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1 Introduction

In the AGS to RHIC transfer line beam profile monitors employing phosphor
screens will be used to measure two dimensional beam profile and derive the
beam emittance and Twiss parameters. This note present the details as well
as summarizes the planned analysis.

There will be eight profile monitors, also called flags, installed in the
injection line, the transfer line less the two arcs at the end, test. Four of
them can be used for simultaneous operation because of the total number of
video frame grabbers available.

2 Limitations and Assumptions

In addition to the horizontal and vertical beam density distribution, the
two dimensional beam profiles contain information on beam coupling in the
two directions. This information can be used to identify and in feedback to
correct the possible coupling of beams coming out of AGS. If significant cou-
pling is present a complete four dimensional phase space analysis, ignoring
the even more complicated additional coupling with the longitudinal dimen-
sion, is necessary. A meaningful and reliable complete phase space analysis
is impossible by virtue of the number of flags, the necessary measurement
accuracy and the complexity of the required analysis. We will limit ourselves
to the analysis of one dimension at a time and assume the coupling effect to
be negligible after correction. Under these assumptions we need only one di-



mensional beam profiles, which can be obtained by projecting the 2-D profile
onto the horizontal and vertical directions.

In some parts of the analysis we will also assume the beam has a phase
space density distribution with elliptical symmetry. This has been one of
the basis for most modern accelerator beam analysis and will be implied
throughout the note unless stated otherwise.

3 Beam widths and the measurement errors

As we will see later in this note, emittance and Twiss parameters calculation
is based on three or more beam widths, at different locations or the same
location with different lattices. The errors in the beam profile measurement
and thereof calculated beam width directly leads to errors in the calculation
of beam emittance and Twiss parameters. We will start by estimating the
errors in the beam widths resulting from the profile noises.

The measured beam profile and the symbols used hereafter are illustrated
in Figure 1.
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Figure 1: An illustration of symbols.

The random measurement error in s; consists of two parts, the statistical
part and the external noise part. Since the interaction between beam par-
ticles and the phosphor screen material is of random nature, the statistical
fluctuation of the signal will always exist. The signal is proportional to the
number of particles, i.e. s; = kN where N is the total number of particles



Flag Name o (mm) Resolution (mm)
Horizontal | Vertical | Horizontal | Vertical
UF1 2.9 0.7 0.21 0.14
UF2 0.9 0.9 0.12 0.10
UF3 1.3 2.9 0.19 0.16
UF4 2.7 1.3 0.15 0.13
UF5 1.3 2.7 0.17 0.15
WF1 3.0 . 0.9 0.16 0.13
WEF2 0.9 3.6 0.19 0.16
WEF3 3.7 1.1 0.19 0.16

Table 1: Overall resolutions for flags in U and W-lines.

covered by the one data point and k is the overall gain of the system. The
statistical fluctuation in the signal is thus kv/N and the ratio to the signal
is 1/v/N. Since the number of particles involved is usually very large in our
application, and keep in mind that our system has a maximum signal reso-
lution of 255:1 (8 bit), I have neglected the error introduced by the random
fluctuation. The rest of the error, introduced by e.g. electronic noise, is as-
sumed to be independent at each data point and have the same amplitude
for all data points, i.e.

As; = As (1)

There is also systematic error associated with each measurement, result-
ing from the limited resolution of the optical system. Lens aberration, depth-
of-field and CCD resolution all contribute to this limitation. The effect on
the measurement would be the broadening of the image and hence the beam
profile. The observed profile is the convolution of the real beam profile and
the broadening distribution and the square of the measured rms beam width
is the sum of the square of the real rms beam width and the square of the
rms broadening. The effect can be estimated from the optical calculation
and camera resolution measurement. This has been done[l] and the overall
resolution for all the transfer line flags are listed in Table 1. For most part
this effect only result in a small increase in the measured beam width, there-
fore we will treat this as a measurement error rather than trying to extract
the undistorted beam width.

