

BNL-102270-2014-TECH RHIC/AP/166;BNL-102270-2013-IR

KEK MQX Field Error Analysis and Compensation

J. Wei

December 1998

Collider Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

KEK MQX Field Error Analysis & Compensation

J. Wei, V. Ptitsin, N. Gelfand, T. Sen

- * Introduction
- * Tracking Results
- * Compensation Schemes
- * Discussions

* Introduction

- KEK IR quads (MQXA) have significant systematic error b_{10}
- ullet Aside from b_{10} , KEK quads have similar errors as FNAL quads

Questions:

- * What is the impact of KEK quad field errors?
- * What compensation schemes can be used to minimize the impact?
- * How much corrector strengths are needed and are they achievable?

LHC IR Parameters at proton collision (7 TeV) (Version 5.1 from CERN SL/AP)

Betatron tunes (H/V)	63.31/59.32
Synchrotron tune	0.00212
Chromaticity (H/V)	2/2
β^* , IP1, 5, 2, 8 (H/V) [m]	$0.5/0.5, \ 0.5/0.5, \ 15/10, \ 13/15$
$\Phi/2$, IP1, 5, 2, 8 (H/V) [μ r]	0/150, 150/0, 0/-150, 0/-150
Parallel sept., IP2, 8 [mm]	(H) 0.75, 0.75
Parasitic sept., IP1, 5, 2, 8 $[\sigma_{xy}]$	> 7.3, 7.3, 17, 18
Quad gradient, $ G_0 $ [T/m]	200
Coil i.d., MQX/D1,2 [mm]	70/80
Length, Q1,3/Q2A,B/D1,2 [m]	6.3/5.5/9.45
Max. β [m]	4705
rms emittance, ϵ_N [m·r]	3.75×10^{-6}
rms momentum dev., σ_p	1.1×10^{-4}
Max. rms beam size, σ_{xy} [mm]	1.5
Max. orbit offset (H/V) [mm]	$\pm 7.3/\pm 7.3$

Reference MQXB (FNAL) errors at collision: (v 2.0; $R_0 = 17$ mm)

\overline{n}		Norma	1		Skew	
	$\langle b_n \rangle$	$d(b_n)$	$\sigma(b_n)$	$\langle a_n \rangle$	$d(a_n)$	$\sigma(a_n)$
Body	[unit]					
3	0.0	0.3	0.8	0.0	0.3	0.8
4	0.0	0.2	0.8	0.0	0.2	0.8
5	0.0	0.2	0.3	0.0	0.2	0.3
6	0.0	0.6	0.6	0.0	0.05	0.1
7	0.0	0.06	0.06	0.0	0.04	0.06
8	0.0	0.05	0.05	0.0	0.03	0.04
9	0.0	0.03	0.03	0.0	0.02	0.02
10	0.0	0.03	0.03	0.0	0.02	0.03
LE	$[\mathrm{unit}\cdot$	m	(Lengt	th=0.4	41 m)	
2	0.0	0.0	0.0	16.4	0.0	0.0
6	0.82	0.82	0.31	0.0	0.21	0.06
10	-0.08	0.08	0.04	0.0	0.04	0.04
RE	$[\mathrm{unit}\cdot$	m	(Leng	th=0.3	33 m)	
6	0.0	0.41	0.31	0.0	0.0	0.0
10	-0.08	0.08	0.04	0.0	0.0	0.0

Reference MQXA (KEK) errors at collision: (v 1.1; $R_0 = 17$ mm)

