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Introduction 

Earlier this year Ed Bleser organized a series of  meetings on computers 

and accelerators. 

subject. At the time I had only good intentions but nothing to show. Now I do 

One purpose was to expose and discuss various views on that 

have some code that might be suitable and I should like to describe it to you. 

I assume that we want to arrive at a computer model for a particular ma- 

chine. A very important function of such a model is its description of linear 

behavior. Many existing programs perform this function very well. Nonlinear be- 

havior poses a problem. Since nonlinear behavior is important our aim is to ex- 

tend the linear optics programs to include nonlinear optics. 

In all existing programs the machine under consideration is described as 

a string of  optical elements. The action of each element is represented by a 

linear operation, i.e. by a matrix,.which relates a particle's phase space coordi- 

nates at the exit of an element to those at its entrance. The effect of  a se- 

quence of elements is obtained by multiplication of their operators. 

This approach can be extended to incorporate nonlinear behavior. Karl 

Browns "Transport" is an example. It has had a second order feature for more 

than a decade. 

Second order optics may be not good enough however and the algebra 

associated with it is rather tedious. 



2 

the computer used, thus the  maximum value of n, %,, i s  r e s t r i c t ed .  

sions must therefore  b e  truncated and truncation e r rors  a r e  introduced. 

The expan- 

Accepting these l imi ta t ions  for  the moment we need a mechanism for  

I 
generating the  coef f ic ien ts  from the known physical propert ies  of the element t o  

be characterized. Code was wr i t ten  t o  a s s i s t  i n  t ha t  task. We a lso  need a mech- 

anism tha t  corresponds to ,  and reduces to ,  the matrix mult ipl icat ion i n  the l i n -  

ear ease. 

tion" o r  concatenation. 

A rout ine was wr i t ten  tha t  performs that  operation of "multiplica- 

The increasing power of computers may make it  possible  to  go fur ther  i f  

the required algebra can be put i n to  the software. 

s c r ibe  represents an attempt t o  do tha t .  

of elements. 

specif ied as a t a b l e  of coef f ic ien ts .  

ing a p a r t i c l e ' s  phase space coordinates a t  the ex i t  of an element from i t s  coor- 

dinates  a t  the entrance: 

The code I am going to  de- 

We again describe the system i n  terms 

Each element is  characterized by i t s  t r ans fe r  function, which i s  

These coef f ic ien ts  a r e  used i n  calculat-  

- x = EaxijMl x i x ~ j  Y Y  k rR o <  - i 
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All routines contain the maximum order %ax as a free parameter. Choosing 

sax low may be advantageous because the required processing time increases 

quickly with %ax. 

Repeating the chaining operation for all elements around a ring one ob- 

tains a transfer or mapping function for that ring. It is obviously nonlinear 

for bx > 1 and can be used for particle tracking,.determination of fixed 

points, focussing functions, etc'. 

stant of the motion, akin to the emittance ellipses of linear optics. 

It may also be useful for constructing a con- 

It should be trivial to add 6 = Ap/p, the momentum deviation as an indepen- 

dent parameter, although this has not yet been done. 

Generation of Coefficient Table 

Let me consider the construction of the coefficient table f o r  an arbitrary 

element . 
One possibility is to search for, or to develop, a numerical integrator 

suitable for calculating particle trajectories and to use it to produce enough 

sets of exit/entrance coordinate pairs t o  calculate all coefficients required. 

The'integrator used must observe the symplecticity of the motion of the 

particles. 

Another possibility is to subdivide the element into a sequence of short 

sections with linear properties and thin nonlinear lenses and to calculate the 

overall transfer function from the transfer functions of the individual 

elements. These functions are well known for the short linear sections and can 

be written down straight forwardly for the (infinitely thin) nonlinear elements. 

In following this route the question arises of how to choose the number of 

subdivisions. Many subdivisions support high accuracy but require high order. 
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To i l l u s t r a t e  t h i s  e f f ec t  and t o  exercise and check the routines wr i t ten ,  

I calculated. t r ans fe r  functions fo r  various descr ipt ions of  a thick sextupole, 

e.g. f o r  the sextupole component of a long, otherwise per fec t ,  dipole.  

The system i s  represented by a s t r i n g  of th in  lens sextupoles and d r i f t  

spaces. The terminating sextupoles a re  ha l f  as strong as the others.  The 

overa l l  t ransfer  function was calculated as function of the number of d r i f t  

spaces while the overa l l  1ength.L and the integrated b2 were kept constant.  

calculat ions were done up t o  7th order,  i .e .  %ax = 7.  

The 

Some of the r e su l t s  a r e  

shown i n  Figs. 1, 2 ,  and 3 .  Figure 3 shows the var ia t ion  of the maxima and 

minima of some of the low order coef f ic ien ts  with the number of d r i f t spaces .  

The magnitudes of the coef f ic ien ts  a re  proportional t o  b2n with b2 the 

integrated sextupole s t rength and n the o r d e r  of  the coef f ic ien t .  The magnitude 

does not depend on the maximum order %ax of the expansion. 

ply adds more coef f ic ien ts ,  it does not change the old ones. 

Increasing %ax s i m -  

In a l l  cases w e  considered only magnetic nonl inear i t ies .  In r e a l i t y  there  

a re  a l so  the kinematic nonl inear i t ies ,  due t o  the basic nonl inear i ty  of the equa- 

t i o n  of motion, and those due t o  geometric e f f e c t s .  

