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1. Introduction

At injection, the presence of linear coupling may result in an increased beam emittance
and in increased beam dimensions. Results for the emittance in the presence of linear
coupling will be found. These results for the emittance distortion show that the harmonics
of the skew quadrupole field close to v, + vy are the important harmonics. Results will be
found for the important driving terms for the emittance distortion. It will be shown that if
these driving terms are corrected, then the total emittance is unchanged, €, + €, = €1 + €.
Also, the increase in the beam dimensions will be limited to a factor which is less than 1.414.
If the correction is good enough, see below for details, one can achieve €; = ¢;, €2 = €y,
where €1, €2 are the emittances in the presence of coupling, and the beam dimensions are

unchanged. Global correction of the emittance and beam size distortion appears possible.

2. The Emittance for Coupled Motion

One definition for the emittances when the particle motion is coupled was given by
Edwards and Teng.! In four dimensions, one can go from the coordinates T, Pz, Y, py to an

uncoupled set of coordinates v, py, u, py by the transformation?

z=Rv
T v
=P v=| P
Y u
2y P (2.1)

R Icosyp ﬁsingo)
- —Dsing Icosp )’
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I and D are 2 x 2 matrices. I is the 2 x 2 identity matrix. D = D™ and |D|=1. Ris a

symplectic matrix

RR=1I
" R=SRS (2.2)
0 1 0 0
10 0 0
S =
0 0 0 1
0 0 -1 0

R is the transpose of R.
v, py and u,p, are uncoupled. Thus v,p, satisfy differential equations with periodic

coefficients whose solutions have the form

v = B} exp (i) (2.3)

-1 . .
Py =f; * (—o1 +7)exp (i) -
A second solution exists with 1, 81, a3 replaced by v, f2, @2. As in the case of 2 dimen-
sional motion

€1 = 11v° + 2a1vp, + P’ (2.4a)

is an invariant. v; = (1 + o) /1. Similarly, e; is an invariant,
e2 = 12u® + 205upy + B2p2. (2.4b)

For two dimensional motion, one can find «,f from the one turn transfer matrix
M (s + L,s).

In 4 dimensions, ay, f1 and ag, f2 can be found from the one turn transfer matrix. The
process is quite involved!, and using Eq. (2.4) to find €1, e when the transfer matrix is
known is also involved.

A second definition of the emittance was suggested by A. Piwinski? which seems easier

to apply. The emittance ¢; is defined by

~k 2
zy S a:l (2.5a)

€1 =

z1 is the 4 vector for the eigenfunction of the transfer matrix, which are assumed to be

T1,% = &}, T3,T4 = T3.



The Emittance for Coupled Motion 3

Since 35: Sz has the form of the Lagrange invariant® e; is an invariant. It will be shown
below that ¢; defined by Eq. (2.5) and €; defined by Eq. (2.4) are the same. In a similar
way, €2 1s defined by

~k 2
€ =|z3 S a:’ (2.5b)
Note that z; and z3 have to be normalized so that
ok ok .
z; Sz =x3Sx3=2 (2.6)

Analytic expressions for z1, 23 were given in a previous paper.* These results for 1, z3
when put in Eq. (2.5) give an analytic expression for €; and ;.

To show that €1, ¢ defined by Eqgs. (2.4) and Egs. (2.5) are equal, one may note that
since v, py, 4, py are uncoupled coordinates, the eigenfunctions in this coordinate system

may be written as

[ 13% | [ 0 T
1
_1 0
v=|h ? (a1 +1) exp (1¢1), v3 = ﬂzé exp (112) (2.7)
0
] 0 | By % (—o2 +1) ]

One can then show that

sk ~k

vy 8 V1 =V3 S v3 = 21,

and

~k

2 2 2
vy 8 v' = 7v° + 203vpy + P,

which is €1 according to Eq. (2.4).
One can show that since £ = Rv and R is symplectic, that

2

ok 2

vy SV

¥

T8¢

; (2.8)

and thus the €; defined by Eq. (2.5) is the same as ¢; defined by Eq. (2.4). One may note
that z1 = R v;.

It also can be shown that

/ dzdp;dydpy = €€, (2.9)
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where the integral is over the region of 4-space which lies inside the two surfaces

€1(2,pz,Y,py) = €
(2.10)

€2 (xapxa y7py) = €2

This can be shown by transforming the integral in Eq. (2.10) from the z coordinates to

the v coordinates and using the result |R| = 1.
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3. Analytical Results for the Emittance Distortion and its Correc-
tion

Analytical results for the eigenfunctions of the 4 x 4 transfer matrix were found in Ref.

