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In this paper I attempt to generalize the Stern-Gerlach force on an elementary particle
to relativistic energies in a covariant manner. Of particular interest is the case of the
longitudinal component of force on a particle which is longitudinally polarized. The force
in this case is found to be proportional to v; however, when integrating the energy increase
through a TE rf cavity, it is found that the energy shift is roughly proportional to 1/7.
For static magnetic gradients, such as from the ends of a solenoid, the energy increase’
from the gradient at one end of the solenoid is canceled by the opposite gradient at the
other end. As a result this increased factor of « in the force does not appear to be terribly

useful. Alas, Maxwell and Einstein have conspired against us.

Preliminary Commenis on Notation

For the this discussion I assume a flat Minkowski metric g*# of the form
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The covariant coordinates % in vector form are:
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The proper velocity u® is normalized to the speed of light:
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The four-vector potential A* has components
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The relativistic extension of the gradient operator in covariant form is
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or in vector form

(7). )

Another useful relation is the total derivative with respect to the proper time, 7

0 0 0
—=ugfP =ug— =y — +7- . 7
5 = Up Uﬂaxﬂ ’y.(at + 7 V) (7)

The electromagnetic Faraday tensor is defined by
F*P = 9% AP — 9P A (8)

and has components
B—
0 —E;/c —Ey/e —E./c
F_o E./c 0 -B, B, (9)
~ 1| E,/Je B, 0 -B,
E./c —B, B, 0

Maxwell’s equations may be written in covariant form as
8°FPY + 3PF ™ + 97F*F =0, and OpF*F =4nJe,. (10)

where J is the covariant current density. The dual of the Faraday tensor

FP = 1B p, | (11)
has the components
B—
0 B, B, B,
*F — (8% _B:L' 0 - z/C Ey/c (12)
|\ -B, E,/c 0 —FE/c

-B, —-E,/c E,/c 0
The angular momentum density tensor is defined by ‘
MR = goTPY _ BTy, (13)

where TP is the Stress energy tensor.! The total angular momentum tensor is given by

JoP = / M @z
(14)
= /(xaT'BO — zPT0) @3

T See §§2.8 and 2.9 of Steven Weinberg, Gravitation and Cosmology, John Wiley & Sons
(1972) for a nice covariant discussion of the stress-energy tensor and spin.
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The spin or intrinsic angular momentum four vector may be obtained by
S = %ﬁa'gWaJﬁfYUJ. (15)
Calculation of Stern-Gerlach Force by Boost

~ In order to calculate the Stern-Gerlach force for a moving particle with spin we first
calculate the magnetic field in the rest system of the particle in terms of the electric and
magnetic fields in the lab. The proper force is then calculated in the rest system and
finally boosted back to the lab. While one may argue about what happens to a magnetic
moment of a moving particle, this procedure eliminates such worries since the Lorentz
transformation of forces is well understood.
The contravariant derivative in the rest system! may be written in terms of the labo-
ratory system coordinates as

gw"a - ga:ﬁ g::;[:a (16)
which has components .
gt° - (gt +h C?_) | (17a)
g:;o = g.y_ (17¢)
gz° - (gz + If(a?t) (17d)

Written in terms of the fields in the laboratory, the components of the rest frame’s
magnetic field are

BlT = B” ‘ (180’)

—»o . - B’ —

Bl =« BL~E><E . (18b)
The Stern-Gerlach force in the rest system may be written as

F° = (uo A VO)B’O

00 e e (2 +ga_ B (19)
Hogm Oz ”ya TH 8z | ¢ ot '

with components

0 0 0 po
E;'O < o < B
I [u”; oz M Oy TH= (8z c Ot )} I (19)
, 0 0 0 po . 8 .
i < - —— —_ —
Fl_vliu$—8$+ﬂya +fyuz (az Ry )] <BJ_ p XE) . (19b)

t Here the superscript “°” is used to specify values in the rest system of the particle.
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The four-force in the rest system is
0
o N
o=t (20)
o
= . F° = 0. Boosting

since the particle is not moving in the rest system (7° = 0) and F°°
this back to the lab gives the proper force

