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1 Introduction

Consider two highly relativistic particles, with charges q; and ¢a, that circulate
RHIC with horizontal and longitudinal displacements of (z1,21) and (2, 22)
from the center of the same bunch. If they pass through a short device (at
azimuthal location s = 0) that generates a wake field, the equation of motion of
particle 2 is written as

2 + K(s)my = gcgfymzl — 23) 21 8(s) (1)

where a prime denotes differentiation with respect to azimuthal coordinate s,
K(s)is the quadrupole focusing, m is the particle mass, and ¢ and v are the usual
relativistic quantities. The coupling between the particles, integrated across
the device, is given by Vi(z1 — 2z3), the “transverse wake potential”. Causality
demands that the leading particle drives the trailing particle, but not vice versa,
so that V1 = 0if 21 < 29 (and if multi-turn wakes are neglected). Also, the wake
potential is always positive for particles that are very close together, V3 (+€) > 0,
so that a trailing particle that is in phase with the source particle is defocused.
In general there are 10° or more particles per bunch in RHIC. The numerical
code KRAKEN models their motion by giving each of N,, & 200 macro-particles
an angular kick once per turn [1}. If there are N, ions of atomic number Z and
atomic weight A in each bunch, then the net angular kick given to particle ¢ is
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Longitudinal motion in KRAKEN is inexorable and linear, so that
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where Z is the longitudinal amplitude, ¢ is the time in turns, 7% is the syn-
chrotron period, and ¢; is the initial phase at t = 0.



1.1 Resistive wall wake

Even a smooth conducting beam pipe generates a wake field — the “resistive
wall” wake field. The transverse resistive wall wake potential due to a circular
beam pipe of length L is given by
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where r and ¢ are the radius and conductivity of the pipe [2]. The critical length
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tends to be very short. For example, 2z, = 0.12 mm for the dominant (cold)
beam pipe in RHIC, with L = 2955 m, r = 0.0346 m, and ¢ = 2.0 Q~'m~1.

It turns out that RHIC is most vulnerable to head-tail effects with proton
bunches at injection, with nominal parameters given in Table 1. These param-
eters are used as defaults in the results presented below,

Table 1: RHIC parameters during proton injection.

Parameter units value
Bunch population, Ny 1.0 x 1012
Lorentz factor, v 31.17
Transition gamma, vz 22.89
Average device beta, fp m 30.0
Circumference, C m 3833.8
Synchrotron period, T, turns 1414
RMS momentum error, o, /p 4.66 x 103
RMS bunch length, o, m 0.353

A numerical model with one kick per turn is still valid even if the device is
long — for example, a continuous beam pipe — if the synchrotron period measured
in turns is long (75 >> 1), and if the beta function at the kick point is the average
beta over the device.



2 Two macro-particles

In the simplest case there are only two macro-particles, with longitudinal oscil-
lations of the same amplitude Z that are out of phase, so that
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With linearized longitudinal motion, the longitudinal amplitude 7 is related to
the relative momentum amplitude ¢ through the relationship
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where C' is the circumference of the accelerator and the slip factor 7 is given by
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in which yr is the transition gamma. Horizontal motion is concisely described
using phasor notation to represent the normalized coordinates

E=z+id (10)

since then, in the absence of wake fields, the motion from turn ¢ to ¢ + 1 is just

E(t+1) = RE({) (11)
where R represents the normalized phase spacé rotation
R = exp(i27rQy) (12)

and (), is the horizontal betatron tune.
The motion of the two macro-particles through one synchrotron period, in-
cluding wake fields, is analytically predicted to be [2, 3, 4]
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It is remarkable that the analytic model is completely described, for an arbitrary
wale potential, by two parameters — the betatron phase advance per synchrotron
period, 27Q);T;, and the dimensionless complex “head-tail parameter”, T,

T(x,2) = Tr+ilr = (14)
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where Bp is the Twiss function at the device, ¢ is time in turns, and x=dQ/dé
1s the chromaticity [2]. Note that the second matrix in Eqn. 13 appears to treat
particles 1 and 2 unequally, since the two matrix elements on the diagonal are
different. This is an artifact of choosing ¢, = 0, with particle 1 about to take
the lead from particle 2 at time ¢ = 0. R

When the values of Table 1 are substituted into Equn. 14, with § = op/p and
Z = 0, they lead to the variation of T with chromaticity recorded in Figure 1.
The maximum value of Tr = 0.3003. This implies that nominal proton bunches
at injection are about an order of magnitude short of strong head-tail instability,
which occurs when Tg = 2 (see below).
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Figure 1: Head-tail parameter T versus chromaticity x for protons at injection,
due to the transverse resistive wall wake.