4. These are summarized in the following:

z Ng
Prl—g|Pm (3.1)
y My
Py Py
Gy, O
a=| ]
[ 82 o B o
R B Y R al Hr
| —asfs® B —ayfy® Byl
[
Ne = AGXP (insoa:) 14 Z fnjl
nF—p
. ( (3.2)
My = Bexp (tvysby) |1+ Zgn
n#p
o= Vgs — Vg 2Vgbp exp[—i(n + p) 6,]
T Av (n— vz —vy)(n+p)

_ s — vy 2yycpexp[—i(n—p)o,]
In =T Ap (n—vy —vy)(n—p)

Av = (1/4rp) / ds (Bofy)E a1 exp[i (~vpabs + vysby)]
b, = #/ds (ﬂzﬂy)% a1 expi(n —vy) 0, + v,6,]

1 ) :
= m/ ds (BBy)? a1 explivas + (n — vs) 6]

O = Vs /v Oy = ¢?!/Vy

Vgs, Vys are the solutions of

Vo = vyo+ By (Ve — Vi) (vys — 1) = |Auf? (3.3)
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Vg, vy are assumed to be close to the resonance line vy = vy + p. pp; and Py can be found

using
Poz = (1/vz) dng /dOz, pyy = (1/vy) dny/db, (3.4)

The A and B coefficients are determined by the condition on the eigenfunctions
~ok
z Sz=2 (3.5)
This gives the relationship*
|A|2 (Vos/va) + IBlz (vys/vy) =1 (3.6)

There are two solutions of Eq. (3.3) corresponding to the two normal modes. For the
mode for which vs; — v, when a3 — 0, we will put v, = V1, Vys = v1 — p. For the mode
for which v, — vy when a3 — 0, we will put Vys = Vg, Vgg = V3 + D.

For the v; mode

By = — As A
3.7
|A|2 Z_l__*_(yl_p) Vl'—sz =1 ( a)
1 Vg Uy Av )
For the v9 mode
_ Tl
Ay = A D2
3.7
IB|2 Z?__I_(Vz'l‘P) VZ—'Vyz =1 ( )
2 vy Vg Av )

The eigenfunctions being known, one can now compute ¢; and e

e =75 a| = nts ) (3.5)
since G is symplectic.
Nzl

Myl
Dyy1
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one finds 2 o 2 2
€1 = [ng1] Ppe + |Pm>1| Nz — NzPysz (P;;zl’h'l + C-C-)

+ [my11?p2y + |Poy1l*nZ — nypny (pryimy1 + c.c.)

+ PyePny (p;zlp;;yl +c.c.)
(3.10)

+ NzNy (P;zlpnyl + C'C-)
— DPyzTly (77:11’17.7/1 +c.c.)

— N1aPny (Pheatys + c.c.)

One can now find analytic expressions for €; by substituting for n1 from Egs. (8.1) to
(3.7) into Eq. (3.10). This result is usually quite complicated. One interesting case is when
a correction system has been used to cancel the b, and ¢, for n ~ v, + 14, which generate
the larger terms in the expressions for the eigenfunctions. Let us assume that enough by, ¢,

have been corrected so that, from Eq. (3.2), the eigenfunctions can be written as
Ne = A exp (ivg56;)

Ny = B exp (tvy0y)
(3.11)
Ppz = tA exp (tvg56;)
Dyy = tB exp (tvysby)
It has been assumed that the different resonance has also been corrected, and that
Vg, vy is very close to the nearby difference resonance v, — vy = p, so that vzs/vy; ~ 1 and
vys/vy =~ 1. It will be seen that correcting the b,, ¢, for n ~ v, +vy and the nearby different
resonance will essentially correct the emittance distortion and the beam size distortion.
Putting the corrected results for the eigenfunctions Eq. (3.11) into the emittance result
Eq. (3.10) one finds
e =|AP (p}s +n2) + B (03, +ni)
+ PpzPyy (A*B + c.c.)
+ 721y (A*B + c.c.) (3.12)
— pany (—2A*B + c.c.)
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There are two solutions of interest corresponding to how well one can correct Av,

Case 1. |Av| < |vz —vy — pl
(3.13)
Case 2. |vz —vy — p| < |Av]

