

BNL-101556-2014-TECH RHIC/PG/13;BNL-101556-2013-IR

Estimate Of Intrabeam Scattering For The Lattice: $\beta = 40m$, 2 = 2.0m

A. G. Ruggiero

December 1983

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ESTIMATE OF INTRABEAM SCATTERING FOR THE LATTICE: $\beta = 40m$, $\overline{\eta} = 2.0m$

د الج

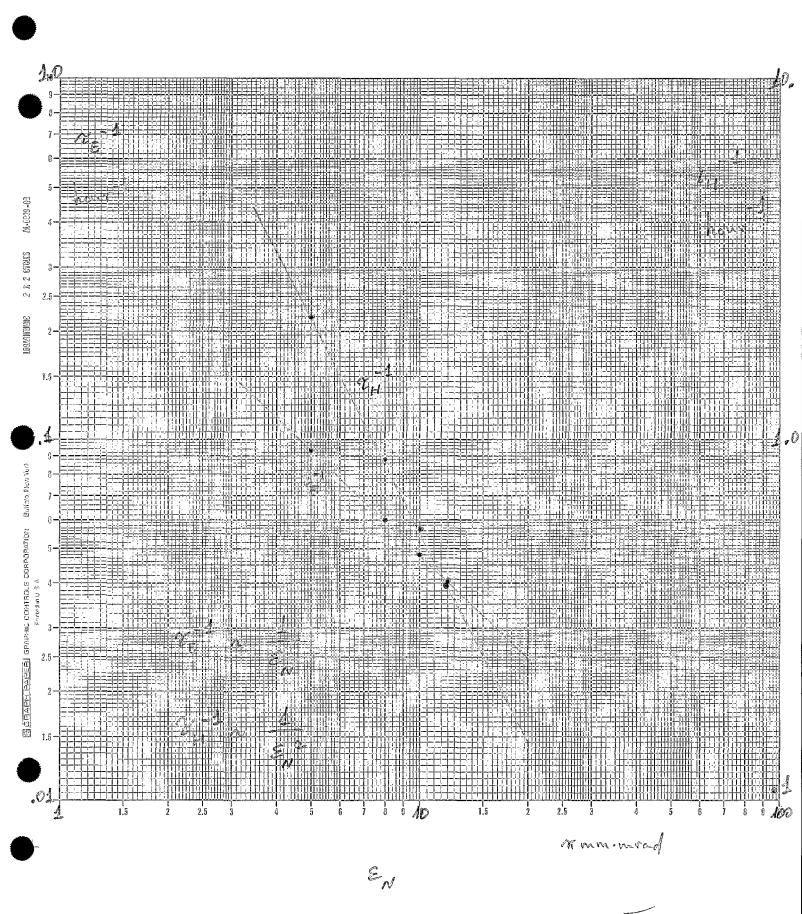
A. G. RUGGIERO

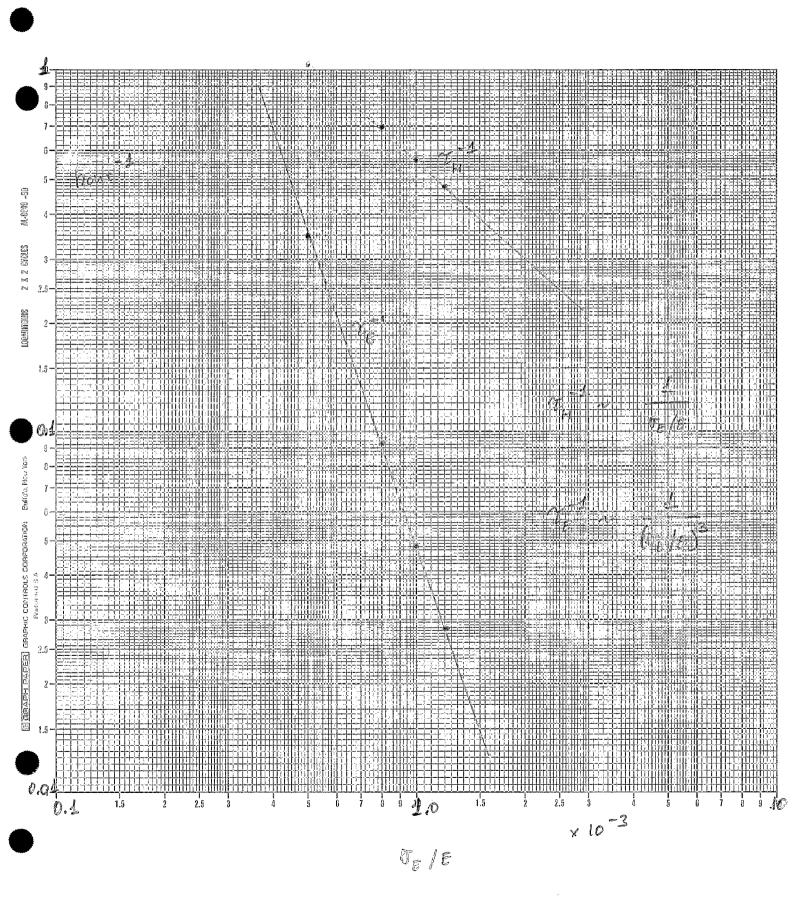
(BNL - December 6, 1983)

