

BNL-101565-2014-TECH RHIC/PG/22;BNL-101565-2013-IR

Luminosity Estimates For The Lighter Ions: Equal Mass Collisions C+C, S+S, Cu+Cu, I+I

G. R. Young

December 1983

Collider Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

LUMINOSITY ESTIMATES FOR THE LIGHTER IONS:
EQUAL MASS COLLISIONS
C+C, S+S, Cu+Cu, I+I
(see RHIC - PG-10)

G. R. YOUNG

(BNL, December 14, 1983)

Luminosity Estimates for
the highter Jons;
Equal Mass Collisions
C+C, S+S, Cu+Cu, I+I
(see RHIC-PG-10)

G.R. Young

(BNL, December 14, 1983)

12/12/83

We can have 3x (6x108) = 1,8x10 ions /bunch for 147 Au 197 ions in the collider, according to Masons. Ruggiero, Pargen & Lee. Beyond this, it evidently becomes difficult to handle introbeam scattering for the bunch lengths

we are considering. As intra beam scattering is a small angle Coulomb scattering problem, it must scale as (Z4/A2). We can thus handle the following # ions / bunch for our other ions, assuming this scaling:

Ion 197 Au 79+ 127 T 53+ 3.7 x /09 1.0 x 1010 32 5 16+ 2.8 x 1010

Ions/bunch incollider

1.8 × 109

Z,0 x 10" 1 H 1+ 1,8 x 1012

(use NB/EN = B82 TB AV A 2; set Bf = 0.5, Ful, av = 0.1; ro = 1

Set \$ = 0.5, FN1, AN = Oil & 10 = 1.535 × 10 - 10 m) Lon 197_{Au} 37+ /V8/EN (7-1m-1) $\mathcal{N}_{\mathcal{B}}$ β___8__ EN TIMM mrad

7.68x1014 4.15 3.19x/09 1032 1.00537 127 T 32+ 7.8 8,30 x 1014 4,31 ×109 1286 1.00837 5,11 63 Cu 22+ 1564 1.01245 6.77×109 1.07 x 1015 11,6 6,33

32 5 154 1720 1.01514 9.00x/09 14,1 1,29 x 1015 6.98 12 64 2.48 x 1010 16.5 7.56 3,28 x 1015 ,1858 1,01771

We took charge states for 25 tage tandem operation at 15 MV and assumed addition of the Heidelberg line (see Fig 5, MG rieser et al IEE NS-, (1983))

Before calculating the number of turns that would have to be injected into the booster from the towden to reach these current, we first estimate tandem performance for all cous in the standard set. The fandem son source can inject 200 p. A (particle, as it makes 1- ions for injection) for allows beaus, Ray Middleton (U, Renn) has seen in fances of 800 p. A operation, but conditions for this are not yet reproducible, or even understood, Thurs, we design for non with the 200 pet We calculate based on I stage tunden operation @ 15MV, 200 p.A. Injectes Ternical High Energy End Ion Charge State Cirrent Abindance Fired Evergy Charge State 120 6+ 105 100% 32.7 375 16,7 324 63C4 26.6 11.3 28.4 197 I 20.8 19.0 <u>5,9</u> 324 210 197 Au 14+ 17.8 37**†** 16,0 4.3 225 The values in the last column are particle pet and include 75% transmission through the tandem. We can now calculate the number of turns that must be injected to reach the booster fune depression limit (assuming we have the line in place) Rotation Zon NB/Hurm length (psec) I (jusec) no. turns 7,4 108 120 33,5 3.62 121.3 32S <u>3,91</u> 22.0 86.0 63<u>Cu</u> 3.0 10 g 4.30

22,6

97.2

四工 5.23 118:7 197 Au 1.5 108 6.52 21.3 138,9

All of these pulse lengths are well under the standard 250 justice pulses being fried on the tandem. The number of turns to be injected is large (~20-30) but this largely arises from essening we can hundle 1.8 × 109 An ions / bunch in the collider from the standpoint of ratrabeam scattering. If we have to drop back to 6x108 ions /bunch, then all the values for rumber of turns decrease by x3 to be in the range of 27-11 turns, which should be feasible. We are using as booster acceptance of 70 T min moral, and early emittance measurements on the Fundem only yielder balues of (unnormalized) &= 1.871 mm mr for 100 MeV "0 (See PThiebeger, M.M. Keonery H. Wagner IEEE NS-30 #4, p Z.746 (1983)) The line would only surpose this, assuming no dilution. The number of furns to be injected would have to be then less than $\frac{40}{18} = 22.2$ for 160 and less than $\frac{40}{18} = 22.2$ for 160 and less than $\frac{40}{18} = 22.2$ for 160 and $\frac{40}{18} = 22.2$ for 160 and $\frac{40}{18} = 1.13$ for 160 and $\frac{68}{18000} = 1.13$ for 160 and $\frac{68}{18000} = 1.8$ for $\frac{32}{180}$ these values because 25.1 turns for 160 and 14101 turns for 325, which are in the range needed, Clearly, plenty of attention has to be paid to careful injection stacking into the booster to be seene the betation phase space is booled as efficiently as possible. One should also remark that the emittance preasurements for the fandem beaus are "1st pass" rumbers and may well improve with further experience in setting Source paremeters.