The magnitudes of these nonl inear i t ies  may be small ( i n  large machines) o r  

not so small ( i n  smaller ones) compared t o  those or iginat ing i n  the magnetic 

f i e l d s .  

algebra. Routines t o  do t h i s  have been wr i t ten  and tes ted .  

Their incorporation i n  the t r ans fe r  functions requires performing some 

Convergence Problems 

Describing a quantity i n  terms of a s e r i e s  expansion r a i se s  questions 

about convergence and about the consequences o f  truncation. So f a r  I have not 

addressed t h i s  matter i n  a serious fashion, pa r t ly  because I believe tha t  there  

i s  no problem. 
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We basically express transverse particle coordinates in terms of displace- 

ments along the system axis. In those terms the transverse coordinates are al- 

ways small compared to l, e.g. 

The coefficients of the transfer functions seen so far are always of the 

order of the element-length or smaller. This depends of course on the strengths 

of the nonlinearities in that element, but making them large would require very 

strong nonlinearities, e.g. for an n pole bnxn-' >> bl, with bl a typical 

quadrupole strength and x a maximum particle excursion. Such strong 

nonlinearities do not usually occur in accelerators. This implies that the high 

order terms in the expansion will tend to be small compared to the low order 

ones by a factor of 5 10-3(n-1), e.g. 
the resolution of any computer likely to be used for this work. 

for n = 7. This would fall beyond 

Chaining of Elements 

Successive elements are chained by application of the multiplier or 

concatenator. This routine generates the coefficients of a "product" coeffi- 

cient table from the tables for the two elements to be chained; e.g.: 

- - xix~j k 19, x = c cxijEc(l Y Y  

with 

- 1  

x = c ax1;jl&9, jyky 1% 
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where a and b stand fo r  the e n t r i e s  i n  the tab les  of the consecutive elements 

and c f o r  those i n  the product t ab le .  
- 

The p r a c t i c a l i t y  of t h i s  approach depends i n  pa r t  on the speed of execu- 

t ion .  That speed decreases quickly with increasing order .  A mult ip l ica t ion  t o  

7th order takes about 10 seconds on the CDC 7600. The ca lcu la t ion  of the t rans-  

f e r  function f o r  a s ing le  RHIC r i ng  of some 240 independent elements might 

therefore  requi re  some 3 hours i f  we  require  7th order.  The var ious rout ines  

can be e a s i l y  adapted t o  multi-processor computers, since the  four coordinates 

are t rea ted  near ly  independently, while the operations fo r  each coordinate seem 

na tu ra l s  fo r  a r ray  processors. 

Constant of the  Motion 

Once the t r a n s f e r  function of a complete r ing  i s  ava i lab le  one can ask 

whether there  e x i s t  functions 

-.- C c i j a  x ~ x i j y h y ~ ~  = C c i j a x  1 x ijpyiR 

where 

with 

- 
y = c ayxlxljyky'R 

- 
yl = C a 1aia1jykylR Y 

1" the  coe f f i c i en t s  of the t r ans fe r  function. This r e l a t i o n  leads t o  

a f a i r l y  standard eigen-value problem t h a t  can be  wr i t ten  i n  the form 



' I 
1 .  
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((m) - (~)](c) = o 
where (m) is a matrix whose elements are obtained from manipulations with the 

coefficients of the transfer function, (c) a vector whose components represent 

the coefficients c to be determined and (1) the unit matrix. 

A nontrival solution for (c) requries that the matrix ((m) - (1)) have 

determinant zero, which is guaranteed for a conservative physical system. It 

can be transformed to a triangular matrix of the form shown by the application 

of standard operations 

0 0 

l o  0 

- 
2k m 

'kk 

0 

- 
m 2n 

nn 6 

- 
with 6,, = 1 or 0 and elements mkp, = 0 if 6kk = 0. 

this and to calculate the coefficients c. 

Code was written to do a l l  

It appears that there are several zero's on the diagonal, this is not too 

surprising. Execution for n = 2 should produce two independent emittances if 

the horizontal and vertical motions are uncoupled. 

One recovers in that case in fact all the expected properties of linear 

transfer functions e.g. the a, the B and values, as well as the proper offsets 

in case of misalignment. 

Comments 

It is perhaps worth reemphasizing that the two functions discussed, the 

transfer function and the "constant of the motion" are approximations because 

they are described by means of arbitrarily truncated power series. 

functions can be described exactly by series with a manageable number of terms 

The transfer 
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only in the very simplest of cases. We mentioned already that, if truncation 

occurs, the terms in the discarded part are likely to be small. In accepting 

the multiplication of truncated series for the truncation of the multiplication 

of complete series we make use of the fact that any products with truncated 

parts will only appear in the truncated part: 

= RlR2 + (R1T2 + R T 

,r R1R2 for T1 << R1, T2 << R2 . 
+ T T2> 2 1  1 

where S stands for complete series and R and T for retained and discarded parts 

respectively. 

During the meeting the question was asked whether truncation violates the 

conservative nature of the physics described. This has not been considered yet. 

In a discussion with E.D. Courant it became clear that the presence of any 

nonlinearity in the transfer function forces the number of the constants c, used 

for describing the associated so-called constant of the motion, to infinity. 

This makes truncation of that series a serious matter, particularly since 

convergence is not guaranteed, nor even that each of the discarded terms is 

small. The fact that the procedure used yields results (which are correct in 

the case of linear transfer functions) can therefore not be taken as a proof of 

the existence of such a constant. More work is needed. 


