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1 Introduction

Three goals are important when attempting to accurately diagnose nonlinear
motion in a storage ring. First, it is necessary to move the beam out to the
large amplitudes of interest — many times the natural beam size. Second, it is
necessary to generate a strong and long lasting signal which is readily captured
and analyzed. Third, it is highly desirable for the measurement technique to be
non-destructive — especially, but not only, in hadron storage rings.

The common conventional technique is to use a strong single turn kick to
move the beam out to large amplitudes, and then to record turn—by—turn signals
on multiple beam position monitors [1-9]. In hadron and electron storage rings
alike, this has the significant disadvantage that the finite tune spread causes
the beam to filament in transverse phase space. The strong center of charge
beam signal “decoheres” on a time scale that is often less than 100 turns. Fil-
amentation also permanently destroys the emittance of the beam in a hadron
ring, making it necessary to re-inject beam before another measurement can be
made, or before the beams can be brought into collision. Hence, the “strong
single turn kick” technique successfully achieves only one out of the three goals.

AC dipole techniques promise to achieve all three goals. Adiabatically ex-
cited AC dipoles coherently move the beam out to large amplitudes. Once there,
the strong signals detected by the beam position monitors last arbitrarily long
(in principle) — much longer than 100 turns — since the beam does not decohere.
The beam returns to its original emittance if the AC dipoles are also turned off
adiabatically, ready for another measurement, or ready for use in collisions.

The AGS has already had significant operating experience with a so called
RF dipole, which has successfully enabled beams of polarized protons to accel-
erate through depolarizing resonances with minimal polarization loss [10, 11].
It accomplishes this by adiabatically exciting a coherent vertical betatron os-
cillation that is much larger than the size of the beam, at a drive tune that is
close to the natural betatron tune. The AGS RF dipole is adiabatically turned



close to the natural betatron tune. The AGS RF dipole is adiabatically turned
off when the resonance has been successfully negotiated, with no significant net
emittance growth.

Learning from the AGS RF dipole experience, similar AC dipoles will be
installed in RHIC —in the horizontal and vertical planes of both Blue and Yellow
rings. This paper describes the beam dynamics theory of their anticipated use
in nonlinear diagnostics measurements. The RHIC AC dipoles will also be used
in other roles. They will be used to flip the spin of all the bunches in one ring
during polarized proton operations. They will also be used at low excitation
levels to measure linear optical functions by simultaneously recording turn—by—
turn data in all beam position monitors [12].

This paper is organized as follows. First, the exact general solution to linear
motion in the presence of an AC dipole is found, in a phasor description. Par-
ticular cases of interest are introduced. Second, an approximate Hamiltonian
description of shear motion — linear motion plus amplitude detuning — is derived
in the presence of an AC dipole. Third, nonlinear motion is discussed in a more
general 2-D Hamiltonian formalism that does not include fully resonant motion.

Nonlinear diagnostics are most effectively performed using a strong adiabatic
drive technique, as introduced above. The recorded time series is expected to be
very long — perhaps 10,000 turns or more in practice. Fourier analysis of such a
long time series generates easily resolved narrow peaks which stand high above
the background noise level. This technique, the method of choice in RHIC, is
discussed in detail.

In storage rings with the highest rigidities — much larger than those in RHIC
— it might not be practical to build AC dipoles strong enough to move the beam
out to large enough amplitudes. In this case a hybrid technique is viable, with
both a strong one turn kick and a weak AC dipole simultaneously active. This
technique is briefly discussed.

2 Linear motion with an AC dipole

With the AC dipole turned off, the one turn 1-D motion (horizontal, say) at a
reference point is written

()., =(=<2)(5) W

where ¢ = cos (27Qx), s = sin (2nQx), and @x is the betatron tune. The
normalized coordinates z and &’ both have the dimensions of length. They are
related to the physical coordinates x, and x;, (which have the dimensions of
length and angle) through

(5).-(30)(2)



where o and § are Twiss functions at the reference point. They are related to
the normalized amplitude and phase a and ¢ through the equations

z = a sin(¢) (3)
' = a cos(¢)

as sketched in Fig. 1.
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Figure 1: Normalized coordinate convention, and the effect of a dipole kick.

