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I. I n t r o d u c t i o n  

It i s  e s s e n t i a l  t o  s t a t e  a t  t h e  o u t s e t  t h a t  t h e r e  i s  no unique way o f  
s h u f f l i n g  magnets. Many f a c t o r s  a re  i n v o l v e d  i n  d e c i d i n g  how t o  do i t ; 

f o r  example, one may take  i n t o  account n o t  j u s t  t h e  l i n e a r  machine parmeters 
b u t  o t h e r  t h i n g s  such as s i z e  and d i s t r i b u t i o n  o f  magnet e r r o r s ,  magnet 

i n s t a l  1 a t i o n  schedule, a1 1 owance ( o r  non-a1 1 owance) o f  "unusable" magnets 

and t ype  and scope o f  d iagonos t i c  systems and c o r r e c t i o n  systems. 

one may be i n f l uenced ,  conc ious l y  o r  unconciously,  by t h e  p a s t  exper iences 
and may be i n c l i n e d  t o  emphasize some f a c t o r s  over  o t h e r s  even when t h a t  i s  

n o t  j u s t i f i e d  by t e c h n i c a l  cons ide ra t i ons  alone. The example g i ven  i n  t h i s .  ' 

note i s  j u s t  t h a t ,  an example o f  what one can do under c e r t a i n  assumptions. 

B e t t e r  ways o f  s h u f f l i n g  magnets should emerge as more data on f i e l d  q u a l i t i e s  
would become avai  1 ab1 e. 

For  t h e  Tevatron a t  Fermi lab,  t h e  goal o f  s h u f f l i n g  d i p o l e s  was a q u i t e  
l i m i t e d  one and, because o f  t h a t ,  t h e  problem was a w e l l - d e f i n e d  one.' 

s imply  t r i e d  t o  min imize t h e  magnitude o f  severa l  i s 0 1  a ted  resonance-dr iv ing 

terms, these resonances a r i s i n g .  f rom sextupole (b2 and a') and oc tupo le  (a3 

o n l y )  components. 

6 

I n  a d d i t i o n ,  

We 

The dimensionless f i g u r e - o f - m e r i  t was t h e  magnitude o f  
each term r e l a t i v e  t o  what one should expect f rom t h e  d i s t r i b u t i o n  o f  bZ, a' 
o r  a3 if t h e  s h u f f l i n g  were n o t  done. Since t h i s  i n v o l v e s  o n l y  one p a r t i c u l a r  
harmonic component f o r  each resonance, i t  i s  t h e  s i m p l e s t  case o f  what one 
m igh t  c a l l  t h e  "g loba l  'I compensation.' (The na tu re  o f  " g l o b a l "  and " l o c a l "  

compensations w i l l  be exp la ined  below.) Another example o f  t h e  g l o b a l  com- 
* 3  pensat ion has been discussed r e c e n t l y  i n  which many harmonic components 

near t h e  most impor tan t  one a r e  minimized by a p a r t i c u l a r  way o f  s h u f f l i n g .  

T h i s  s o r t  o f  c o n s i d e r a t i o n  becomes necessary when one i s  concerned about t h e  
loss o f  l i n e a r i t y  i n  t h e  beam mot ion, which may cause a r e d u c t i o n  i n  t h e  

dynamic aper tu re  o f  t h e  machine, even though i s o l a t e d  resonances a r e  n o t  a 
d i r e c t  t h r e a t  t o  t h e  beam s t a b i l i t y .  

I n  c o n t r a s t  t o  t h e  g l o b a l  compensation, t h e  " l o c a l "  compensation i s - m o r e  
a p p r o p r i a t e  when t h e  source o f  f i e l d  e r r o r s  ( o r  n o n l i n e a r  elements) i s  w i t h i n  

a r e l a t i v e l y .  smal l  area o f  t h e  r i n g .  One then t r i e s  t o  c o n f i n e  t h e  e f f e c t  o f  



errors within that  area. 
effect  outside the area although the effect  may n o t  be so small inside. 
T h i s  scheme has been promoted especially by Tom Collins4 i n  connection with 
a group of special sextupoles 
approach between two compensation schemes, global and local , can be seen, 

* for example, in two different ( b u t  completely equivalent) forms for  A B / B ,  
the error in betatron amplitude function B caused by the quadrupole compo- 
nent bl in dipoles: 

If the compensation i s  perfect, there will be no 

in the SSC l a t t i ce .  The difference in 

. 

a )  global 

- i n$ ,/v M 

k= 1 
with J n  = . C  (Be b 1 k  1 e 

$ = betatron phase, e = bend angle, v = tune. 