The width parameter can be obtained through either direct calculation



or after fitting the profile to a known functional form. They have different
implications in terms of handling measurement errors. Given the assumption
about measurement error, the points far from beam center have little to con-
tribute to the profile signal, but equal contribution in the error compared to
the central data points. Function fitting has the advantage of less susceptible
to the noise far from the beam center and contains more shape information,
but involves choosing the appropriate function or function set in anticipating
of the beam profile form and probably much more intensive calculation. For
our purpose here we will only deal with rms beam width and hence rms beam
emittance. We will therefore only deal with direct calculation here and leave
the fitting approach for future consideration if there is sufficient need for the
distribution shape information.

Suppose the measured 1-D beam profile is S; and the position of the i-th
point is z;, we then have

T = insi/ZSi
;5 = Z:IJ?S,'/ZS,' (2)

The rms beam width w is given by

w? =122 — % (3)

The window size must be big enough to cover most of the beam, but
since the tail contains little beam and yet contributes noise equally to the
result as central data points, the window should not be unnecessarily big.
A reasonable size window would be about two times the rms beam width
centered around the beam center. For a beam with Gaussian profile, this
would enclose 95% of the beam.



3.1 Error bounds

The total signal, which is proportional to the total beam charge, and its
fluctuation amplitude are

Q = D s

, oL (4)

AQ = (X DAs=—As

The rms beam width and its error bounds are

wi=22 -7 = %fos, _ —C%(E z:8;)° (5)
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Since N >> 1 we can use integration to estimate Eq. 6. Put in the case where
the beam is about centered in the window, i.e. T = 0, and L/w ~ 2, we have
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3.2 rms error

Since the error in beam rms width is assumed to be caused by the independent
error source at each data point, we can also estimate the rms error in w? as:

2 = Z( 53, On (9)

where o, is the rms error at each proﬁle data point. Using Eq. 3 we have

_ 215[ — 27 — (a7 — 27°)] )
= Gl -]
and

2 1 \2 212
Py e =3 i l@— =] (11)

Again, we can use the integration to estimate Eq. 11:

> (@i —7)" - 'wz]z
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i (12)
- Sio-greod
2 w? . w.,
T 32 [(1— L) +(1+ L) ] +2(Z) }
For the case of Z/L ~ 0 and L/w ~ 2 we have
L 2L
Z [(«"3: - 5)2 - w2]2 ~ 0.2 T ~ 1.6 w? - (13)
Since .
05 =200 50, (14)



Equation 9 leads to
SAlap N (15)

w? Q

4 Twiss parameters and emittance calcula-
tion

Among the four quantities we are interested, «, B,v and ¢, only three are
independent. Determining them requires three or more beam width mea-
surements. ‘The number of measurements does not necessarily mean the
number of flags in simultaneous measurement. It could be total number of
flags at different locations with multiple beam bunches, assuming a very good
repeatability from bunch to bunch. It could also be the number of measure-
ments with one or more flags at the same place but with varying magnet
settings. Again bunch to bunch jitter has to be negligible for the calculation
to be meaningful. With more than three measurements some kind of fitting
has to be used to determine the best value for the parameters. We will use
the least square fit here.

We will summarize the calculation of beam emittance and Twiss parame-
ters from beam width measurements here. Details can be found in [2][3] and
[4].

Suppose we want to solve for the parameters at location sy and we make
the three quantities be

ay = 6,6
a2 = €x (16)
as = €y

With the lattice transfer matrix from sq to s; being

T:(t11 m) (17)

i1 to2

Twiss parameters at s; are[5]

B i —2tit1y 13, B
a | = | —tutn 1429t —tialy o (18)
Y /; th —2ntyy 15 Y /o



The beam width measured with i-th flag at s; can thus be written as

yi = w] = fie =) Gix - (19)
k
where
gn = t31 (20)
gia = —2ti-tia (21)
gis = tfz (22)
Notice that g;; only involves the elements fro the first row of the matrix in
Eq. 17.
Minimizing
. yi — Yr gk - ok |
s o
where o; is the rms error in w?, yields the normal equation for the problem
[N;x] (ax) = (b5) (24)
where
9ij ° Gik
Ny, = Z —J?—- (25)
gij * Yi
bj = Z 302 (26)

Let [V] = [N]~! the solution to Eq. 24 is simply
(a5) = [Vie] (b%) (27)
and the standard errors in a; are also contained in the matrix [V]:
oq; = Vii (28)

In fact the standard error for any other dependent variable, f = f(a;), can
be easily calculated with [V]:

ar\’ o )

m,n

o
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Table 2: Partial derivatives

The beam emittance and Twiss parameters at so are then

€ = y/ai-az— a2

g ==
€

o = 2 (30)
€

_ @

7_6

with the partial derivatives given in Table 2. Standard errors for Twiss
parameters at any other location can be easily obtained using Eqgs. 18 and
29 and Table 2.