Horizontal motion is more concisely described using phasor notation to rep-
resent the normalized coordinates

z = ' +ic = ae'? (4)
since then the one turn motion is just
zi41 = Rz (5)

where R = exp(i27Qx). If the reference point is placed as shown in Fig. 2,
then the normalized angle that the AC dipole adds at the beginning of turn ¢
is represented as a real phasor increment

Az = Az’ = & cos(2nQpt + o) (6)
_ ‘E[ei(zmmwo) + emilemapttvo)]
2

where (Jp is the drive tune and g is the initial phase. The normalized strength

of the AC dipole is
BL
= —3 7
(Bp) " ®

where BL is the integrated field amplitude, (Bp) is the rigidity, and Sp is the
Twiss function at the dipole.
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Figure 2: A simple storage ring with a reference point just before the AC dipole.

2.1 Exact solution of the equation of motion

If 2 = 2y just before the first dipole kick, followed by kicks on turns ¢ =
0,1,...7 — 1, then the net displacement phasor on turn 7 is

zr = RT29 + (RTAz + RT'Az + -+ + R'Azr_y) (8)
which is expanded by substitution from Eqn. 6 to become
T 7 de’o ~1 1 —(T-1) 471
zr = R'zy + R [l-I-R d+.--+R d ] (9)

+ }ﬂ% 14+ R 4... 4 R~T-1g-(T-1)

where d = ¢#2™@2 . The two sums inside the square brackets of Eqn. 9 are of the
general form
S =14p+pP+...+p't (10)

with

ei27rQ,, (11)
ei27(Qo—Qx) o —i27(QD+Qx)

3
Il

This allows the use of the identity
T _ —irQ
p 1 e ’ i27Q,T
frued = L4 - ]. 12
> p—-1 2 sin(7@)) (e ) (12)

to give the exact general solution for the linear motion

7 6 e"ir(@p=Qx)=do]
4 sm(r(@5 =)
T g ei[W(QD+Qx)—¢o] (
4 sin(m(Q@p + @x))

2 = RTZD 4 (6172”(QD—QX)T _ 1)

e~ 2m(Qo+Qx)T _ 1)
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This expression is simplified by introducing two complex AC dipole strengths

s _ b ew(=ilr@ — )

4 sin(r@-) (1)
5. = 9 exp(i[rQy — o))
+ 4 sin(7Q+)
to hide the resonance denominators containing the two beating tunes
Q- = @b — Qx (14)
Q+ = @p + Qx
so that the exact general solution for linear motion becomes
zr = RT[29 — 6 (1—¢€m9-T) 4 6, (1—¢279:+T)] (15)
This becomes even more concise when it is written
2 = RT [/Z\ + 5_ eiZﬂ'Q-T = 5+ e—i27rQ.|.T] (16)

— gez’Z'/rQXT + §_ 6i27rQDT _ 5+ e—i27rQDT

where Z = zy — 6_ + 64 is a constant given by the initial conditions. The
behavior of this system becomes more clear when cases of particular interest
are considered.

2.2 The oscillating closed orbit

In the absence of an AC dipole, the closed orbit is defined as that orbit which
exactly repeats itself after one accelerator turn. This static definition is usefully
extended to include an AC dipole by introducing an oscillating closed orbit,
defined as that orbit which exactly repeats itself after one modulation period.
The solution is trivially found by putting z = 0, so that

Zco = S eiZwQDT _ (5.*_ e——i27rQDT (17)
since QpT increases by 1 in one modulation period.

Thus the oscillating closed orbit follows an ellipse parameterized by the
angle 27@QpT in normalized phase space. In general the ellipse is tilted, since
d_ and d¢ are complex. The lengths of the semi-minor and semi-major axes are
[16=| — [6+]| and |6—| 4+ |64+], so that the aspect ratio of the ellipse is

|01+ 16+

b = — 18
00 = TECI= el (18)

In practice (see below) this ratio is often close to 1.



2.3 The rotating frame - dipole tune near the betatron
tune

The response to an AC dipole is strongest when it is driven at a tune close to
the fractional betatron tune. In this case sin(rQ_) ~ 0, so that |[6_| > [§4], in
which case the equation of motion is

2 RT[7 + §_ ¢'27Q-T] (19)

~
S 26i27erT e 5_ €i27rQDT

This motion is the superposition of two rotating phasors of fixed length |Z| and
[0_|, the first advancing by 27rQx per turn, and the second by 27Qp per turn.

It is sometimes more useful to picture the motion in a frame that rotates
with the AC dipole drive, at 2r@p per accelerator turn. Motion in the rotating
frame (denoted by over-bars) is simply

Zr = 6_ +2e727Q-T (20)

so that a test particle slowly circulates the vector 6_, with a displacement vector
of constant length | Z|.