Eq.(l) i s  valid a t  any location around the ring so  that  the source of error 

bl , 
one t r i e s  t o  minimize J n ' s  w i t h  n near (2v ) .  

k=l t o  M magnets, can be distributed a l l  around the ring. Obviously, 

b )  local 

Here the source of error bl i s  confined t o  a small area. The goal i s  t o  
minimize or completely eliminate ( A B / B )  a t  a l l  points outside th i s  area. 
For th i s ,  one must consider Act together with ( A B / B ) .  
point outside and take th i s  p o i n t  as the origin of phase $ . 

Consider an arbitrary 
We then have 

M 2'q( 2i m -e 

2 s in(2m)  k=l 
(AB/B)-i(Act - A B )  = (Beb1)ke  ( 3 )  

If M magnets are arranged such that the summation in E q . ( 3 )  i s  zero, the 
errors Act and ( A B / @ )  are zero everywhere outside the M magnets. 
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I t  should be noted here tha t ,  inside the region under consideration, Aa and 
( A B I B )  could be large. If the error 'is dipole f ie ld  bo or a, instead of the 
quadrupole f ie ld  b l ,  the effect  will be on the horizontal or vertical disper- 
s ion .  An interesting example of th i s  i s  the overpass a t  BP of the main ring 
a t  Fe r~n i l ab .~  The beam l ine i s  raised by 1 9 '  near BP in such a way t h a t  the 
vertical dispersion around the ring outside the overpass area i s  minimized 
t o  less then 0.5m b u t  i t  i s  as large as 5m inside the overpass. 

11. Special Considerations for the RHIC 

One obvious difference between the R H I C  and the Tevatron i s  in the 
number of dipoles, 144 in the regular arc sections of the R H I C  compared 
with almost 800 for the Tevatron. 
because of the required computing time for the Tevatron may n o t  be so for 
the R H I C .  Another difference (which may be more relevant t o  the shuffling) 
i s  t h a t ,  for  the Tevatron, the fluctuations in quadrupole components bl  and 
a l  were reduced down t o  0 . 5 ~ 1 0 - ~  ( a t  l " ,  rms) by moving the collared coil 
relative t o  the surrounding yoke. 
we concentrated on minimizing the effects of nonlinear f ie ld  components. 
For the R H I C ,  the situation seems t o  be the other way around; the l inear 
effects due t o  bl  and a l  on betatron amplitudes and dispersions may reduce 
the effective aperture of the ring more than  nonlinear effects arising from 
higher multipole components such as b2 and a2.  
t h a t  

Calculations which we regarded as impractical 

Since the effect  of (bl was negligible, 

Therefore, i t  i s  assumed here 

( i )  In shuffling dipoles in the regular arc sections, only the effects 
of bl on ax ,  B and X (horizontal dispersion), and the effects of 

Y P 
a l  on Y (vertical  dispersion) are taken into account. The effect  
of b2 i s  controlled only t o  the extent t h a t  i t  i s  no more than  one 
would expect from s t a t i s t i ca l  arguments. 

P 

The choice of the number of dipoles t o  be shuffled each time will un- 
doubtedly depend on the schedule of magnet construction and tunnel prepara- 
t i o n .  I t  may even change during the course of the project as i t  did for  
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the Tevatron. Here we take eight or twelve as a reasonable choice cover- 
ing four or s ix  regular ce l l s .  
d i f f icu l t  t o  balance the errors (particularly when some errors are abnor- 
mal) while more than  six ce l l s  would cover too much phase advance. 

With less than eight magnets, i t  will be 

( i i )  Two cases are considered, one with eight dipoles and the other 
with twelve i n  each group t o  be shuffled. 

Problems associated w i t h  magnet errors in the insertions are rather 
special. 
supplies. 
should be done independently from the shuffling of regular dipoles. 
expected that  the effect  of errors i n  regular quadrupoles i s  much less than 
that of dipole errors,  
separately. 

They may be compensated for by special shunts or separate power 
Even i f  i t  becomes necessary t o  shuffle. insertion magnets, i t  

I t  i s  

Again, any shuffling of quadrupoles should be done * 

( i i i )  All regular quadrupoles are assumed t o  be free  of errors.  
Insertions are assumed to be perfect. 