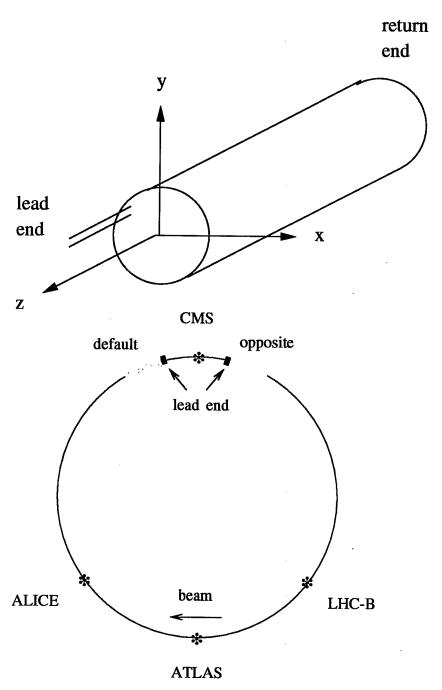
\overline{n}		Norma	1		Skew	**************************************
	$\langle b_n \rangle$	$d(b_n)$	$\sigma(b_n)$	$\langle a_n \rangle$	$d(a_n)$	$\sigma(a_n)$
Body	[unit]			-		
3	0.0	0.51	1.0	0.0	0.51	1.0
4	0.0	0.29	0.57	0.0	0.29	0.57
5	0.0	0.19	0.38	0.0	0.19	0.38
6	0.0	0.5	0.19	0.0	0.10	0.19
7	0.0	0.05	0.06	0.0	0.05	0.06
8	0.0	0.02	0.03	0.0	0.02	0.03
9	0.0	0.01	0.01	0.0	0.01	0.01
10	-1.0	0.1	0.01	0.0	0.01	0.01
LE	[unit·	m	(Leng	th = 0.4	5 m)	
2	0.0	0.0	0.0	13.4	0.0	0.0
6	2.28	0.0	0.0	0.07	0.0	0.0
10	-0.17	0.0	0.0	-0.02	0.0	0.0
RE	[unit·r	n				
6	0.0	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.0	0.0

Reference MQXA (KEK) errors at collision: (v 1.0; $R_0 = 17$ mm)

\overline{n}		Norma	,1		Skew	
	$\langle b_n \rangle$	$d(b_n)$	$\sigma(b_n)$	$\langle a_n \rangle$	$d(a_n)$	$\sigma(a_n)$
Body	[unit]		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
3	0.0	0.51	1.0	0.0	0.51	1.0
4	0.0	0.29	0.57	0.0	0.29	0.57
5	0.0	0.19	0.38	0.0	0.19	0.38
6	1.25	0.10	0.19	0.0	0.10	0.19
7	0.0	0.05	0.06	0.0	0.05	0.06
8	0.0	0.02	0.03	0.0	0.02	0.03
9	0.0	0.01	0.01	0.0	0.01	0.01
10	-0.89	0.01	0.01	0.0	0.01	0.01
${ m LE}$	[unit·	m]	(Leng	th=0.4	45 m)	
2	0.0	0.0	0.0	13.4	0.0	0.0
6	2.28	0.0	0.0	0.07	0.0	0.0
10	-0.17	0.0	0.0	-0.02	0.0	0.0
RE	$[ext{unit} \cdot$	m				
6	0.0	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.0	0.0

Reference MQXB (FNAL) errors at collision: (v 1.1; $R_0 = 17$ mm)

\overline{n}		Norma	ıl		Skew	
	$\langle b_n \rangle$	$d(b_n)$	$\sigma(b_n)$	$\langle a_n \rangle$	$d(a_n)$	$\sigma(a_n)$
Body	[unit]			<u>, </u>		
3	0.0	0.34	0.85	0.0	0.34	0.85
4	0.0	0.26	0.87	0.0	0.26	0.87
5	0.0	0.20	0.34	0.0	0.20	0.34
6	0.0	0.17	0.25	0.0	0.17	0.25
7	0.0	0.14	0.11	0.0	0.14	0.11
8	0.0	0.10	0.07	0.0	0.10	0.07
9	0.0	0.08	0.07	0.0	0.08	0.07
10	0.0	0.06	0.03	0.0	0.06	0.03
LE	[unit·1	m	(Leng	th = 0.4	1 m)	
2	0.0	0.0	0.0	16.0	0.0	0.0
6	2.3	0.0	0.0	0.07	0.0	0.0
10	-0.09	0.0	0.0	-0.03	0.0	0.0
RE	[unit·r	n]	(Lengt	th = 0.3	3 m)	
6	0.39	0.0	0.0	0.0	0.0	0.0
10	-0.07	0.0	0.0	0.0	0.0	0.0


Assumptions:

- Previous studies: FNAL v1.1 assumed for all four IPs
- "KEK case": KEK's at IP1 & 2; FNAL's at IP5 & 8
- LHC collision lattice version 5.1 with crossing angle
- magnetic error only; no beam-beam, no misalignment

Tracking conditions:

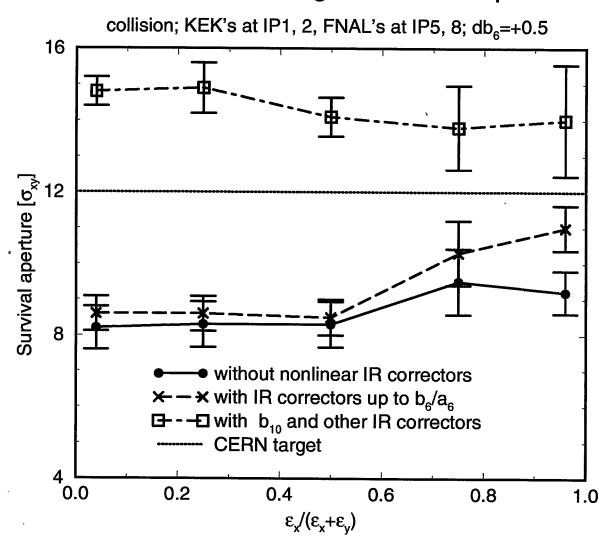
- 10 seeds & 100 seeds, 3σ cut on random errors; full positive or negative $d(b_n)$ & $d(a_n)$
- 5 initial x/y direction
- Refit to the nominal machine operating point $(Q_x = 63.31, Q_y = 59.32, \xi_x = \xi_y = 2)$
- Comparing with 10^3 -turn tracking, 10^5 -turn tracking further reduces mean and min. DA by about $0.5\sigma_{xy}$
- Physical aperture limitation: 60 mm for MQX
- multipole sign reversal according to magnet orientation
- ends separated, treated as lumped kicks
- ullet body divided into 8 pieces for eta variation

Multipole measurement conventions:

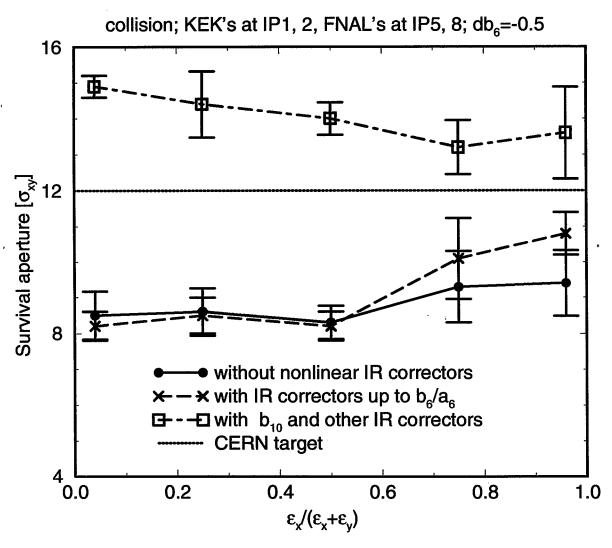
Multipole transformation for "opposite" orientation magnets:

quadrupole: $b_n => (-)^n$ b_n ; $a_n => (-)^{n+1}a_n$

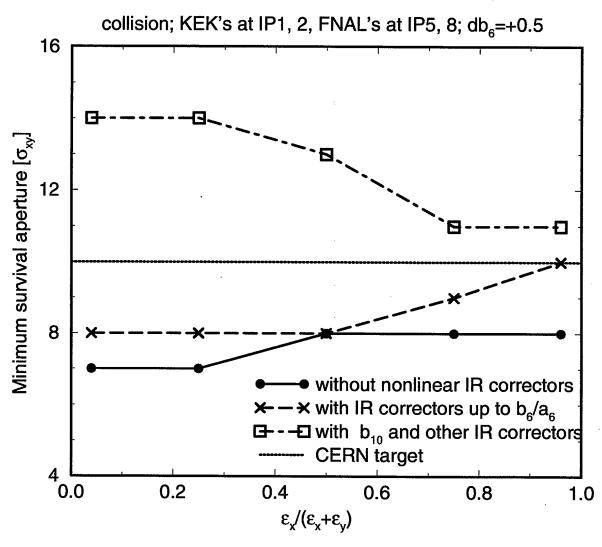
dipole: $b_n => (-)^{n+1} b_n; a_n => (-)^n a_n$