VB - F°
dp F2
F dr Fy (21)
vFz
In the lab has the parallel and transverse components of the force are
5 _ 008 0B 9B  BIB
F = s 21
| = Ho g +Mma ts\ 5, t T (21a)

N N o .8 8 s B a

F, —— 1} | B —— : 2

which may be combined to give

o - — > 0B
F=@ -V)B+Lo0e(@-p)B-V)B+ 13 1)
B\, a1 B2\ 1 o (B 0F
—_— _io - — — — - _,o — R —
[(u V)( x E ﬂz( i) (B- V) S XE (BB (x5 )]
(22)
For longitudinal polarization (fi° = u°Z) this gives
o 8B B8B B. [OE BOE
F=n (6z+c6t)_7u czx(8z+cat (23)
which is proportional to -, whereas for transverse polarlzatlon (,8 fi° = 0) the result
simplifies to
ﬁ:(ﬁ"V)é—(ﬁ"V)(%xE) (24)

which is not proportional to +.



Covariant Lagrangian for the Stern-Gerlach Force *

In order to construct a covariant Lagrangian for the Stern-Gerlach force we need to
find a covariant expression which which reduces to the energy term —B - § in the rest
system. Since there is a magnetic field in the expression we should expect to see the
antisymmetric electromagnetic Faraday tensor or its dual in the expression. A term like
FO‘BSﬁ has an E - § term for its time-like component, whereas *F O‘B.S’ﬁ has a B - § term.
In the rest system the space-like components of the proper velocity are zero, so we might
expect the interaction term to be proportional to e F*? Sg. Since the magnetic moment

in the rest system is ji® = 59%5%, the expected Lagrangian should be

1
L(z,u;7) = —mu Uy + eA%uy + ——gf—ua*F"‘ﬁS (25)
2mc
with the covariant canonical momentum components
pa_ 0L
Otla (26)

=mu® + eA* + ﬁ"‘Fo‘ﬁSﬁ.
2mece
To simplify some of the following algebra define
A% = e A + ZQ—T):C*FaﬁSﬂ, (27)

so that 1
L(z,u;7) = 5 “Ug + A%uq, and P* =mu® + A. (28)

Variation of the action between points 71 and 7o
™2
51:5/ Ldr=0, (29)
1
will yield the Euler equations of motion. Since du* = %;(57,5“ ) the variation yields

T2 d
ol = / {(muCz + Aa)z(éxa) + (0 AP)ug 5wa} dr
1 ’ s d d (30)
= [(mu® + A%)8T4]|% — / { m—d“—— + (6°‘A'3 67 A*) =L o } 8T dr
LS
The leading expression in brackets is clearly zero since §z%(mwy) = 6x%(mz) = 0, therefor
the part of the integrand inside the braces must be equal to zero, so
d «
mE— = ug(9* AP — 9P A%, (31)
dr
* This treatment of the relativistic Lagrangian follows W. K. H. Panofsky and M. Phil-
lips Classical Electricity and Magnetism, Addison-Wesley (1962) but with the addition of
spin.
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clu

d’r
A covariant super Hamiltonian may be constructed in the usual manner

H(z, P;7) = P*uy — L
1 : ge ge
P — o ___*Faﬁ _ Aa A
= om [ ed . 2me S8 ] [Pa € 2me
One should note that '

= eFPyq + ec(aa*Fﬁ7~8ﬁ*F“7)u557. | (32)

*Fan,sv] (33)

1
H= Emuaua = —2-mc2, : (34)

which is a nicely conserved quantity.
Let us now evaluate the proper force components from the Euler equation. With no
spin, we get the usual Lorentz force equation
dp diu
=m— = ve(E x B 35
L = m = e(B+7x B) (35)
The Stern-Gerlach force should come from the second part of the Euler equation. The
summed product *F*7S, is