Various authors have reported analytical (and simulation) head-tail results
for the particular case of a step function wake potential[2, 3, 4, 5].

Vi(z) = W z>0 (15)
Vilz) = 0 z<0 (16)

In this case it is easy to explicitly evaluate Eqn 14. The analytical results
reported by these authors (parameterized by T) are readily adapted to a general
wake field, since it is straightforward to evaluate Eqn. 14 numerically.

It is less elegant but more explicit to rewrite Eqn. 13 in 4-dimensional real



space, so that
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where ¢ = cos(27Q;T;) and s = sin(27Q,T;). Since the horizontal motion is
exactly linear — both in the analytical model and in the numerical model — the
two macro-particle problem now reduces simply to finding the eigenvalues and
the eigenmodes of Eqn. 17.

2.1 Eigenmotion in the analytical model

If the chromaticity x is zero, the motion of two macro-particles is stable for in-
creasing Ny until ReY(0,%) = 2, when the strong head-tail threshold is passed.
Unstable motion above this threshold has a rise time of 7 ~ T, the time
scale on which the macro-particles exchange their “drive” and “response” roles.
The strong head-tail instability, also known as the “transverse mode coupling”,
“transverse turbulent”, or “transverse microwave” instability, has only been
observed at electron storage rings.

When a non-zero chromaticity x is introduced, one of the real eigenmodes
grows and the other is damped with a slow time scale T >> Ty, even for modest
values of T. This is the head-tail instability. The eigenmode growth rates, per
turn, are
ImY(x,%)

T

These results hold for a general transverse wake field. Note that 7;1 is made
negative and the “+” mode is stabilized (above transition) by a slightly positive
chromaticity.

The “4” mode has the two macro-particles oscillating transversely in phase
with each other, while the “—” mode has them out of phase. The analysis
presented above assumes that ¢, the initial longitudinal phase (in Eqn. 7), is
zero. If ¢, is nonzero, the transformation in one synchrotron period will be
different from Eqn. 17, so that the eigenmodes will change while the eigenvalues
remain unchanged. Thus, the two natural physical observables — the amplitude
of the center of charge and the RMS beam size — do not represent the pure
eigenmodes in the general case.

T:El = (18)



2.2 Eigenmotion in KRAKEN

For two macro-particles, the simulation results generated by KRAKEN are quite
close to those predicted in the analytical model. For example, when we consider
the case when ¢, = 0in Eqn. 7, and all the parameters are the same as in Table 1,

the transformation matrix in one synchrotron period for zero chromaticity is
found by KRAKEN to be

z1 —.771406 —.487551 —.160869  :247120 zy
z} . 491563 —.771406 —.249103 —.154043 z]
z9 - —.154043 247120 —.844328 —.535827 zy
zh 4T —.249103 —.160869  .535827 —.844328 zy /),
while the transformation of Eqn. 17 with T = 0.3003 is
z —.768338 —.487603 ~—.160748  .253298 z
2} _ 487603 —.768338 —.253298 —.160748 z)
Ty - —.160748 253298 —.844328 —.535827 T2
z 4T —.253298 —.160748  .535827 —.844328 zy ),

For other cases with nonzero chromaticities, the KRAKEN simulation is also
in good agreement with the analytical model. The slight difference between
the matrices results from the fact that KRAKEN uses discrete integration from
turn to turn, while the analytical model uses a continuous integration.

Fig. 2 and Fig. 3 show the variation of beam amplitude and RMS beam
size with time in units of synchrotron periods for the case of zero initial phase
(¢s = 0) in Eqn. 7 with different chromaticities. Although these two physical
observables represent the eigenmodes in an approximate way in the analytical
model, the amplitude (an approximation of the “+” eigenmode) is not stabilized
as well for larger synchrotron periods since it is not a pure eigenmode. For the
RMS beam size, the effect of its small component of “+” mode is negligible
because the mode with strongest positive eigenvalue will dominate in the long
run. Other initial phases ¢; of the longitudinal oscillation term also lead to the
same behavior, eventually.