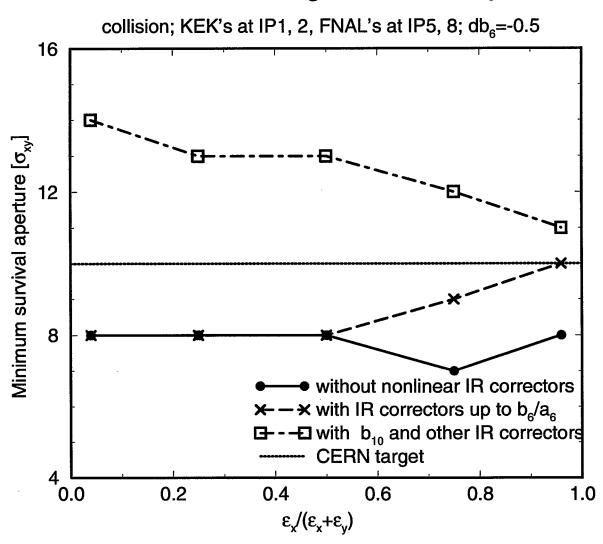

* Tracking Results

Effects of MQX field errors on dynamic aperture:


Case	$\begin{array}{c} \mathrm{DA} \; [\sigma_{xy}] \\ \mathrm{(mean \pm SD)} \end{array}$	Min. DA $[\sigma_{xy}]$
FNAL: $(10^3$ -turn)	10.7±1.7	8
KEK: v1.0 v1.0/1.1 without $b_6 \& b_{10}$ v1.1 v1.1 with b_{10} at half strength	7.9 ± 2.4 11.4 ± 2.2 8.7 ± 0.9 9.4 ± 1.7	5 8 7 7
CERN target: $(10^5$ -turn)	12	10

- KEK (10⁵-turn) v1.1: 8.2 \pm 0.9 σ_{xy} 6.5 σ_{xy}
- With either FNAL v1.0 or v2.0, the KEK error impact is the same


(Dynamic aperture mean & SD for $b_{6,sys} = 0.5$)


(Dynamic aperture mean & SD for $b_{6,sys} = -0.5$)

(Minimum dynamic aperture for $b_{6,sys} = 0.5$)

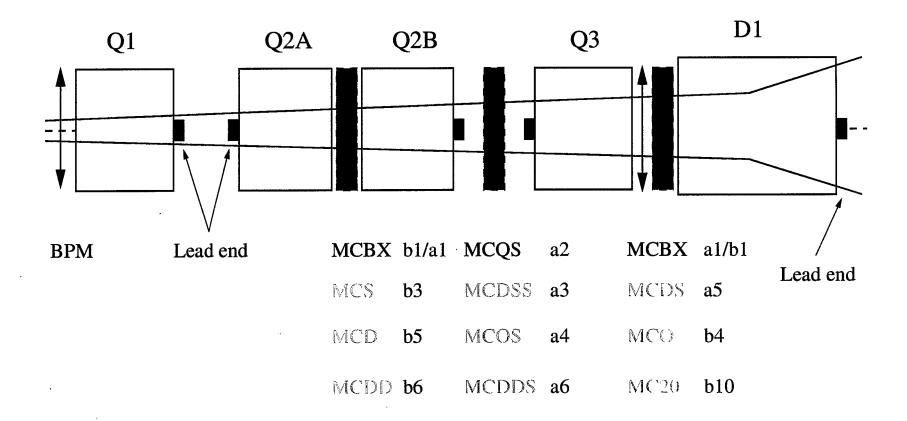
(Minimum dynamic aperture for $b_{6,sys} = -0.5$)

* Compensation Schemes

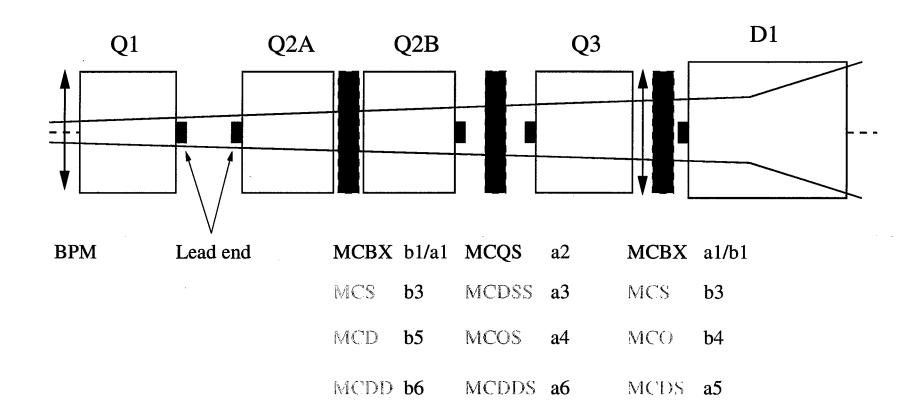
Figure of merit for IR local correction:

$$\int_{L} dl \beta_{z}^{n/2} B_{0} b_{n} + (-)^{n} \int_{R} dl \beta_{z}^{n/2} B_{0} b_{n}, \quad z = x, y \quad (1)$$