The three flag calculations done with simulation show that with 10% rms
error in the measured beam widths, the standard error in calculated beam
emittance varies from a few percent to above 20% depending on which three
flags are used. Using more flags reduces this error with the magnitude of
the reduction depending also on the flag. This fluctuation of errors is mainly
determined by the inter-flag betatron phase advances and usually refects the
goodness of the flag location selections.



The parameters in Eq. 17 can be expressed as funtions of the phase ad-
vance between the two points:

tiy = \/%(cos At + a; sin Ap) (31)
0

tia = /Bofisin A (32)
B (1 + apoy)sin A + (a; — ap) cos Agp

tan = VBB (33)
teg = —‘% (cos Ay — o sin Agh) (34)

Suppose the two flags are located at location s = s and s = s;, then when
A = nm, t;2 = 0 and giz = gis = 0. It follows that the [N;z] matrix
in Eq. 25 will be singular which simply When the phase advance is close
but equal to multiples of 180 degrees, theoretically the problem is perfectly
solvable, but the result is increasingly sensitive to stnall errors in beam width
measurements. However, we have to point out that the phase advance is
highly dependent on initial beam parameters as well as the transfer line
lattice, so what actually turn out in actual measurements may be different
from bunch to bunch.

5 Phase space distribution reconstruction

The beam phase space distribution can be reconstructed from the density
profiles measured with the flags, provided the distribution has elliptical sym-
metry. Having the full 2-dimensional phase space distribution makes the
calculation of partial beam emittance easy and convenient. There have been
percentage emittance calculations reported with various assumption/[3] [2]. El-
liptical symmetry is the least assumptions needed for this purpose.

A 2-dimensional beam phase space distribution with elliptical symmetry,
p(z,z') = p(yz? + 2022’ + fz'?), can be transformed into a circular distribu-
tion in (u,v) space with the transformation

(u)b\}_ﬁ(ig)(f) (35)
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The resulting distribution will be p(u? + v?). The projection of the phase
space distribution which is the 1-dimensional beam profile that can be mea-
sured with a flag is

/p(w,:z:') dz’ = %/p(u, v)dv (36)

Since p(u, v) has circular symmetry, i.e. p(u,v) = p(u®+v?), the distribution
can be recovered from the projection through inverse Abel transform[6]. Once
we get the phase space distribution through the Abel inversion, beam profile
and hence the corresponding emittance for any fraction of the total beam
can be calculated.

5.1 Abel transformation and the inversion

For a function with circular symmetry in (z,y) space, f(:c,y) = f(r), its
Abel transform is simply the projection onto one of its axis:

fate)= [ fydy =2 " LD (37)

The inversion is w f1 ( \d
(z) dz
f(r)= m (38)
The direct inversion in Eq. 38 involves derivation and divergent function
and therefore is not suited for numerical applications. There are various ways
to get around the problem(7], including the filtering of raw data to reduce
noise, using transform techniques to avoid the divergence. One can also fit
the data to analytical functions based on physical models and carry out the
inversion analytically. In our case we will implement the latter approach
now, and other techniques later if the current one is found inappropriate or
inefficient based on numerical or real experiments.
We choose Gaussian weighted Hermite polynomials to expand the beam
profile:

p@) = 3 b Ho(Z) 3V (39)

Because this set of functions are orthogonal, we can avoid the fitting of pa-
rameters thus simplifying the calculation of expansion coefficients. Since the

11



undistorted profile should be symmetric about the center, based on the el-
liptical phase space distribution assumption, we only need the even orders
of Hermite polynomials. The maximum order that has to be used in the ex-
pansion, however, is not as small as we might have expected or hoped, even
when the profile is close to a Gaussian distribution. This is because errors
in the calculation of rms of the profile will introduce many high order com-
ponents. As a result 10 to 20 terms have to be included usually. Thankfully,
the expansion process itself is very fast and high number of terms does not
constitute much inefficiency in the overall reconstruction process.