-

0 B, B, B, 3-8\ )
—B, 0 —E./c Ey/c e L, ~B-5 (36)
-B, E,/c 0 —E;/c —S, —(B-S)B-1ExS)’
—B., —-E,/c E;/c 0 =S,
and Y o
. L, _B.§
uﬁFﬂ'VS —'yc(l -—-,3)(_(5 §)§~lﬁx§>
° (37
—c|-B -5+ (@-9)F-B)+ 15 (Ex )

The three component force may be written

dr
— —_ - = - — 1 p=g = =
+%{—ch [_B.s+(ﬂ $)(3- B)+ -5 <Exs>] (38)

ﬁ:e(ﬁ+ﬁx§)+2ﬁi{V(3 $)~ (3-8)V(3-B) - Lv1f- (B 3
. . (39)
2398 108 5 G5B+ 1E- v ”)}
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V(B-S) C—lzglxiiz:(g' V)B+ 8§ x(VxB)-8x(Vx B) (40)
oo e o[ 198 _
F.—_e(E+va)+%{(S-V)B+(ﬁ S) [—V(ﬁ B)+_W+(ﬁ V)B

(41)
1, = =
+ 2V (8 x Bl - 18- V) B
Using the identity for an arbitrary vector #:
(B-V)E-V(B-§) =Fx(Vx¢), (42)

the force further simplifies to

—

F=e(E+@xB)
ge = . 1.-» 2 o 1.+ = (08B 1- OE (43)
+%{(S'V)B“E( V)(Bx E)+ —(ﬁ'S)(ﬁ—— X‘g{)}

The first part of this force is the usual Lorentz force on a charged particle, whereas the
second part, which is equivalent to Eq. (22), is due to the spin or magnetic moment of the
particle.

Thoughts on the deficiencies of this treatment

The BMT equation*® cannot be derived from the Lagrangian of Eq. (25) or the Hamil-
tonian Eq. (33), since they are actually incomplete. In order to write a Hamiltonian for
the BMT equation, we need to have a rotational energy term simplistically something like

52

EI—’ (44)

where 1/I represents the inverse of the moment of inertia tensor. For the Lagrangian the
necessary term would simplistically look something like

1 ‘2
S16%, (45)

where 6 represents the angular velocity of the particle. In special relativity, the angular
velocity may be represented by the antisymmetric tensor, Q*?. T have not figured out how

* V. Bargmann, Louis Michel, and V. L. Telegdi, Phys. Rev. Lett., 435, 2 (1959).
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Figure. 1 A simple rectangular rf cavity. The beam moves parallel to the 2-axis at a height of y = b / 2.

to deal with the analog of the moment of inertia, although, it may need to be a tensor of
rank four.

_ If the rotational energy term were included, then a constraint must be used to keep
" the magnitude of the angular momentum constant, i. e. S,S* must be held constant.
Without this constraint, we should expect that, in general, a magnetic moment can change
magnitude. If this were not the case, then transformers would not work, since the secondary
circuit may be considered to be a magnetic moment sitting in a changing EM field.

Example of a longitudinally polarized particle in a TE cavity

For a longitudinally polarized particle the relativistic equivalent of the Stern-Gerlach
force is then

. 8B BOB pB. (BOE OF
—_ L2l = _ = LS -
Fsa =p 0z + cot ¢ " (c ot + oz ||’ (46)
where the direction of motion is parallel to the z-axis, and
g =225, (47)

mc

for the magnetic moment of the particle in the rest system.
The vector potential for simple rectangular cavity with a TEg,,, mode may be written

0
—By=% sin ™Y gin 272 gin i
mm b l -
0 7
0

A= (48)



where b is the cavity height (y-dimension) and [ is the cavity length (See Fig. 1), and n
and m are positive integers. The frequency of the TEqgmn mode is

2= () (1)

Since
B=Vx f_f, and : (50a)
B = T — Vo, (500)

bw ., mmWYy ., NwZ

E; = —B;y sin sin — coswt (51a)
mm b l
E,=0 (51b)
E,=0 (51c)
B, =0 (52a)
By, = ——:%BO sin m;ry cos % sin wt (52b)
B, = By cos ;ry sinzl—?—z- sinwt (52¢)
Substituting into Eq. (46) gives
Fr=0 (52¢)
b . mmy [[(n?n? %2 nrz
F, = yp°By —— sin— [( B +— sin — sinwt
P P cos =2 coswt (52¢)
I ¢ [
F, = yu® By cos m;r Y [? Cos ? sinwt + —'B—CU—J- sin ? Cos wt] (52¢)

Note that the longitudinal force along the beam axis (y = b/2) is identically zero for odd
m, so the only interesting modes are those with even m > 0.