2.4 Adiabatic drive

What happens if the strength of the AC dipole §_ is slowly ramped from zero
to a constant value? Before the dipole is turned on Zz represents the initial
conditions of the test particle. If it is a typical member of a bunch with an
unnormalized root mean square emittance ¢,, then

2] ~ VBeu (21)

This length remains unchanged if the AC dipole is turned on slowly enough, as
illustrated in Fig. 3, so that Eqn. 20 continues to apply

S SR>

Figure 3: Sketches of the adiabatic excitation of an AC dipole, in the rotating
frame. The circles represent the beam, which maintains a constant emittance
as 6_ (the dipole excitation) increases.
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Figure 4: The amplitude of the center of charge of the coherent betatron re-
sponse to the vertical AGS RF dipole, versus the difference between the dipole
tune and the betatron tune.

Zr = 6_(t) +7e QT (22)

even when d_ (t) is an explicit function of time. .
When attention turns from the behavior of a single particle to the behavior
of a bunch, a distribution of Z values must be taken into account. Particles
with different values of Z simply circulate the same vector .., advancing around
the circles in Fig. 3 at a rate of —27Q).. radians per turn. Since the beam

distribution is smoothly distributed around all phases {5 of 7, then

@ =0 (23)
@) = 9B,

where angle brackets () represent a bunch average. The vector average of 7 is
zero, so the motion of the center of charge is just

(z7) = &_ ¢'?"@rT (24)

In other words, the response of a bunch to an adiabatically driven AC dipole is
coherent, with an amplitude that is a constant of the motion
1 ) ’

v =1 e

2 (25)




This confirms that maximum response is attained from an AC dipole of limited
strength by setting ¢)_ as close as possible to zero.

2.5 AGS experience

Figure 4 shows measurements of the coherent betatron response of beam in
the AGS as a function of Q_ = Qp — Qv, the difference between the tune of
the vertical dipole and the betatron tune [10]. The solid line is the prediction
for this response given by Eqn. 25, in the absence of nonlinear detuning with
betatron amplitude. Figure 5 shows beam profile measurements taken during
an adiabatic excitation and de-excitation of the AGS RF dipole [10]. Tt shows
no significant emittance growth, despite maximum amplitudes of 2 or 3 beam
sigmas.

In general a bunch has a spread in @ x values due to tune shift with momen-
tum (chromaticity), and also due to nonlinear detuning. The spread in @x has
the trivial affect of modifying the rate of advance around the d_ vector, but it

“‘A‘A'Am&@“&“x‘

ii,he “
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Figure b: lonization monitor beam profiles taken during adiabatic excitation
and de-excitation of the AGS RF dipole, showing no net emittance growth.



also has the less trivial effect of modifying d_, which is a function of Q.. (see
Eqn. 13). This is not a problem in practice if Qp is sufficiently far outside the
bunch tune spectrum.

2.6 Required AC dipole strength

Often it is useful to measure the size of the adiabatic amplitude in units of o,
the root mean square beam size. Putting all the factors together gives

ar _ BL 1 678D By
o = By o VT e (26)

where € is the normalized (67) emittance. Note that (Bp) is proportional to
the relativistic factor fv, so that the amplitude measured in units of the beam
size decreases with the square root of the rigidity, for a given ion species at a
constant emittance.

This equation may be inverted to calculate the integrated field amplitude
required in the AC dipole. For example, if an adiabatic amplitude of a7 = 100
is desired in RHIC at its maximum rigidity of (Bp) = 839.5 [Tm)], using an AC
dipole with |@~| = 0.01 at a location where 8p = 10 [m], then

€

6w Gy

Gold ions have vy = 108.39 at this rigidity. If they also have an emittance of
€ = 407 x 107% [m), then an integrated field amplitude of BL = 0.0827 [Tm]
is required. Similarly, an integrated field amplitude of BL = 0.0372 [Tm] is
required for protons with Sy = 268.23 and ¢ = 207 x 1078 [m].

BL = 333.6

[Tm)] (27

2.7 Strong single turn kick with a weak AC dipole

Now consider what happens when conditions change very non-adiabatically. For
example, suppose that the AC dipole is not strong enough to move the beam out
to the large amplitudes of interest without the assistance of a strong single turn
kick. In this scenario a kicker is fired during a period in which the AC dipole is
maintained at a constant low level of excitation. Just after the transient

() = Zrier > 0 (28)
(% Zhick + 2Peu
as sketched in Fig. 6. The beam occupies only a narrow range of z?)\ immediately

after the kick, and rotates as a whole around the J_. vector, just as in the
adiabatic case. Because of the distribution in @ x, the beam eventually filaments



to become uniformly spread in 1Z ,in a “hollow” beam that has a greatly increased
emittance. Eventually

@ =0 (29)

2
eu(final) = e, (initial) + Zhick
2
The center of charge signal that is observed on beam position monitors decoheres
with a characteristic time (in turns) of one over the tune spread. Typically this
is of order 100 turns.