The Abel inversion of the Gaussian weighted Hermite polynomials can
be calculated analytically. The values of the functions, their Abel inversions
and the fraction inside any radius can all be calculated through recursion
relationsA. The result of the inversion can be summarized as

N

r

p(r)=> a,r"e 7. (40)
r is normalized to the beam rms size.

5.2 Percentage emittance

The reconstructed phase space distribution, with normalized coordinate against
the rms beam size, can be directly used to calculate the percentage emittance,
or the corresponding beam profile through Abel transform.

The fraction of beam inside a radius R in the (u,v) normalized phase
space, 18

§(R) =2m /OR p(r)rdr (41)

Since R is normalized against rms beam size and beam rms emittance € is
calculated as described in section 4, the percentage emittance corresponding
to & is simply

es = Re (42)

If it is ever needed, the fraction beam profile, that of the fraction in the
central part of the phase space can be obtained by Abel transforming p(r)
with its value set to zero outside r = R.

As an example, a beam profile composed of a Gaussian plus a shoulder
component is constructed and its corresponding phase space distribution is

12



calcuated using the technique described above. They are shown in Fig. 2.
The fraction of beam calculation result compared with that of a GQaussian
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Figure 2: Beam profile and reconstructed phase space distribution.

beam is presented in Fig. 3.

5.3 Loss of elliptical symmetry and Radon inversion

In the case where elliptical symmetry assumed throughout this report, the
reconstruction of phase space distribution theoretically need infinite number
of profile measurements. Except the aspect ratio change that can happen in
the beam phase space, the problem is the same as in computed tomography.
To reconstruct a 2-dimensional object from all of its projections is the 2-
dimensional Radon inversion problem. With the limited number of beam
profiles we cannot expect to fully reconstruct, but nevertheless we should be
able to extract some coarse features of the phase space distribution by using

some of the numerical techniques in doing Radon inversion. This, however,
will be left for future work.

13
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Figure 3: Fraction of beam plot compared with a Gaussian distribution..

A Abel inversion and fraction of beam cal-
culation

Hermite polynomials and the related equations

v 4 & (<1l
Ha(z) = (-1)"¢" Z5e _Zk'n 2k)!

ey (43)

Hp(z) = 2zHo(z) —2nHpa(z) (44)
H'(z) = 2nHpa(z) (45)

/_o:o H,,(z)Hy(z) e dz = { gnn‘\/_ Z 7_£ Z (46)

Our profile function can thus be expanded into the Hermite polynomial

14



series:

2) = hoHy(s)e 25" (47)

n=0

with the coefficients being
h L A
= g | SO En(e)e )

Since H,(—z) = (—1)"H,(z), for an even function f(z) only even order
Hermite polynomials will be involved.

The Abel inversion for each even order Hermite polynomials can be car-
ried out recursively, as shown below.

T

L £Hon(a) %)
) B =
— __/ Hém(x)—a"HZm(x) e—-% dz

V2 —r2 (49)
_ 271_/ H2m+1($) 4mH2m 1(.’)3) ____ d.'l}

T2 — 72

ifzm (7’)

= [Fu(r) — 4mFps(r)] €7

where o K ( )
2m41\T __
Fo.(r)= 2ﬂ_ \/——ﬁ d:c (50)
Using Eq. 44 and Eq. 45
Fo(r) = 1 dmFr_y(r)

7 Jr :/Trze
= —/ Hzm(a:)e dv:cz—r2 dmF,_1(z)

(51)
_ __/°° (w) wﬂzm(m)( 2_ 2y

2
—
2 dz

—4mFm_1($)
Using Eq. 45 and Eq. 44 again gives us
Fo(r) + 4mFop_i(7)