For a particle with longitudinal magnetic moment moving along the z-axis with ve-
locity v = Be, the longitudinal component of force (for even m > 0) is

F, = (=1)272By § 7 cos M2 s B9 in P2 w2
(-1) 'yp,BO{lcos 7 sin ¢0+,8c + csm 7 cos ¢0+,Bc

= (——1)’7"“/2—7“;30 {nll [sin (______wl ;Zﬂﬂcz + ¢0) + sin (_____wl —ﬁzvr,@cz + ¢0)]

_|_,87w [sin (———————nﬂﬂ;c;_ wlz + qzio) + sin (_____nﬂﬂﬂcd— WZz — d)oﬂ } ) (53)
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where ¢g is the phase of the rf voltage when the particle enters the cavity at 2 = 0. The
energy increase to the particle from the cavity is then

AU = /0 'Fd
B e e (525 )
%% cos dho — cos (“’l e +¢o)_
5;%;%7 cos by — cos (mrﬁc+wl N ¢0):
% s o — cos ("= w)|} o0

In the above equation, the terms in brackets are all equivalent, i. e.,
n wl “ ~
[-+<] = cos o — (—1)" cos e +¢o ), (55)

so then energy integral simplifies to

AU = (_1)m/2 TH

° By [ 2wln7r,3c‘ 232winmBe }
2 (wl)? — (nwfBc)? + (nmBc)? — (wl)?

cos ¢g — (—1)" cos wl + ¢o
[ (ﬂc )]

= (—1)™/2 @ : _RR2 [cos bo — (—1)™ cos (n_};r + qSo)] , (56)

where, with the help of Eq. (49),

R= ”ch — b - (57)
1+ (75)
For large v this gives a v dependence roughly like .
ml\2
1 R A1+ (Z) 1
_1_R2: i\ 2 1O<_1 (58)
v v(7E) 7

since m > 0 and n > 0. The contribution from the cosine terms is just a factor between
+2.
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Figire. 2 A simple cylindrical cavity. The beam moves parallel to the z-axis with 7 = 0.

Consider now the simple cylindrical cavity’ shown in Fig. 2. The TEg,,, mode has a
longitudinal magnetic field of

X/
B, =By Jo ( (;mr> sin mlrz sin wt, (59)

where X} is the mt® root of the Bessel function Jo(z), and m and n are positive integers.
The resonant frequency for the TEq,,, mode is given by

. J (_fm) ; (fgi) ) (60)

The longitudinal force along the axis is then

F, =vu°By {—7}—71 cos 2 sinwt + P sin 222 coswt}

l l c l
= 7”230 {'—nf— [sin (———————wl ;Z;rﬂcz + ¢0> + sin (_____wl %Zﬂﬂcz + qbo)}
' l —wl
-I-%J— [sin (271—'6,8%;_—%—2 + ¢0) + sin <E%ccl—w—z — (bo)] } , (61)

which is almost identical to Eq. (53) except for the initial factor of (—1)™/2. Integrating
to obtain the work done by the cavity field gives

_(_qyym2 B0 R (—1)" cos (T
AU = (-1) ok > [cosd)ov (-1) cos(R +¢0)], (62)
with
LUl X! 1 2
1+(n7ra)

T Samuel Y. Liao, Microwave Devices and Circuits, Prentice Hall (1985).
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The y-dependence is again similar to Eq. (58):

= x —, (64)

4 !
since Xy, # 0.
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