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ABSTRACT
For equal colliding beams, approximate expressions are derived for the lumi-
nosity and r.m.s. diamond length. The region of validity for these expressions

is examined by comparison with numerical results from exact integrals.

I. Introduction

When considering the construction of any accelerator, the luminosity and
r.m.s. diamond length are of central importance. TIn this paper approximate ex-
pressions for these quantities will be derived. These new expressions will be
quite adequate for most calculations, there being regions where their deviation
from the exact theory is negligible. It turns out, in fact, that over a wide
range of values of the systems relevant parameter GQ/BE there is excellent
agreement.

In this paper, the above discussion will be amplified. 1In Section II an ap-
proximate expression for the luminosity will be derived which is valid for the
most general case of a non-zero crossing angle. In Section III an approximation
to the r.m.s. diamond length is developed. To do the above things we essen-—

tially approximate the luminosit or "overlap," integrand. Section IV contains
y app Y, Py b3



the comparisons between the new approximate formulas and the exact theory as

well as the conclusions of this work.

II. The Luminosity

For the case where both colliding beams are bunched and the assumption that
the lattice has zero dispersion at the crossing point the most general expres-

sion for the luminosity is given byl)’z) L = NNy fopcounter F where
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where f, = frequency of revolution = C/2TR where C = velocity of particle and R
= radius of ideal orbit, B = # of bunches per ring and N;, Ny are defined to be
the number of particles per bunch in beams ! and 2 respectively.

We are interested in deriving an approximate expression for equation (1)
that will be both accurate and simple to apply. Firstly we should state our ex-
pectations for our new expression. We expect the ratio of the exact formula to
the approximate one to approach 1 as GQ/BE approaches 0, and to approach 0 as
Gz/ﬁﬁ approaches infinity. In other words the approximation should be best in
the region that makes the dominant contribution to the luminosity integral,
which is the origin, and not so good in the regions making negligible
contributions. We therefore will look at the denominator in equation (1) and
approximate it as an exponential which can then be evaluated explicitly.

For equal beams equation (1) becomes
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Now since OH,% = Gﬁ%v(l+52/8§%v), and dropping terms in the denomina-

4 . .
tor of order S we re-write equation (2) as
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The contribution to the integral in equation (4) comes predominantly from

the region 0<S'<l for which we take the>approximation
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FAPPTOX can be used with confidence whenever the conditions og << Bg, Bg are
satisfied. The errors one makes by using the approximate luminosity expression

will be discussed later.



ITI. The R.M.S5. Diamond Length

Now we wish to develop an approximate expression for the r.m.s. diamond

length. To do this we approximate the integrand in equation (2) by
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A naive first approximation to the diamond length Op is obtained by making

a change of variables S*0)S' and recalling that for Og << Bﬁ Gﬁ‘* Gﬁz and

ignoring the denominator in equation (8). If we do this we immediately obtain
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A better approximation can be obtained by not ignoring the denominator in

equation (8). Using similar methods to those of Section II we arrive at the

following expression:
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To arrive at an exact expression for the r.m.s diamond length we equate
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Looking at the formalism's of Sections II and III we notice that equations

(7) and (10) are good approximations to equations (2) and (12) whenever
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IV. Remarks and Conclusion

Figures (1) thru (4) are plots of the exact theoretical expressions/
approximate ones vs. the relevant parameter Og/Bﬁ. As can be seen from the
figures our expectations for the behavior of the ratio have met admirably. AL
= aOR/ZOE and Beta H*/v* = BE/B*. The curves labelled Bﬁ/B? = 1.0
are obtained by setting the vertical and horizontal terms equal. Notice that
for AL = 0.0 this curve indicates excellent agreement of the approximate and
exact expressions for GQ/Bﬁ < 1.4. For AL = 1.0 there is excellent agreement
also for,og/ﬂﬁ < 1.1, whereas AL = 2.0 and 5.0 show that the values of Uz/Bﬁ
which indicate excellent agreement are diminishing. The general trend seems
to be that as AL increases for BE/B? = 1 our approximations region of validity
is falling off. The curves labelled Bﬁ/83 = 0.1 are obtained by letting
the horizontal terms dominate. They follow the same trend as the first set of
curves, the region of validity of the approximation being only slightlf smaller.
The third set of curves is obtained by letting the vertical term dominate and
has BE/Bj = 10, The approximate formulas for the luminosity and r.m.s. diamond
length have only limited validity here, the two sets of approximate and exact

expressions diverging rapidly here.



In Conclusion:

1) We've derived approximate expressions for the luminosity and r.m.s. dia-~
mond length which contain higher order corrections to the most naive guess for
such expressions.

2) We've examined the regions of validity for the newly derived
expressions, the relevant parameter used to do this being GR/BE. Three sepa-
rate cases were examined.

a) BR/By =1.0
b) BH/BE = 0.1

c) BR/BY

U}

10.0.

We found that cases a) and b) exhibited excellent agreement for a wide
range of values of GQ/BE, but noted that as AL increases the region of valid-
ity falls off rapidly. Case c) was seen to diverge much more rapidly than cases
a) and b), warning us to use extreme caution when using the formulas developed

in this paper for this particular case.
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