111. Calculations for Shuffling 

Since the purpose of th i s  note i s  simply t o  demonstrate how shuffling 
can be done t o  minimize various effects of magnet errors,  a precise quanti- 
ta t ive estimate of these effects i s  n o t  an essential requirement. I n  order 
t o  simplify the computation, a l l  magnets (quadrupoles and dipoles) in the 
arc sections are treated as a t h i n  lens. Moreover, each insertion i s  re- 
presented by a matrix t h a t  matches a l l  l inear parameters w i t h  the phase 
advance of 636' in b o t h  directions. 
angle i s  38.85mr per dipole. Shufflings are done for vx= v = 28.8 
corresponding t o  phase advance o f  91°/cell b u t  the performance i s  checked for  
v =v = 28.4 t o  see t h a t  i t  i s  n o t  degraded by 

* The most important error i n  regular quadrupoles i s  the fluctuation in the 
integrated gradient f i e ld ,  
one i s  certain of the average over the ent i re  r i n g .  
does n o t  seem practical t o  postpone the instal la t ion until1 a l l  of them are 
bui l t  and measured. 

The cell  length i s  29.622111 and the bend 

Y 

a small change i n  tune. 
X Y  

I t  may be d i f f i cu l t  t o  shuffle quadrupoles unless 
A t  the same time, i t  
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The distribution of b l ,  a and b2 i s  a l l  taken t o  be Gaussian around the 1 
mean zero with the rms values 

< b l >  = 2.1~10-~/25mm, < a l >  = 4.3~10-~/25mrn, <b2> = 4 . 6 ~ 1 0 - ~ / ( 2 5 r n m )  2 

Using these numbers, one can estimate the expected value of various errors 
due t o  144 dipoles: 

<ax /&,> = 1 - 1 < b l >  e X B (144)’ = 0.0109m3, 
P 2 s in lml  J2 B P X  (5 )  

where, on the right hand side of each equation, eB=O.03885 (bend angle), 

8, = 
As the measure of deviations from l inear l i ty  in betatron osci l la t ions,  we 

fined by Tom C01 l ins .~  There are two more pairs of functions, B and A, and 
B1 and A1 

2 2 %  
(BdfAd) . 

B = 22.lm and X =0.99m a t  each dipole (regarded as a t h i n  lens) .  
Y P 

use the distortion functions ( B 3  2 2  + A3)’, ( B s  2 + A s ) 2  2 b  and (B: + A:).’ de- 
- 

b u t  their  expected values are not  much different from t h a t  of 
Expected values a re ,  for  v = 28.8, 

< b 2 > 8 ~  ( Bi/Bo)’( 144)’ = 2 .  34m-1 , ( 7 )  
2 2 b  1 1 <(B3+A3)  2> = - 16 

< ( B d + A d )  2 2 k  2> = - 16 1 sin I7r(vX-2v 1 <b2> oB(PxP~/Bo)’1144)’ = 3.79m-1 ( 9 )  
Y) I 

where the reference value of P i s  taken t o  be Po = lm. 
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One random se t  of ( b l  ,al  ,b2) was generated for 144 dipoles and  the calcu- 
lations were always made for th i s  part'icular se t .  
between the unique, optimally shuffled arrangement of th i s  se t  and 1,000 
randomly arranged rings using.the same se t  of ( b l  ,al , b 2 ) .  
of-merit, a simple expression 

The comparison i s  made 

As the figure- 

F.M. rlCalexp(i$ ) j 2  + ICblexp(iqx) 1' + ICblexp(2i+,) I 2 
Y 

evaluated a t  dipole locations was i n i t i a l l y  used w i t h  the supplementary 
condition that  

do not  exceed the expected rms values. 
or twelve dipoles of each group  so t h a t  one i s  trying t o  minimize the effect  
o f  each group outside the four or six ce l l s  under consideration. 
magnets i n  the second group, i t  might be better t o  include the predetermined 
sums over the f i r s t  group.  Then for the third shuffling, the sums would in- 
clude the results from the two previous groups, and so on. .However, th i s  i s  
n o t  necessarily the opt imum procedure since the "inside" region in which 
the minimization i s  n o t  done a t  a l l  covers larger and larger fraction of the. 
ent i re  ring. For the best overall resu l t ,  i t  i s  not  obvious what the largest  
number of groups should be i n  the summation. I t  was then realized t h a t ,  for 
a given arrangement of a l l  magnets, linear l a t t i c e  parameters (6 ,B ,X ,Y ) 
can be calculated rapidly a t  a l l  locations around the ring so t h a t  the figure- 
of-merit could be more directly related t o  these parameters. 
i n  the next section have been obtained w i t h  the figure-of-merit 