Even if the time that a coherent signal can be observed is short, the turn-by-
turn normalized betatron amplitude is a physical observable of great practical
interest. The amplitude of a single particle is independent of the frame in which
it is measured

ar = |zr| = |Zr| (30)
N 0. +FemR-T

Assuming this equation to be exact, it is readily shown that in general
ah = |22+ |62 + 2|Z(|6- | cos(2nQ_T+ o — % —nQ_)  (31)

In the particular case at hand, taking Z == zp;.1 to represent a nominal particle
at the center of the bunch, then the turn-by—turn amplitude observed on the
beam position monitors is

o~

ar N lzo] + [0 | cos(2mQ-T + %o — ¢ — 7Q-) (32)

in the initial period before decoherence becomes significant.

)
)

Figure 6: Sketches of the sudden excitation by a one turn kick, plus a constant
AC dipole excitation, in the rotating frame. The beam has only a narrow range
of ¢ immediately after the kick (middle). Eventually the beam filaments around
the large circles, to acquire a much larger emittance (right).
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A Discrete Fourier Transform of the turn-by—turn amplitude shows a peak
at a tune Qprr = (-, in addition to any intrinsic peaks that are present due
to accelerator nonlinearities. Intrinsic nonlinear peaks appear at aliased values
given by

Qorr = [kQx +1Qy — m] ' (33)

where it is always possible to find an integer m such that 0 < Qprr < 0.5,
for a given (k,!) pair of integers. The peak is wide when decoherence is strong,
since the width is inversely proportional to the decoherence time. If the AC
dipole peak at Qprr = - overlaps with an intrinsic peak, the two peaks
interfere. Total destructive interference may be achieved by adjusting the tune,
strength, and phase of the AC dipole. Thus, the single particle parameters
which underly an intrinsic peak may be measured using an AC dipole, in a
null measurement technique that works in the presence of strong decoherence.
Despite its robustness, this is unfortunately a time consuming and destructive
technique.

3 Shear motion with an AC dipole

The betatron amplitude and phase are modified when the beam receives a dipole
kick. Assuming that Az’ is small compared to a, the modifications are

Aa = Az’ cos(¢) (34)
A = == sin(9)

as Hlustrated in Fig. 1. It is natural to convert to action-angle coordinates (J, ¢)
in a Hamiltonian description. If Aa is small the action kick is

ala

AJ = 35
% (35)
since the action is given by
- 12 (30
"~ 2fp

Note that the displacement z, the normalized angle ', the AC dipole strength
d, the action J, and the amplitude ¢ all have the dimensions of length.

When the motion around the rest of the ring is included, the total one turn
difference equation of motion becomes

AJ = S 2J cos(27@pt) cos(¢) (37)

1

-3
2

Ay = — cos(2mQpt) sin(¢) + 2m(Qxo + aJ)

11



where the explicit time structure of the dipole kick is included from Eqn. 6, and
where it is conveniently assumed that ¢y = 0. This motion includes a simple
detuning term proportional to «, since (if § = 0)

Qx(J) = %—? = Qxo+aJ (38)
where angle brackets () represent an average over many turns. Detuning that is
linear in J is typical of the leading order dependence in real storage rings, usually
due to the strong sextupoles that are used for chromaticity correction. Although
these sextupoles do not cause any detuning to first order in their strength — in
first order perturbation theory — they do to second order. The coefficient o is
usually proportional to the square of the strength of the chromaticity correction
sextupoles.

A one turn discrete Hamiltonian Hy is now invoked to more concisely de-
scribe the motion from one turn to the next, through

AJ _ —0H,/0¢
( Ad > = ( OH, /0] (39)
Since H, represents a discrete map, and not continuous motion, it is not (nec-

essarily) even approximately a constant of the motion. In the case at hand the
one turn Hamiltonian is

Hy = 2n(@xo) + 5% ~ % J? cos(2nQpt) sin(d)  (40)

Although it offers a concise description, this one turn Hamiltonian is limited in
its usefulness by the fact that it is explicitly time dependent.