3 Many macro-particles

Our two macro-particle model in KRAKEN is easily generalized to many macro-
particles by the same algorithm. Again, we assume that there are N,, macro-
particles in each beam and there is no coupling between horizontal and vertical
oscillations. The macro-particles have longitudinal oscillations with phases uni-
formly distributed over 2x. That is, we have

~ . (2wt 2 -1
Zy = zsm(Ts +7r(]7\1[—m)+¢s> (21)

(19)

(20)



1e+04

x=0 )
- — - X: ////
1e+02 - 7T - x=4 e 4
= —-— x=6 T
= «=8 7
3 ——- x=10
2 1e+00 [ e N
[=% -
= P
<C - L
] P —
8  1eo2 -7 ~-mT
e- o - _ _
(&) . _ -
= ’// ,_/"'/ .
(3] - R
D - -
m NS LT e, —_— R
- e I T~ m -
1e-04 + S~ T s 1
1e-06 L L L L
(0] 20 40 60 80 100

Figure 2: Beam amplitude versus time with N,

parameters of Table 1.

Time (Synchrotron Periods)

= 2 macro-particles and the

1e+06 T T T T
=0
——— = =D
1e+04 77U x= e
—-— x=6 Ple
= ——~ x=8 and 10 7
& le+02 7 -
@ -7
= I
5 e -
N 1e+00 - -7 —
75} .- -
2} T T
E - _—
[am e _/'/
1e-02 T e e e
1e-04 ' : ' '
(0] 20 40 60 80 100

Time (Synchrotron Periods)

Figure 3: RMS beam size versus time with Npr = 2 macro-particles and the

parameters of Table 1.



forn = 1,2,..., Ny — 1, Ny Since the speed of the macro-particles is close
to ¢, we can assume that a macro-particle is influenced only by those macro-
particles in front of it. For a large number of macro-particles with longitudinal
oscillations given by Eqn. 21, ¢, has little effects on the eigenmodes. We believe
that in the real beam the transverse eigenmodes would also be independent of
the details of the initial phase distribution.
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Figure 4: RMS beam size growth rate versus horizontal chromaticity for N,, =
2, 8,20, 100, 200 macro-particles.

Fig. 4 shows simulation results for RMS beam size growth rate versus hori-
zontal chromaticity for different numbers of macro-particles. The behavior for a
few macro-particles changes a lot with the number of macro-particles, while for
Np, X 100 the behavior becomes independent of the number of macro-particles.
Motion is apparently unstable for all chromaticities other than ¥y = 0. The
growth rate is about 0.00003 turn~! and doesn’t change much with chromatic-

ity except for x < 2.5. The beam amplitude fluctuates wildly, and it’s hard
to get unambiguous growth rate measurements except over long time intervals.
The trend of the curves in Fig.5 shows that finally they have the same growth
rate as the RMS size shown in Fig.6. Initially the amplitude doesn’t increase as
fast as the RMS beam size, but in the long run it is also unstable.
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Figure 5: Beam amplitude versus time for N,, = 100 macro-particles.
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Figure 6: RMS beam size versus time for Ny, =100 macro-particles.



In the same spirit as in the analytical model, we know that there are 2N,
eigenmodes in the transformation matrix representative of the action in each
longitudinal oscillation period. But the mode with the strongest eigenvalue will
dominate in the long run. And if any mode is unstable, it will be the source of
head-tail instability for our physical observables.

We also tested for strong head-tail instability in KRAKEN with N, = 100 by
setting the chromaticity to be zero. The results show that the criterion for strong
head-tail instability is around Re(Y) = 1.7. This is reasonably close to the two
macro-particle prediction that the beam should be unstable for Re(Y) > 2.

4 Summary and conclusions

From the simulation results by the generalization of the two macro-particle
KRAKEN model, we conclude that the beam should be unstable due to the
resistive wall head-tail instability if the chromaticity isn’t zero. But we believe
there are other self-stabilizing mechanisms such as Landau damping, and a more
complete model should stabilize the beam for at least some chromaticities as in
all accelerators. .

We have used Ny, = 100 and 200 in the simulation by KRAKEN for tracking
of 100 synchrotron periods. Besides distributing the macro-particles uniformly
in longitudinal phase space by putting them on a circle, we also tried distribut-
ing them on a semi-circle, with essentially the same results. To further our
simulation, we can try a finer distribution in longitudinal phase space, use a
longer synchrotron oscillation period, and use more macro-particles. But in or-
der to do these, the running time of KRAKEN will be much longer. To track
Ny, = 100 macro-particles for 100 synchrotron periods on a SUN Ultra 1, with
the chromaticity varying from 0 to 10 in intervals of 0.2, the CPU running time
is about 27 hours. The running time is roughly proportional to N2.
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