1 ©o [HZm 1(37) 4mH2m_1(w)] (.'E - 7"2) _a: 2—r2 (52)
_2?‘/1: : V2 —r2 d=

15



With .
2’ Hyma (2) = 3 [Ham2(z) + 2(2m + 1) Ham ()]

= Moiol@) + 24m 4+ DHamia(e)]

+2m(2m + 1)H2m_1 (.’1,‘)
Eq. 52 yields the recursion relation for Frn(r):

Fn(r) = 2(2r* —2m+1)Fp1(r)
—16(m — 1)(r* = m + 1) Fipa(r) (54)
+8(2m — 2)(2m — 3)(2m — 4) Fr3(r)

Tt will be easier to work with simple polynomials of r for the calculation
of percentage emittance, so it is natual to rewrite Eq. 54 as

Fu(r) = 1 [4Fp_1(r) — 16(m — 1) Fra(r)]

—2(2m — 1) Fppes(r) + 16(m — 1)? Fraa(r) (55)
+8(2m — 2)(2m — 3)(2m — 4)Fpp—5(r)

Since in Eq. 45 and Eq. 44 the initial contributions from negative orders
would not have appeared, Eq. 55 and Eq. 54 can be used with fewer terms
at the beginning by simply droping the negatively ordered ones. The lowest
ordered term can be calculated directly:

2 _ 2
1 oo Hy(z)e 7 1
— dz = 56
Tl Y e B (56)
With Eqs. 49,55 and 56, Abel inversion of all even order Hermite poly-
nomials can be calculated easily numerically. We can also go a step furthur
to formulate the calculation of the fraction of beam inside any phase space

radius. This is can be done using Eq.55 and by expressing Fr,(r) as

Fo(T) =

Fa(r) = 1‘29{” - (57)

Combining Eq. 55 and the following definition
gr=0, I<0,I>m (58)

16



we obtain the recursion equation for g

g = 497" —16(m — 1) g["7?
—2(2m —1) "' +16(m —1)% g2 (59)
+32(m — 1)(2m — 3)(m — 2) g3

The initial term is given by Eq. 56 and Eq. 57:
1

0:

90 =~ "/—271_"

The direct expansion from ﬁzm(r), the Abel inversion of Hyy,(r), to the
powers of r is, from Eq. 49,

(60)

Hom(r) = Fu(r) — 4mFp_y(r) = S Gp - (61)
=0
where
=g —4mgrT! (62)
With - \
/ ™™ rdr = 9™ m)! (63)
0
the fraction of beam inside r = R is
P S Hop (v) rdr
Yom hom Jo© Ham(r) rdr
,.2
_ Xm2ahaGT o 7'21@—72 rdr (64)
Yom 1 GP 32 r2le= T rdr
Yom 21 hnGT* P(R)

where P;(R) follows yet another recursion relation:
R 2 B2
Pu(R) = / r™ =% rdr = 9mPp_;(R) — e % (65)
0

R 2
Py(R) = /0 eTrdr=1-e% (66)

17



References
[1] Richard L. Witkover. private communication, 1994.

[2] H. Ploss and L. N. Blumberg. Methods of emittance measurement in
external beams using ellipse approximations. Internal Report AGS DIV
68-4, AGS/Brookhaven National Laboratory, November 1968.

[3] Kiyokazu Ebihara, et al. Non-destructive emittance measurement of a
beam transport line. Nuclear Instruments and Methods, 202:403-409,
1982.

[4] Willianm H. Press, et al. Numerical Recipes in C, chapter 15. Cambridge
University Press, 2nd edition, 1992. '

[5] Karl L. Brown and Roger V. Servranckx. Optics modules for circular
accelerator design. Technical Report SLAC-PUB-3957, SLAC, May 1986.

[6] Ronald N. Bracewell. The Fourier Transform and Its Applications, chap-
ter 12. McGraw-Hill, 2nd edition, 1986.

[7] L. Montgomery Smith, Dennis R. Keefer, and S. L. Sudharsanan. Abel in-
version using transform techniques. Journal of Quantitative Spectroscopy
and Radiative Transfer, 39(5):367-373, 1988. -

18