3.1 Transformation to the rotating frame

An approximately time independent Hamiltonian is found by applying the canon-
ical transformation represented by the generating function

W(J,$,t) = J¢p — 21QptT (41)
é
The new action-angle coordinates and the new Hamiltonian (with over-bars)

are related to the old ones through

J = 0wW/d¢ (42)
¢ = OW/8T
H, = Hy + 0wW/ot

In the particular case of the generating function in Eqn. 41, this leads to the
transformed quantities

12



J J (43)
¢ = ¢ — 2nQpt
— V26 — L=
H = ( T -Q_J)— v T cos(27rQDt) sin(¢ + 27Qp t)
T
The net motion in one turn is now small if Q- = @Qp — Qx ~ 0 (and if § is still

assumed to be small).
Since the one turn motion is relatively small, it is legitimate to replace the
trigonometric term in the expression for Hj by its average over many turns

(cos(2nQp t) sin(¢ + 27Qp t)) N sm( ) (44)

The one turn discrete Hamiltonian finally become time independent

BT, = (37 -.7) - \/;%7”

and is a good approximation to a constant of the motion. It represents motion
in a frame which rotates with the AC dipole kick, at an angular speed of 27 Qp
per turn relative to the physical (z, ') plane.

* sin() (45)

3.2 Fixed points of the motion

A fixed point (Jpp,¢pp) of this motion satisfies the equations

(33)=("am15e)=(3) (46)

The first of these equations is

\/QL% 711.5‘/132 cos(ppp) = 0 (47)
with the simple solution
brp = ﬂ:g (48)
After substitution using Eqn. 48, the second fixed point equation becomes
2r(aJrp —Q-) F 0 _i =0 (49)
2V2Pp Ty

where the F sign corresponds to the & sign in Eqn. 48.
In general when detuning is present, « # 0, Eqn. 49 is cubic in 711;;/;, with
one or three roots. Depending on the strength of the detuning, there is either

13



one stable fixed point or one unstable and two stable fixed points [10, 11]. In
the simplest case when detuning is absent, o = 0, the action of the fixed point
is given by

—1/2 1 é
J = 50
P I3t Qo - Gxo (50)
and the betatron amplitude is
1 )
a e | —— 51
™ ir Qo — o (51)

in agreement with Eqn. 25 in the limit when @Qp — @xo is small. Phasor and
Hamiltonian descriptions give equivalent results!

3.3 A simple numerical example - part 1

Figure 7 illustrates the appearance of a fixed point in (e, ¢) phase space, using
a very simple numerical model in which detuning is driven by three octupoles
which are spaced 60 degrees apart in phase [7, 13]. This spacing minimizes their
resonance driving effect, resulting in very smooth shear motion when the AC
dipole is turned off. A fixed point appears when the AC dipole is turned on,
with its center at about a &~ 0.66 (arbitrary units). The dipole tune @p =
59/101 ~ 0.584, so the natural Poincare surface of section in the bottom plot
is one modulation period of 101 turns. This tune was chosen to be out of the
natural tune range, from approximately 0.591 to 0.609, which straddles the
@z = 3/5 resonance. The stage is set for a single decapole to be added to the
numerical model, to drive this resonance and to create ripples in the fabric of
the shear motion.

Motion near a nonlinear fixed point is often characterized by the island tune
@1 of small oscillations around the fixed point. This quantity is usually calcu-
lated by expanding the Hamiltonian around the fixed point, and linearizing the
motion to appear as simple harmonic motion. This procedure is not necessary
in the linear case of the AC dipole with no detuning, since the phasor framework
provides an exact description. Equation 20 shows that the island tune is just

Qr = Qxo—-Qp = —Q- (52)

However, the phasor description is incapable of handling even the mildest non-
linearity, such as shear motion. Although the Hamiltonian approach is only
exact in trivial cases, it is unrivaled when used to describe general nonlinear
motion, as below.