To get an idea of luminosity that neight be obtained with lighter beams, we calculate for the common magnet case on page 3 of note PHIC -PG-10. We use formulae (some ion in each beam)

 $L = \frac{N^2 B frev}{4\pi \sigma_v^* \sigma_v^* f}, \quad \Delta V_{Beam beam} = \frac{N r. \beta v^* Z^2}{4\pi \sigma_v^* \sigma_v^* f S A}.$

 $N = \# iono / bunch, frev = 78.194 kHz. \in_{N} = 10\pi \text{ mm-mvad}, \beta^* = 1m,$ $O^*_{\text{vand H}} = \sqrt{\frac{\varepsilon_{N} f_{SY}}{6\pi}} \cdot \beta^* = 0.013 \text{ cm}, f = \sqrt{1 + \frac{\alpha \sigma_{e}}{2\sigma_{H}}} \text{ is } 1 \text{ for } \alpha = 0,$ head on collisions. Using N from 1st page, $T_{S} = 5.7$ bunches, we find

 $\left(\alpha = 0^{\circ} \right)$ <u>N Q Q</u> <u>I on</u> L (cm-2 se-1) AVBB 2 10" 8,4 1031 . 040 325 2.8 10'0 1,6 1030 ,017 63 Cu 1.0 10¹⁰
3.7 10⁹ 2.1 1029 ,0089 127 I 2,9 1028 ,0055 197 Au 1.8 109 6.8 1027 ,0038

where 8 = 108,35 (100 GeV/A, Jamu = 931,5 MeV)

So even though the liminosities look stupendous, the beam beam time shifts are too large. We expected this trouble because we scaled the ions/bunch from introbeam scattering by 24/42 (Contomb-law Z, A dependence) while BZ 55 only scales as Z²/A.

A more sensible set of values is obtained by taking N determined from the booster space charge limit. Again using the common magnet scenario, we get the following

					
Ion		2	(cm ⁻² see")	AVBB	(d=0°)
12 C	2.5 10'		1030	.0020	
³⁷ 5	9.0 /09	1. 7		.0048	
63 Cu	6.8 109	9,7	1028	.0060	
127 <u>T</u>	3,4x109	2,4 1	0 28	.0050	
	1.6 x/09	5,4 10		0033	
The same of the same and the same of the s	PROGRAMMENTO STREETS WE "ME ALL SALLANDARD COMMON CONTRACTORS AND A			and the second control of the second control	
(We used st	ipping efficien	ues of 50% for	Au, 80% f	es I and 10	00% for Cue's
out of the boo	ste, Juto the	ies of 50% for. A65. C is a	already fur	lly stupped	in the booster)
		er norderen elekten ich unterhöligt bleir regeren aller i vorsakteren atjanton habitatek kalen kristering keryeren ich			
These are ge	itting closer,	If one in	sists on s	Ver = 000	103, then
the following x	able for N.L.	If one in Nooster and:	# turnsing	ected juto the	booster results,
		N (a=	00)		
Ion	17BB		<u></u>	Nbun	t # furns
12 C	.003	1.50 1010	4.7 1029		
325	,003	5,63 109	6,6 10 ²⁸	s 5,63/	09 13.8
63C4	,003	3,37 10 ⁹	2,4 102	3,37	109 11,2
127 I	,003	2.04 109	8,7 10 ²	7 2.55 /	109 13,4
197 Au	,003	1.42 109	4,2 102	7 2.84 1	09 19.0
(/ he number	n of furns	for 12C 1	las alux	rys been	aromalously udem
large due	to selecti	ng change s	Lite 6t	in the to	udern
terminal.	If st	were selecte	ed, which	h has a	6470
abundance	(foil strip	res) Compa	ved fo	6 t abunda	nee of 21,8%,
be related by almost 3 - not stay, as the line exit					
be relaxed	by almos	t 3 - ao	t the	as the les	vac exit
energy ivouls	I drop Slig	glifly as the	injection	energy from	The faulem)
would drop	from 10	55 NeV to	90MeV	1 CISMV	(tanken) .