The summations here are over eight 

I n  shufflina 

X Y  P P  

Results presented 

where the summations are a t  a l l  (6x25) quadrupole locations, "inside" as 
well as "outside" regions. Each quantity t o  be summed i s  calculated exactly 
for a given arrangement of dipoles with M dipoles, 2M dipoles, 3Pl dipoles, 
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n 

and so on where M = 8 o r  12. 
dipoles are already determined and the ring i s  entirely "inside". The local 
nature of balancing i s  thus shifted gradually t o  the global nature. 
t o  find the final "optimum" arrangement, approximately 1,000 random cases ' 

were studied. 
sextupole component b 2 ,  quantities such as 
quadrupole locations were monitored t o  prevent large nonlinear effect  in the 
selected "optimum" arrangement. 
distortion effects arising from the skew sextupole component a2  for  t h i s  
monitoring as long as one i s  n o t  t o o  greedy. 

For shuffling the l a s t  M dipoles, (144-M) 

In  order 

Although the figure-of-merit does n o t  include the effect  of 
( B g  + A:) summed a t  a l l  150 

I t  i s  of course possible t o  add nonlinear . 

IV. Results 

Seven quantit ies,  four of them linear and three nonlinear, are cal- 
culated t o  t e s t  the performance of the shuffling. 

IC(B~+A~)}+ 2 2  1 v .  - J150 

ons are over 150 quadrupole locat ons. ) 

The shuffled arrangement i s  compared with 1,000 randomly arranged cases with 
eight or twelve dipoles as a unit. 
arrangement is  28.8 in bo th  hori zontal and verti cal directions (91 O/regul a r  
c e l l )  b u t  the same arrangement i s  used with the tune of 28.4 (8g0/regular c e l l )  
t o  see the tune dependence of the performance. In  comparing the performance, 

the ''rank" of 0 means the shuffled case i s  better than any o f  1,000 cases 
and 1,000 means worse than  any. 

The tune used t o  find the optimum 

L 
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Table  1 .  M = 8 ( e i g h t  d ipo le s  s h u f f l e d  each time); v = 28.8 

expected average of l a r g e s t  of shuff 1 ed rank 
1,000 cases  1,000 cases  arrangement 

I .  0.0322 0.0330 0.0742 0.0074 0 

I I .  0.0322 0.0319 0.0616, 0.0069 0 

111. 0.0109 0.0115 0.0291 0.0021 0 

IV. 0.0224 0.0248 0.0619 0.0044 0 
V .  2.34 2.31 4.59 1.69 221 

VI. 2.34 2.39 5.10 1.97 365 

VII. 3.79 3.48 8.51 1.14 8 

M = 8; v = 28.4 

Shuff led  arrangement I .  0.0140 
11. 0.0063 

111. 0.0019 
IV. 0.0108 

VII. 1.20 

* W i t h  t h i s  t une ,  the expected va lue  of V .  and VI i s  3.'79 
and i t  i s  2.34 f o r  VII . '  
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Table  2. M = 12 ( twelve  d ipo le s  s h u f f l e d  each time); v = 28.8 

expected average of  
1,000 cases  

I .  0.0322 0.0328 
11. 0.0322 0.0334 

111. 0.0109 0.0112 
IV. 0.0224 0.0277 

V .  2.34 2.36 
VI. 2.34 2.23 

VII. 3.79 4.33 

M = 12;  v = 28.4 

Shuff led  arrangement 

l a r g e s t  o f  s h u f  f 1 ed rank 
1,000 cases  arrangement 

0.0665 0.0087 0 
0.0777 0.0070 0 
0.0303 0.0025 0 
0.0662 0.0057 0 
5.06 1.26 45 
5.12 1.14 30 

11.9 1.19 4 

I .  0.0097 
11. 0.0070 

111. 0.0034 
IV. 0.0165 

v .  2.90 
VI. 3.49 

VII .  1.16 

Conclusion 

W i t h  the Gaussian d i s t r i b u t i o n ,  i t  seems p o s s i b l e  t o  achieve  an i m -  
provement of f a c t o r  f o u r  t o  f i v e  over  the s t a t i s t i c a l l y  expected va lues  
wi thout  t oo  much s a c r i f i c e  i n  the non l inea r  d i s t o r t i o n .  There i s  no 
difference i n  the performance between M=8 and M=12 and the tune dependence 
of the performance i s  accep tab le  when the change i n  tune is  less than rl, 0.5.  
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