14
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Figure 7: Fixed point due to an AC dipole in the presence of detuning. The
TOP figure shows smooth shear motion with the AC dipole off, as the free tune
shifts from 0.591 at zero amplitude to 0.609 at the maximum amplitude. The
BOTTOM figure shows the fixed point generated by turning the AC dipole on,
at a tune of @p = 59/101 ~ 0.584.
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4 Nonlinear motion in 2-D

Nonlinear dynamics experiments often record the turn—by—turn time series
(@1, ®2,y1,y2): observed at 2 horizontal and 2 vertical planes of neighboring
beam position monitors. In a Hamiltonian framework it is natural to discuss
the action-angle time series (Jy, ¢z, J5, @) at a single reference point in the
ring. In practice it is usually easy to construct the action-angle time series
from the time series data, by empirically adjusting the ratio of the 8 functions
at the two beam position monitors in each plane, and by adjusting the phase
advance between them [1, 3, 6, 7]. This calibration adjustment compensates for
inevitable linear optics errors. It also corrects for the linear elliptical motion
of the oscillating closed orbit, when coherent motion driven by an AC dipole is
being observed.

4.1 Distortion surfaces

In the general case of 2-D nonlinear motion the form of the one turn discrete
Hamiltonian is

H = 2nQxoJy + ZFQyon (53)
+ Y Vi Ji2 T sin(kgs + 1y + diju)
ijkl
where the appropriate set of indices (ij%!) depends on the dominant nonlinear-
ities [2]. For example, if sextupoles are being considered to first order then
(¢jkl) = (3030,3010, 1210,1212,121-2) (54)

Only in the simplest of models can V;;i; and ¢;;5 be predicted analytically —
for a realistic storage ring a detailed numerical simulation is required.

One way to represent the motion is through the distortion surfaces Jy(¢z, ¢y)
and Jy (¢, ¢y) that the motion follows in (¢5, ¢y) space. Good approximations
to these surfaces are found by substituting first order solutions for ¢,(¢) and
$y(t) into the equations

_0H,

Jo(do(t+1),0y(t+1)) — Ju(da(t), ¢y(t)) = %, (55)
OH
Jy(a(t +1),8y(t + 1)) — Jy(ds(2), ¢y(t)) = _WJ
Natural first order solutions to the motion are

¢=(t) = ¢z0 + 27Qxt (56)
by(t) = dyo + 27Qvi
Jw(t) = Jro
Jy(t) = Jyo

16



When Eqn. 56 is substituted into Eqn. 55, the horizontal distortion surface
becomes

_ k Vgt ija /2
f]:c(¢a:; ¢y) — J:cO e 2Sin[7f'le] Jzo ‘]yO (57)

x  sin(kdy + oy + ¢ijp — TQpi)

A similar expression for the vertical surface Jy(¢s, ¢y) is obtained by replacing
kVijrr with I Vijg. A single term in the sum dominates the distortions if the
harmonic tune

Gri = kQx +1Qy (58)

approaches an integer for some (k,!) pair — if the lattice is close to a nonlinear
resonance.

4.2 A simple numerical example - part 2

What do Qx, @y, Jzo and Jyp represent in Eqns. 56 and 577 In the simplest
analysis @x = Qxo, the tune of small amplitude motion. Alternatively, detun-
ing is approximately taken into account by using

Qx = Qxo+ % i WjooJég_z)/széz sin(ijo0) (59)
i

although this becomes incorrect in the vicinity of resonances. Similarly, Jyo

and Jyo may be taken to represent average actions in the case of single particle

motion.

This is appropriate for the top set of horizontal distortion surfaces shown in
Fig. 8, which illustrates what happens in 1-D when a single decapole is added
to the shear motion previously shown at the top of Fig. 7. A string of resonance
islands appears at an amplitude of agps = 1.4, while the nearby surfaces suffer
a fifth harmonic distortion. The Vig50 term dominates [2].

It is of great interest to consider coherent motion driven by AC dipoles. In
this case

@x = @bpx (60)
Ry = Qpy
Jeo = Jurp
Jyo = JyFp

so that Qx,Qy, Joo and Jyo represent the tunes and actions of simultaneous
horizontal and vertical fixed points. Equation 57 then becomes the nonlinear
analog of the linear Eqn. 17 for the oscillating closed orbit. It describes, for
example, the distortion surface followed in the turn—by—turn motion of the fixed

17
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Figure 8: Motion near a decapole driven resonance, with an AC dipole and
detuning. The TOP figure shows resonances islands with Q, = 3/5 at args ~
1.4, when the AC dipole is off. The BOTTOM figure shows large scale stability
around the fixed point when the AC dipole is turned on.
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point shown in the bottom phase space portrait of Fig. 8. This corresponds to
the bottom of Fig. 7, but now with the decapole turned on as well as the AC
dipole. Here again the Poincare surface of section is one modulation period of
101 turns. The phase space regions where the resonance islands used to be are
now chaotic (but stable). Nonetheless, there is still large scale stability around
the fixed point where an adiabatically driven coherent beam would reside.

