 -0.0	0.0 0.0 0.0 0.0	0.1 0.0 0.1 0.0	0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1	-0.0 -0.0 -0.0 -0.0	0.0 0.0 0.0 0.0
570 1 -2 3 4 5 6 7 8 9	O.O Amg	u a	(from	0.0 0.2 3.4 -0.0 0.0 -0.0 -0.0 -0.1 -0.0 -0.2 -0.1	element: 0.0 0.7 0.6 0.1 0.2 0.1 0.1 0.0 0.0 0.0	a)	Ý		0.0 -0.5 0.3 -0.0 0.0 -0.1 -0.0 -0.0 -0.0	0.0 1.3 0.4 0.3 0.1 0.1 0.1 0.0 0.0
660 0 1 2 3 4 5 6 7 8 9	1.4 -3.0 0.3 0.8 0.0 0.0 -0.2 -0.2	1.0 1.0 0.1 0.5 0.1 0.1 0.1 0.1	(from 1.0 1.0 0.1 0.2 0.1 0.1 0.1 0.1	51 0.0 0.2 i 3.8 ** 0.0 ! 0.2 i -0.0 0.1 -0.0 -0.2 -0.1	0.0 0.6 1.0 0.2 0.2 0.1 0.1 0.0	3.0 -0.8 0.2 0.2 0.1 0.0 0.1	0.5 0.5 0.3 0.1 0.1 0.1 0.1	1.0 1.0 0.5 0.1 0.2 0.1 0.1 0.1	0.0 -0.4** 0.3* -0.0! -0.0! -0.0 -0.0 -0.0 -0.0	0.0 1.6* 0.3 0.3 0.1 0.1 0.0 0.0
1405 0 1 2 3 4 5 6 7 8 9	qmA 0.	s U	(from	0.0 1.3 3.4 -0.0 -0.2 -0.2 -0.2 0.0 -0.1 -0.1	elements 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)			0.0 1.8 0.9 0.0 -0.1 -0.1 -0.1 -0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0
1450 0 1 2 3 4 5 6 7 8 9	1.4 -3.0 0.3 0.8 0.0 0.0 -0.2 -0.2	1.0 1.0 0.1 0.5 0.1 0.1 0.1 0.1	(from 1.0 1.0 0.1 0.2 0.1 0.1 0.1 0.1	0.0 0.2! 3.9** 0.0! 0.2 -0.0 0.1 -0.0 -0.2 -0.1	elements 0.0 0.6 1.0 0.2 0.2 0.0 0.1 0.0 0.0 0.0	3.0 -0.8 0.2 0.2 0.1 0.0 0.1	0.5 0.5 0.3 0.1 0.1 0.1 0.1	1.0 1.0 0.5 0.1 0.2 0.1 0.1 0.1	0.0 -0.5** 0.2* -0.0 -0.0! -0.0 -0.0 -0.0	0.0 1.6* 0.3 0.1 0.1 0.0 0.0
2400 0 1 2 3 4 5 6 7	.0 Amp	s U	(from	0.0 0.0 2.7 -0.0 0.1 -0.0 0.0	elements 0.0 0.5 0.7 0.2 0.3 0.0)			0.0 -1.0 0.1 -0.0 0.0 -0.0	0.0 2.1 0.2 0.2 0.0 0.1

8			-0.2	0.0				0.0	0.0
9			-0.0	0.0				-0.0	0.0
10			-0.1	0.0				0.0	0.0
5000	0.0 Amps U	(from	52	eleme	entel				
0	-	•	0.0	0.0				0.0	0.0
1	1.4 1.0	1.0	0.21	0.6	3.0	0.5	1.0	0.8*	1.8*
1 2	-1.0 4.0	1.0	5.9**	1.0	-0.8	0.5	1.0	0.3*	0.3
3	0.3 0.1	0.1	-0.01	0.2	0.2	0.3	0.5	0.2	0.3
4	0.8 0.5	0.2	10.0	0.2	0.2	0.1	0.1	0.0	0.1
5	0.0 0.1	0.1	0.0	0.1	0.2	0.1	0.2	-0.01	0.1
5 6 7	0.0 0.1	0.1	-0.0	0.1	0.1	0.1	0.1	-0.0	0.0
	0.0 0.1	0.1	-0.0	0.0	0.0	0.1	0.1	-0.0	0.0
8	-0.2 0.1	0.1	-0.2	0.0	0.1	0.1	0.1	-0.0	0.0
9	-0.2 0.1	0.1	-0.1	0.0	0.0	0.1	0.1	-0.0	0.0
10	-0.1 0.1	0.1	-0.1	0.0	0.0	0.1	0.1	0.0	0.0
6800	0.0 Amps U	(from	1	eleme	nts)				
0	-	•	0.0	0.0				0.0	0.0
1			0.5	0.0				0.4	0.0
2			10.1	0.0				0.3	0.0
0 1 2 3 4 5 6 7 8			0.1	0.0				0.1	0.0
4			0.5	0.0				-0.0	0.0
5			0.0	0.0				-0.2	0.0
6			0.1	0.0				-0.1	0.0
7			-0.0	0.0				-0.0	0.0
8			-0.2	0.0				-0.0	0.0
9			-0.1	0.0				-0.0	0.0
10			-0.1	0.0				0.0	0.0
				-					