These disminosities for lighter sous are probably still large enough to fry eggs or detectors, so it is not clear whether great effort needs be expended to increase them. I uput from experimenters will help clarify this, as the number of Secondary particles in a C+C collision is much smaller than for Au + Au, but the sealing with mass is not clear. We can calculate another table based on the septum magnet solution in RHIG-PG-10 page 3. Now much shorter bunches are use, T = 15 cm for better L, but the #10ms/bunch then must decrease, Following P6-10, use 6 x 108 bunch for Au. Now use B* = 2 m, 8=108.35 (100 GeV/4), EN = 107 mm mad, Th = TH = 0,0175 cm, S= 200 = 0.857 f = V/+p2 = 1,317, frev = 78,194 kHz and B = 17/ (ie find a fast kicker magnet). For N, use the values from the booster or the scaled (by Z4/A2) value based on intrabeau scattering for Au in the collider. For Au, I and Cu, the intrabeau scattering limit is smaller; for Sand C the booster limit is smaller. Zmrad - Septum magnet ! I.on N /bunch / (cm-2 sec-1) DVBB 2,5 1010 1,6 × 10 30 ,0042 B 325 2,1 x 10 29 9.0 109 ,0040 < 63 Cu 2,9x 1028 3,3 109 ,0025 127 I 1.2 109 3,8 × 10 27 ,0015 197 Au 6x108 9.5x 10 26 ,0011

The values for C and S are still a little large for AZER. Asking for AZEB < .003 gives Ion N L

C 1.78 1010 8.2 1029

S 6.75 109 1.2 1029 Still "OK" in ferms of L. Do, we conclude, based on the suggestions in FHIC-PG-10 for the bunched beams scenario, no RFstacking, that a) for bead on collision the beautheam time shift will catch us before the introbeam scattering for the light ions, and we can volvy the requested booster performance for light in from the Space charge bruit b) for small & crossing (2 mond), intrabeaus scattering limits
heavy beaus (Cu, I, Au) performance and beaus beaus time
shift still limits light ion performance e) quite healthy luminosities are possible for C+C and S+S
(>10²⁹ cm⁻² sec⁻¹) and L>10²⁸ cm⁻² sec⁻¹ is possible
for Cu + Cu and I+ I

It would be nice, once we settle on method of calculating; intraheam scattering, to make calculation for C, S, Cu and I to determine what I and A scaling we should use.

To get some idea of huminosity at low energy, we calculate for 5 GeV / A (&= 6,368) equal mass collisions. Now B = ,98759, 80 for circumference 3833.8 m, frev = 77,226 kHz. Still use EN=1017 mm mod, 4 and V. For bunched beams head on, use $\beta^{*}=lm$, $\tau_{v,t}^{*}=\sqrt{\frac{6\nu l_{3}v}{6\pi}}=\frac{6v}{6\pi}=0.051$ cm. f=1, g=5.7 bunches. Using N/bunch from the table on page 5, we get N /bunch Ion [(cm-25-1) AVBB 3,0 10 28 1,50 1010 0033 ³²5 5,63 109 4,3 1027 5 GeV/A 0033 63 Cu 3.37 109 1,5 1027 ,0033 127 I 2,04 109 5,6 1026 0033 197Au 2,7 1026 1,42 109 .0033 2 mond, p= 20/4 = ,294, f= VI+p= = 1.042, B=171 crossing at = 2m 50 THY = 10728 cm N/ burch 12 C 6.0 10²⁸ 1.78 100 ,0037 325 d=2 mrad 6.75 109 ,0037 63 Cu 3.3 10° 5 GeV/A ,0031 127 I 1.2 109 2.7 1026 197 Au 6. 10⁸ ,0013

It night seem odd that the crossed beam huminosity is higher, than the head on huminosity for C and S, but this is partly an arbifact of the conditions assermed, For fixed Z, A and 8, if \$\beta_H = \beta_V \text{Then the \$\beta^{\beta}\$ dependence of AVBB in the expression on page 4 divides out,

and if one is limited by $A \times_{BB}$ then $N \propto a$ of $A \times_{BB}$ where $f = \sqrt{1+p^2}$. (Here, Y, Z, A, and E_N are fixed.) Then $L \propto \frac{N^2 B}{f} \propto \int \frac{B}{A \times_{BB}} \times \frac{B}{f} = 1$ for head on and 1.0+2 for $\alpha = 2$ mod @ 5 GeV/A; B = 57 head on, but B = 171 for $\alpha = 2$ mod; and $\beta^* = 1$ m head on, 2 m crossing then

Larrowing 2 1.56 L head on evaluated it the same AVBB. Fixing $\Delta V_{BB} = .003$ for 12 C, we get $L = 2.48 \cdot 10^{28}$ head on and $L = 3.94 \times 10^{28}$ crossing, or a ratio of 1.59 : 1. For heavy beauer the intrabeau scattering takes over and head on yields the lighest L; the head on case also has a larger beauthour time shift,