4.3 Diagnosis of action time series

The action time series J(t) and Jy(¢) are directly accessible through beam
position monitor turn-by-turn measurements. Approximate solutions for the
time series are found by substituting ¢.(t) and ¢, (¢) from Eqn. 56 into the the
right hand side of Eqn. 57, to give

_ k Vijki 1/2
Jx(t) = Jgo L QSin[ﬂ'le] Jz0 s1n(27erlt + ¢0mkl) (61)

where a similar expression for Jy(t) is again obtained by replacing k V;;z with
I Vijni. The horizontal time series is conveniently rewritien as a sum over a
series of harmonics Q, each labeled by a (k,[) pair

Jo(t) = Jgo + Imz Dyjy €1279m ¢ (62)
Kl

where the horizontal action harmonic coefficients are given by

Da:kl(J:z:O, JyO) Vz]kl JJ/z 1P0isk1 (63)

2 sm[ﬂ'le Z

Similar expressions hold for Dy, the vertical coefficients. Action harmonic
coefficients are readily derived from a single data set — a pair of horizontal and
vertical time series — by performing two Discrete Fourier Transforms.

Each action harmonic coefficient is a binomial vector sum over i and j that
depends explicitly on the particular values of Jzo and Jyo used in acquiring the
data. For example, if the vertical AC dipole is turned off then Jyo = 0, so that
only V;jr terms with j = 0 continue to contribute. If multiple data sets are
taken on a grid of (Jzo, Jyo) values, and are Fourier analyzed to produce a mesh
of coefficients Dy and Dyg;, then it is possible to recover a complete set of
individual Hamiltonian coefficients — V;jx; and ;51 values.

4.4 A simple numerical example - part 3

Depending on the interpretation of the four quantities Qx, Qy, Jzo and Jyo in
Eqn. 56, this formalism can apply to turn-by—turn data generated by a single
particle simulation with no AC dipole, or to measurement data generated by a
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real coherent beam driven to a large amplitude by an AC dipole. The Discrete
Fourier Transform results are expected to be similar, provided that the four
quantities Qx,Qy, Jzo and Jyo are similar. Of course, the four quantities can
not be completely identical, since the AC dipole tune @p can never be exactly
the same as the betatron tune.

Figure 9 compares three Discrete Fourier Transforms of 2048 turns of turn—
by—turn data generated by the numerical simulation. In all three cases a single
particle is launched with phase space coordinates corresponding to the center
of the AC dipole fixed point shown in Fig. 8. In the first case only the detuning
octupoles are turned on, corresponding to the top phase space portrait in Fig. 7.

10- T T T T
---- Octupoles only
3 5 — Octupoles & decapole
5 10° - — — - Coherent signal (ACD)
B 3
£ '
£ 10 {
S |
5 . |
:16, 10 'II
2
= -6
(o
2 10
©
m
o 197
. 10‘8 1 : 1 : ! ..A"',‘ I
0.0 0.1 0.2 0.3 0.4 0.5

Discrete Fourier Transform tune, Q.

Figure 9: Discrete Fourier Transforms of the horizontal action of a test particle
in a numerical simulation. Weak harmonics are seen at ¥ = 4 and k = 6 when
only octupoles are turned on (short dashed line). Strong harmonics at & = 5
and k = 3 are driven when a decapole is added (solid line). The peaks are
shifted when the test particle is launched at the stable fixed point created by
turning on an AC dipole at a tune of @p = 59/101 ~ 0.584 (long dashed line).

20



Although the octupoles have been arranged to minimize phase space distortions,
weak action harmonics are visible at & = 4 and k = 6. In the second case the
decapole is turned on, corresponding to the top portrait in Fig. 8. Much stronger
action harmonics are now visible, primarily as expected at k¥ = 5, but also at
k = 3, while the k = 4 and % = 6 octupole resonances are still visible. The free
tune is Qx = 0.5932 in both of these cases.

In the third case the AC dipole is turned on at its nominal tune of Qp =
59/101 = 0.5842, a distance AQ) = 0.009 away from the free tune. The locations
of the peaks shift accordingly. For example, the aliased value of the k = 5
harmonic moves from Qppr = 0.0342 to Qprr = 0.0792, a factor of 2.32
further away from the origin. Equation 63 predicts that the height of the peak
will decrease by almost the same factor, if the Vjji terms are the same in
both cases. In fact the height decreases by a factor of 2.27. This preliminarily
confirms that results obtained from a coherent beam driven by an AC dipole
can be used to directly infer single particle Hamiltonian coefficients.

