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Summary

A procedure to measure 8* and o* in RHIC insertions is proposed. It requires a
measurement of tune change resulting from a change in the quadrupole gradient in a pair
of triplets. The viability of this procedure depends on the accuracy of tune measurements
and on the accuracy of integrated quadrupole gradients. A few examples are given to

illustrate the accuracy of f* and o* values expected from this procedure.

1. Introduction

In section 3.1 of RHIC/AP/38, a procedure to find the values of 8* (and possibly o*
as well) in an insertion has been outlined. It involves measurements of tune change when
a quadrupole in a pair of triplets undergoes a small change in its strength, one at a time.

The relevant formula is given in Courant-Snyder, Eq. (4.37),
cos (2mv) — cos (2m1p) = —% sin (27vp) k / B(s)ds

where only the term linear in k = A(B’/Bp) and in § is retained. The integral
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for each quadrupole can be expressed as a linear function of 8%, a*, and v* but with the

constraint
Y — (o) = 1.

Quantities to be measured are tuen vy and v, before and after the change, respectively, in
B

Because of the constraint, the least-square analysis is not straightforward. It is simpler
to resort to a brute—force method of finding the minimum in the two—parameter space of
(B*,a*). The likely range of these two parameters is known rather well, at least for %,
but a precise specification is not necessary to find the minimum point.

If there is no uncertainties in the measured tune values or in the integrated quadrupole
gradients, one can in principle find 4* and o* using only two quadrupoles, probably the
ones adjacent to the IP. In reality, this will not give reliable results and the use of all six
quadrupoles is proposed here. One might also use several different values of k, the change
in (B'/Bp), for each quadrupole to improve the reliability.

A short computer code has been used to simulate the analysis of measured data as-

suming the following:

1. The ring may not be as designed but it is linear.
The effect of nonlinearity depends mostly on how one measures the tune. If the
tune is measured by pinging the beam and generating a coherent oscillation,
the amplitude dependence may invalidate the algorithm. The effect of linear
coupling is of course most important since it is independent of the oscillation
amplitude. One either must eliminate the effect entirely or at least take into
account the effect in the analysis.

2. The term nonlinear in (k) for cos(2wv) — cos(27mvy) is negligible.
This may not be true when §* is as small as 1m so that beta is very large in
quadrupole. Examples studies so far indicates that A* should be reliable but
not a* when £* is small.

3. The uncertainties in the measured tune values and in the integrated gradients
relative, are known to be within +A, and +Ag respectively.

It is assumed in this work that A, should be between 0.001 and 0.0001, and



Ag around 0.0025 (that is, one-quarter percent relative). These must be es-

tablished before the measurements are undertaken.

2. Examples

In each case, ten random samples have been analyzed to see the range of (8*,a*)
resulting from this procedure. The fractional part of vy is taken to be 0.19 for all cases.
A, B*=10m, a* = 0.40
parameter range used in the search: #* from 2m to 20m,

a from —1.0 to 1.0

Ag=0.
Al Av = 0.002: 8.74 to 11.29, 0.406 to 0.573
A2 = (.001: 9.33 to 10.61, 0.453 to 0.536
A3 = 0.0005: 9.65 to 10.29, 0.476 to 0.517
A4 = 0.0001: 9.92 to 10.05, 0.494 to 0.503
Ag = 0.0025
A5 A, = 0.001: 9.48 to 10.67, 0.434 to 0.574
A.6 = 0.0001: 9.92 to 10.07, 0.493 to 0.507

B. p*=1.0m, o* =-0.25
parameter range used in the search: * from 0.5m to 5m,

af from —1.0to 1.0

Ag=0
B.1 Ay = 0.002: 0.989 to 1.072, —0.217 to  —0.380
B.2 = 0.001: 0.993 to 1.027, —0.231 to  —0.300
B.3 = 0.0005:  0.999 to 1.006, —0.245 to  —0.260
B4 = 0.0001: 1.003 to 1.005, —0.256 to  —0.260
Ag = 0.0025
B.5 Ay = 0.001: 0.985 to 1.038, —0.220 to —0.324

B.6 = 0.0001: 0.998 to 1.005, —0.244 to  —0.260



C. B*=2.13, a* = —0.18, Ag = 0.0025

Only one case out of ten random sets has been used but with different values of k.

C. B*=273, o =—0.18, Ag = 0.0025

C.1

C.2

A, =0.001

k
0.005
0.01
0.015
0.02
0.025
0.03
0.035

A, = 0.0005

k
0.005
0.01
0.015
0.02

g
2.89

2.80
2.78
2.77
2.76
2.76
(unstable)

B
2.80

2.77
2.76
2.75

—0.295
—0.239
—-0.221
—0.211
—0.205
—0.200

o
—0.238
—0.211
—-0.203
—-0.199

D. Thefollowing examples illustrate the dependence on how many pairs of quadrupoles

are listed in the analysis.

D.l1 B*=10m, a*=0.5, A,=0.001, Ag=0.0025

number of pairs B «

1 11.43 - 12.32 0.486 — 0.0714

2 9.44 - 11.49 0.460 — 0.620
0.434 - 0.574

3 9.48 - 10.67

D2 p*=1m, o =-025 A,=0001, Ag=0.0025

1 0.945 — 1.007 —(0.060 — —0.237)
2 0.987 — 1.028 —(0.220 — —0.300)
3 ' 0.985 — 1.038 —(0.220 — —0.324)



3. Findings

In addition to examples presented in 2, many more have been tried with varying degree
of “success” in predicting #* and «*. The fact that the formula used is not exact even
in a complete absence of nonlinearity, that is, the linear approximation in (kf), becomes
important when $* is as small as 1m and «* is near zero. The procedure cannot predict
a*. At the same time, the predicted values of §* are always very good.

The proper choice of k, the change in B’ to find the change in tune, depends on the
accuracy of tune measurements and on 8*. The optimum choice must be made by trials
in the real operation.

Finally, although it is generally true that the use of more quadrupoles give a better
result, this again may depend on #*. When #* is 1m, increasing the number of quadrupoles

from 4 to 6 does not seem to improve the result.



