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The general form of the field in the current—free region of a helical magnet can be
obtained by using the scalar potential ¢. A cylindrical coordinate system (r, ¢, z) is more
appropriate for this case because the helical symmetry is easily described in these coordi-
nates. Helical symmetry demands that the physical system is invariant to the transforma-

tion ¢ — kz =const. Thus 1 can be written as:
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where § = ¢ — kz, and k is positive for a right—handed helix (if z,y, # is a right-handed
Cartesian coordinate frame and z = r cos ¢; y = rsin ¢).

Solving Laplaces equation, the scalar potential is written as an infinite sum of harmon-
ics:

P = z Im (mkr) - (am cos (mb) + by, sin (m8)) (1)
m=1

where I, are modified Bessel functions and the coefficients a, by, depend on the magnet
coil configuration.

Then from the magnetic field equation B = —grad ¢ one can immediately obtain:

B, =—k E m - I, (mkr) - (am cos (m8) + b, sin (m8))

m=1
B,=kFk Z m + Iy (mkr) - (b cos (mb) — ayy, sin (mb)) (2)
m=1
1

The helical symmetry results in the simple relation between By and B,. II, denotes the

derivative on the argument of Bessel function (not on r).



The expression (1) for ¢ is similar to the expression for the scalar potential of a normal

magnet:

¢ = Z r™ - (o cos (m@) + P sin (mg)) (3)

m=1

and at the consideration of a,, and by, coefficients for helix one can go the same way as
for normal magnet.

In particular if we consider a helical dipole and choose the on—axis field to be vertical
at z = 0 then from dipole symmetry only harmonics with odd m are allowed and all a,
are equal to 0 (they are skew—harmonics). Further to eliminate harmonics with m = 3, 5...
one can use in the cross section of helix the same coil configuration which is used for
eliminating higher order harmonics on normal dipoles.

From (2) one can see that the m—th harmonic term by, contributes to nonlinearities
of polynomial order m — 1 and higher (I,;,(mkr) behaves like (mkr/2)™/m! when r goes
to 0). So one would try to remove these harmonics/ But unlike a normal dipole the main
harmonic of a helical dipole contains a nonlinear field. It is unavoidable. The b; coeflicient
of main harmonic is related with on-axis field By as: by = —2By/k. Thus the main

harmonic of the field of a helical dipole can be written as:

B, = 2Bl (kr) - sin 6

B, = —2BoI; (kr) - cosf (4)
1
- _—B,
By kr

Taking the limit 7 — 0 one obtains the field near the axis of a helix. It is expressed in

Cartesian coordinates as:
By = —By - sin(kz)
By = By - cos (kz)
B, = —Byk - (z cos (kz) + ysin(kz))