Harmonic  single coherent
particle (AC dipole)

k alias alias

1 0.4068 0.4158
2 0.1863 0.1683
3 0.2205 0.2475
4 0.3726 0.3366
5 0.0342 0.0792
6 0.4410 0.4950

Table 1: Aliased harmonics visible in the Discrete Fourier Transforms of a
single particle and of a simulated coherent signal driven by an AC dipole. The
unaliased single particle tune is @x = 0.5932, and the unaliased AC dipole tune
is @p = 59/101 ~ 0.5842.

4.5 Smear

The number of V;;x; terms is many, and amplitudes a, = /20, J, are often more
appealing than actions. Sometimes it is convenient to summarize the turn—-by—
turn data by three smear statistics, which are the standard deviations of the
amplitudes, scaled to become dimensionless [2]. The horizontal smear sz, is
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given by
2 _ {(asas)
8 = ——F~—-1 64
= = Ta)as) (64
.2 172
= S E sy
om 23 sin?my] 0 Y

the vertical smear by

aya
g, = o (65
2 172
Y sin”[wuy]
and the correlation smear by
asa
= (69
.7 172
- Y
ikl ki

where it is assumed that §; = f, = 1. There is excellent agreement between
predicted and measured smears in controlled experiments with a small number
of dominant nonlinearities [3, 4].

5 Summary and Conclusions

AC dipoles are potentially very useful in diagnosing nonlinear motion in storage
rings like RHIC. The strong adiabatic drive method is much preferred if strong
enough AC dipoles are available, because it generates clean coherent signals -
that do not decohere. It is also a non-destructive method which does not lead
to emittance growth, and which therefore enables a rapid operational loop of
beam based measurement and correction. Horizontal and vertical AC dipoles
will be installed in a region of RHIC that is common to both Blue and Yellow
rings.

If necessary — if strong enough AC dipoles are not available — then a hybrid
method using a one turn kicker with a weak AC dipole is also viable. This has
the disadvantage of being a destructive technique that leads to filamentation
and emittance growth, requiring beam to be re-injected before another mea-
surement, or before attaining reasonable collision conditions. However, it is a
null measurement technique that is robust in the presence of rapid decoherence.

If the Hamiltonian coefficients can be measured using AC dipoles, then they
can also be reduced by the judicious use of nonlinear correctors. In RHIC many
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layers of nonlinear correctors are located in the interaction triplet quadrupoles
on either side of every interaction point. The diagnostic situation is then analo-
gous to the measurement and correction of closed orbits — it is not known prima
facie where the errors come from, but their effects can be measured, and the
expected performance of the available correctors can be confirmed.

6 Acknowledgments

We are very grateful for the help and support that Mei Bai, Rhianna Bianco,
Wolfram Fischer, and Todd Satogata provided in the preparation of this report.

References

[1] A. Chao et al, PRL 61 (1987) 2752; T. Chen et al, PRL 68 (1992) 33
[2] S. Peggs, Proc. 2nd ICFA workshop, CERN 88-04, and SSC-175 (1988)

[3] N. Merminga, A study of nonlinear dynamics in the Fermilab Tevatron,
Ph.D. Thesis, U. Michigan (1989)

[4] M.Y. Li, A study of nonlinear motions in large synchrotrons, Ph.D. Thesis,
U. Houston (1990)

[5] S.Y. Lee et al, PRL 67 (1991) 3768; D.D. Caussyn et al, PRA 46 (1992)
7942

[6] T. Satogata et al, PRL 68 (1992) 1838

[7] T. Satogata, Nonlinear resonance islands and modulational effects in a pro-
ton synchrotron, Ph.D. Thesis, Northwestern U. (1993)

[8] W. Fischer, An experimental study on the long-term stability of particle
motion in hadron storage rings, Dissertation, U. Hamburg (1995)

[9] W. Fischer et al, PRE 55 (1997) 3507
[10] M. Bai et al, PRE 56 (1997) 6002

[11] M. Bai, Overcoming intrinsic spin resonances by the use of an RF dipole,
Ph.D. Thesis, U. Indiana (1999)

[12] P. Castro-Garcia, Luminosity and beta function measurements at the
electron-positron collider ring LEP, Doctoral Thesis, U. de Valencia (1996)

[13] R. Bianco, T. Satogata,
http://www.rhichome.bnl.gov/AP/Java/acdodo.html

23