J. Claus lattice Contribution from Regular Cell only $\overline{\beta} = 39.18424 \text{ m} \implies 40 \text{ m}$ $\bar{\eta} = 2.023605 \, \mathrm{m}$ => 2. m This corresponds to case # 82 The numbers in the following. Tables correspond to Gold : A = 197 , Z= 79 Bunded Beam Leak arrent = 1. Amp-electric EN is normalized emittance TE/E r.m.s. energy spread 2-1 are growth rates in hour -1

-1-

y=100 $E_N = 10\pi \text{ mm} \text{ mrad}$


o _e /E	τ_{e}^{-1}	\mathcal{T}_{μ}^{-4}	2-1
.5 × 10-3	,3471	1.0204	0208
.8	.0923	.6946	0142
1.0	.0483	.5681	0116
1.2	.0283	.4793	0098


 $\sigma_{E}/E = 0.1 \%$ y= 100

 γ_{μ}^{-1} γ_{e}^{-1} z_v^{-1} EN 5. Tmm.mrad .0931 2.1901 - . 0447 .8788 в. .0598 - .0179 ,5681 -.0116 10. .0483 -.0081 12. .0405 .3971

Variation of Diffusion Rates with emittance and energy spread-

-2-

б

EN = 107 mm mred

 $\sigma_{\rm E}/{\rm E} = 10^{-3}$

 τ_{e}^{-1}

 τ_{H}^{-1}

 z_v^{-1}

5	-2.9269	12.0445	13.7651
10	3359	. 4011	.8022
12	0946	. 0528	.1885
20	.1725	. 2068	206P
40	. 1480	.6214	0888
60	.0969	.6590	0388
80	.0667	.6198	0200
100	.0483	. 5681	0116

· 127.

Variation of Diffusion Rates with J

- 3-

Comparison with neighbouring lattices

J=100

 $\delta E/E = 10^{-3}$

 $E_N = 10 \pi mm \cdot mrad$

- 4 -

12	1.5 m	2.0 m	2.5 m	
35 m	.0589	.0515	.0451	E
	.4423	.6951	.9579	H
	0124	0108	0095	V
40 m	.0543	.0483	.0429	E
	.3537	.5681	.7936	H
	0130	0116	0103	V
45 m	.0502	.0454	.0407	E
	.2875	.4717	.6680	H
	0135	0123	0110	V
		ער איז	יין איז	4-9649994429859429

For a companison with the lattice $\vec{\beta} = 30 \text{ m}$ and $\vec{\eta} = 0.5 \text{ m}$ see RHiC-PG-10

Companison Letneen pro lattices 40. m 30. m 3-2 0.5 m 2. m γ_{E}^{-1} h^{-1} .0816 h-1 .0483 \mathcal{C}_{H}^{-1} .0669 .5681 γ_{V}^{-1} -.0147 - .0116

x= 100 $\sigma_{\overline{e}}/E = 1 \times 10^{-3}$ EN= 10 TT mm. mrad

Fold

-5-