- to minimize both H and V kicks of the entire IP (two triplets)
- not to take into account the crossing-angle orbit offset
- works for both beams if the lattice is symmetric


* Magnet Orientation Optimization

- cancelling MQX lead-end b_6 among F and D quads
- benefit not significant for b_{10} due to high eta power dependence


* IR Correctors

- based on bench multipole measurements (assuming 5% rms error)
- limited by space and available strengths

towards the IP

towards the IP

Comparison of IR correction efficiency

(FNAL v1.1)

Case	$\overline{\mathrm{DA}\left(\sigma_{xy}\right)}$	Min. DA	$\Delta\nu_{max}\ (10^{-3})$	layers
0	10.7 ± 1.7	$8\sigma_{xy}$	1.9±1.1	0
1	10.7 ± 1.3	$9\sigma_{xy}$	2.1 ± 1.0	1
2	12.5 ± 1.9	$9\sigma_{xy}$	1.9 ± 1.5	1
3	13.3 ± 1.6	$10\sigma_{xy}$	1.0 ± 0.7	2
4	13.6 ± 1.5	$11\sigma_{xy}$	0.5 ± 0.3	3
5	14.1 ± 1.5	$11\sigma_{xy}$	0.5 ± 0.4	3

case 0: b_1, a_1, a_2

case 1: case 0 plus b_3 , a_3 , b_4

case 2: case 0 plus b_6 , b_6 , a_6

case 3: case 0 plus b_3 , b_4 , b_6 , a_3 , a_4 , a_6

case 4: case 0 plus b_3 , b_4 , b_5 , b_6 , b_6 , a_3 , a_4 , a_5 , a_6

case 5: case 0 plus b_3 , b_4 , b_5 , b_6 , b_{10} , a_3 , a_4 , a_5 , a_6

- nonlinear corrections are activated in IP1 and 5 only.
- assume 10% rms measurement error.
- for zero measurement error, add $\sim 0.5\sigma_{xy}$
- numbers of layers are for nonlinear multipoles $(n \ge 3)$

IR corrector strength used for compensation:

(FNAL v1.1)

order	Integrated	Field B_n at 17 mm	Field B_n at 17 mm
	$\operatorname{strength}$	$(\text{mean} \pm \text{SD})$	(mean + 6 SD)
	$[\mathrm{unit}{\cdot}\mathrm{m}]$	[T]	[T]
b_3	5.6 ± 4.5	0.0038 ± 0.0031	0.022
a_3	13.0 ± 10.5	0.0088 ± 0.0071	0.051
b_4	7.0 ± 4.1	0.0048 ± 0.0028	0.022
a_4	10.8 ± 8.3	0.0073 ± 0.0056	0.041
b_5	2.3 ± 2.0	0.0016 ± 0.0014	0.010
a_5	2.4 ± 2.3	0.0016 ± 0.0016	0.011
b_6	5.4 ± 1.9	0.0038 ± 0.0013	0.012
a_6	3.5 ± 3.1	0.0024 ± 0.0021	0.011
b_{10}	0.5 ± 0.3	0.00034 ± 0.00020	0.0015

Note:

- assume $L_m = 0.5$ m magnetic length
- bi-polar, individually powered

from A. Ijspert

Calculation takes account of 4.5 T from MCBX															
Program d:\excell\fields\nedesign:*** Design of a flested magnet At hipporty 100															
	Input parame		6		3		6		3		10	5	4		
Magnet type		n					3900000		88		6.3E+12	66000	2240		
Integrated gradient BI/R^(n-1)	Tm/m^(n-1)		4300000				37	40			37	41	43		
Coil inner radius	mm	R1	37	41.5			39.5				40.5	42.5	44.5		
Coil outer radius	mm	R2	41	43.5			2600				2600	2600	2600		
NoTi crit. current at 5T and 4.2 K	A/mm2	jc	2600				1.9	1.9			1.9	1.9	1.9		
Bath temperature	K	T	1.9	1.9	1.9 1.6	<u> </u>	1.6	1.6			1.6	1.6	1.6		
Copper/Supercond. ratio		r	1.6				0.6		 		0.6	0.6	0.6		
Filling fact.(*B/Bpeak evt.)		ff	0.6	0.6			0.6	0.4			0.4	0.4	0.4		
Working point load line		wp	0.4		0.4		25	25	1		25	25	25		
Nominal current	Α	1	25	25	25		25	25		-					
	Output parai	meter	s:		10100		4577.000	1559	1667		1547.306	1674.4	1670.4		
Current density NbTi	A/mm2	j	1464.39				1577.966	0.5692			0.588928	 	0.3806		
Field at R1	T	В	0.72929			<u></u>	0.537025	8893.8			4.53E+12		4786.5		
Gradient (B/R^n-1)	T/m^(n-1)	g	1.1E+07				7744371 200				200				
Iron inner radius	mm	R3	200				470				470				
Iron outer radius	mm	R4	470				503.5916				1390.252				
Magnetic length	mm	Lm	408.859				517.3727	494.48			1398.73				
Coll length	mm	Lc	423.164				70.28301	106.05			280.3578				
Magnetic energy	J	W	142.965								0.897145				
Inductance	Н	L	0.45749				0.224906				202.7507	202.62	264.77		
Number of turns/coil		N	367.855				242.9765			-	0.042008				
Wire cross-section (metal)	mm2	Α	0.04439	0.0402	0.0359		0.041192	0.0417	0.039	<u> </u>	0.042000	3.0000		-	

using dipole

for 92

@ 13 mm R.

IR corrector strength used for compensation:

(KEK v1.1)

order	Integrated	Field B_n at 17 mm	Field B_n at 17 mm
	$\operatorname{strength}$	$(\text{mean} \pm \text{SD})$	(mean + 6 SD)
	$[\mathrm{unit}{\cdot}\mathrm{m}]$	[T]	[T]
b_{10}	21 ± 2	0.014 ± 0.001	0.015

Note:

- assume $L_m = 0.5$ m magnetic length
- bi-polar, individually powered
- for $n \leq 6$, the FNAL (mean + 6 SD) value is adequate

Is this b_{10} strength achievable?

- According to A. Ijspert, in 3-layer (nonlinear) configuration all except b_{10} can be made
- ullet The b_{10} needed for KEK is 28 times achievable value

Comparison of IR correction efficiency

(KEK v1.1)

Case	$\mathrm{DA}\left(\sigma_{xy}\right)$	Min. DA	layers
0	8.7 ± 0.9	$7\sigma_{xy}$	0
1	9.4 ± 1.2	$8\sigma_{xy}$	3
2	14.3 ± 1.1	$11\sigma_{xy}$	3

case 0: b_1, a_1, a_2

case 1: case 0 plus b_3 , b_3 , b_4 , b_5 , b_6 , a_3 , a_4 , a_5 , a_6

case 2: case 0 plus b_3 , b_4 , b_5 , b_6 , b_{10} , a_3 , a_4 , a_5 , a_6

- nonlinear corrections are activated in IP1 and 5 only.
- assume 5% rms measurement error.
- numbers of layers are for nonlinear multipoles $(n \ge 3)$

* Discussions

- ullet Comparing with FNAL quads, KEK quad field error further reduces DA by about $2\sigma_{xy}$
- KEK field error gives DA (mean \pm SD: $8.2 \pm 0.9 \ \sigma_{xy}$; min. $6.5\sigma_{xy}$) about $4\sigma_{xy}$ lower than the CERN target (mean $12\sigma_{xy}$, min. $10\sigma_{xy}$)
- Leading impact is from b_{10} ; secondly from b_6
- Local corrections using multipoles not higher than b_6/a_6 gives limited improvement ($\sim 1\sigma_{xy}$); b_{10} correctors are needed to meet the target
- Local corrections with b_{10} can meet the target; needed b_{10} strength is 0.015 [T] at 17 [mm] (L=0.5 [m]), or integrated gradient BL/R^9 at 6.3×10^{13} [T/m⁸] 28 times achievable value in a 3-layer (nonlinear) configuration
- \bullet Global map/resonance correction may improve situation in the absence of b_{10} correctors, but the operation is likely to be challenging and less robust in practice