For the first case, |Av| < |vz — vy — p|, then the coefficients A, B in the eigenfunctions

satisfy*
A1 =1 B =0
(3.14)
|Ba| =1 Ay =0
Then for case (1) Eq. (3.12) gives
€1 = €
(3.15)
€y = €y
where use has been made of the results
Nz +p%z = 'Yzmz + 20, Tp, + ﬂng =€z
(3.16)
My + Doy = W¥? + 204y,py + Bypl = €
Thus in case 1, €, €3 are the same as ¢, ¢,.
For case (2), |vy — vy — p| < |Av| then*
|A1] = |B1] = 1/v2
|4s]| = |By| = 1/\/5 (3.17)
A’{Bl + A;Bz =0
Then for case (2), Eq. (3.12) gives
=€ +e=¢+¢ (3.18)

We no longer have €1 = €;, €3 = €, as in case (1) however ¢; is not increased by the linear
coupling.

Thus, if one corrects enough of the b,, ¢, for n ~ vy + v, and also corrects Av, the
driving term of the nearby difference resonance, v, —vy = p, then the emittance distortion
has also been corrected. We will either obtain €; = ¢;, €3 = €, or €1+€3 = €z + €y depending

on how well Av has been corrected.
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4. Analytical Results for the Beam Size Distortion and its Correc-
tion

In the previous section, results were found for the emittance distortion, and it was
found that if the by, ¢, for n ~ vz + vy and Av are corrected, then the emittance distortion
is also largely corrected. For 4 dimensional motion, the connection between the beam size
and the emittance is not as simple as it is in the 2 dimensional uncoupled case. In this
section the maximum beam size will be computed when the b,,c, and Av are corrected.
It will be shown that the beam size distortion is also largely corrected, although in one
case it may be increased by a factor which is < 1.414.

The particle motion can be written in terms of the eigenfunctions zi, 3, 23,24 as

T = a171 + a2 + aszs + asxy (4.1)
where
z
c=|P* (4.2)
Y
Py

~k . . .
z2 =z, r4 =} and z; S z; = 2i, 2fswy = 0,7 # j

The a; can then be found .
a1 =(1/2)) 7, S «

N (4.3)
a3 = (1/2¢) z3 S z
and thus
1 1
a1l = 560’2, las = 3¢ (44)

If the by, c, and Av have been corrected so that the eigenfunctions are given by Eq.
(3.11), then z and y of the eigenfunctions are given by
o = B;* Aexp [i (vosbs)]

(4.5)
y = ,3;/23 exp [tvys0y) .

z and y are then given by

2 = (Bse1) |41 cos [110, + 61] + (Baea)? || cos [(v2 + p) b + 53] o

y = (Byer)? |B1 cos [(v1 — p) By + 81] + (Byez) | Ba] cos [nb + &3]



10 Analytical Results for the Beam Size Distortion and its Correction

61, 62 are the phases of a; and as.

Zmax and Ymax are then

Tmax = (ﬂzel)% lAll + (ﬂzez)% |A2l

Ymax = (Bye1)? | B1 + (Byez) | Bal

As was done for the emittance, we will find zpax for the two cases given by Eq. (3.13).

(4.7)

For case 1, |Av| < |v; — vy — p| then
l[Ail=1, |Bi|=0

|42| =0, | B2l =1 (4.8)
6]_ = 63, 62 = ey
Then Eq. (4.7) gives
Tmax = ,Ba:ea:
(4.9)

Ymax = / ,Byey

and there is no growth in beam size.

For case 2, |v; — vy — p| < |Av| then
|A1| = |B| = 1/v2
| 42| = |Ba| = 1/v2 (4.10)

€& =€ T€ =¢T¢
Eq. (4.6) then gives for Zmax, Ymax
1 1 1
Tmax = (ﬂx/z)i <El2 + 622)
(4.11)
Ymax = (:By/2)2- (61 + 62)
Since €3 = €; — €3, then as one varies € from e; = 0 to €; = €;, Tmax reaches its maximum

at €; = e3 = ¢/2. Thus
1
ZTmax < (,3:1: (E:c + ey))E

Ymax < (ﬂy (Ez + ey))%

1
For the case where €; = €y, then zmax < 1.4(f,€;)% and the coupling may increase

(4.12)

Tmax by the factor 1.414. So in case (2) |v; — vy — p| < |Av|, then when the by, ¢, and Av

are corrected one may still have a beam size increase of the factor 1.414.
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