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Abstract

This report represents an effort to describe ezactly the motion of
a charged particle in a simplified model of storage ring made of infi-
nite sequence of FODO cells. We have given special attention to the
preservation of the kinematic terms, which are usually ignored, and
to the correct Maxwellian representation of the magnetic field. Given
the complexity of the resulting equations of motion, we have resorted
to the model of thin lenses as a valid symplectic integration method
to be used in numerical tracking to determine the stability of particle
motion over long periods of time.
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1 Motivation

It is common practice to perform computer simulation to determine the sta-
bility of motion of charged particles circulating in storage rings over long
periods of time. For this purpose several computer codes have been written®.
In the past, great effort was spent to insure that the representation of the
motion used during simulation was symplectic?; that is, for conservative sys-
tems of particles, like protons, antiprotons and heavy ions, the equations of
motion not only are to be derived from Hamiltonian, but they also have to
satisfy a variety of momentum and energy conservation laws. If these should
not become fully satisfied, the results of such computer tracking, especially
long ones, could be invalid. Simulated motion could show instability where
it should not occur and viceversa.

There are several types of elements that a particle encounters during its
motion in a storage ring. Some of them have linear properties, like drifts
and pure quadrupoles. In these cases, the approximate status of motion of
the particle at the end of the particular element can be easily given as an
integrable function of the status of motion at the beginning of that element.
Nevertheless, even in these linear or quasi-linear elements the exact equations
of motion have kinematic terms which are difficult to integrate.



Other elements which are encountered by the particle during its motion
in a storage ring are non-linear, like sextupoles, intentionally used to correct
chromatic effects, and the non- linear imperfections of magnets, especially
superconducting magnets. The motion in these non-linear elements cannot
be generally integrated. Therefore one has to use some numerical technique
to perform integration by computer.

One method is to lump each non-linear element in a thin lens of zero
length. Motion through such an element is then represented by a kick. The
position coordinates of the particle remain unchanged while velocity receives
a sudden change which depends on the particle position and on the properties
and strength of the non-linear lens. The numerical codes that make use of
this method are called kick codes or ezact codes. The motion which they are
representing with a kick is truly symplectic so their approximation of reality
is physically correct. TEAPOT? is one of these codes which also represents
integrable elements, like dipoles and quadrupoles, as a series of thin lenses
and drifts. Since the motion in a drift can be calculated exactly, it seems
that the representation of any accelerator element as a sequence of drifts and
thin lenses, linear and non — linear, is indeed very powerful.

It should be understood that in order to predict the stability of the motion
over very long periods of time it is mandatory that all kinematic terms be
properly included in the model. Neglecting some of them may invalidate the
results of very time consuming exercises on the computer.

Adopting the thin lens representation requires a discussion of one more
issue. Forces acting on a particle are to be derived exactly and consistently
from Maxwell’s equations. Generally, ordinary kick codes do not enforce a
complete description of the fields and this is to be corrected. Not only mag-
nets exhibit edge effects due to their discontinuity in space, but the thin lens
model either of linear or of non-linear elements is a three-dimensional field
representation which requires a careful estimation of the field components.
Usually only the longitudinal component of the vector potential is retained for
the field estimate. Since this has a discontinuous behaviour, transverse com-
ponents are also to be present, especially at the edges of the elements. These
transverse components are usually neglected. For instance, if the transverse
components of the field are neglected, the divergence of the vector poten-
tial does not vanish and the divergence and the curl of the magnetic field
is different from zero, though the corresponding equations of motion remain
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symplectic. This fact, again, may invalidate results of long computer simula-
tions. Thus, we believe that it is very important that the field representation
is exact, complete and that it satisfies Maxwell’s equations.

In this report we shall try to make estimates of both kinematic and field
effects on the stability of a particle motion, by employing a truly Maxwellian
representation of the magnetic field in exact equations of motion. For this
purpose we shall adopt a simple FODO cell model, which repeats periodically
to infinity. Only quadrupoles and drifts are included in this model, leaving
out the bending magnets to avoid the problem of the trajectory curvature.
We believe that this model is a physically consistent approximation of a stor-
agering. We shall derive several models with different levels of approximation
and attempt to compare them by evaluating the importance of these effects.
The relevance to the long-term stability is in the meantime investigated by
comparing the different models with extensive computer simulations. The
results will be shown in a subsequent report.

2 The Test Model

To determine the importance and the magnitude of kinematic effects and
of the effects of the field components which are required for the complete
Maxwellian representation of the field, we shall adopt the following test
model. It is made of an infinitely long sequence of FODO cells. All cells
are identical as shown in Figure 1. The FODO cell has the following struc-
ture:

QF/2 L QD/2 QD/2 L QF/2 (1)

which begins from the middle of the horizontally focusing quadrupole (QF)
and ends in the middle of the following focusing quadrupole. The vertically
focusing quadrupole (QD) is located half-a-way. The quadrupoles have the
same length [ and are separated by a drift of length L. Quadrupole magnets
are described by the field gradient. In QF the gradient is +G and in QD
the gradient is —G. The only other parameter which is required to calculate
the motion of a charged particle of charge ¢ and momentum p is the particle
magnetic rigidity



QF !

QD One FODO cell

Bp="2 (2)

where c is the speed of light.

Our test model is made only of drifts and quadrupoles. For simplicity
we did not include dipole magnets to avoid the issue of the curvature they
introduce.

The reference line is the straight line which coincides with the symmetry
axis of the quadrupole. We assume that quadrupoles are perfectly aligned so
that their axes coincide. The quadrupole field vanish on this axis.

This model is basically an approximation of a storage ring where the
reference orbit is a straight line. We shall introduce a longitudinal coordinate
s along the reference line and a pair of rectangular transverse coordinates: z -
horizontal and y - vertical, which measure the distance of a particle trajectory
from the reference line; that is on reference line z = y=0.

3 Equations of Motion

To describe the motion of a particle it is convenient to consider the plane
perpendicular to the main axis of motion (the reference orbit) which includes
the particle position at the time ¢. It is on this plane that the distances z

" and y from the reference axis are evaluated at the time t. To the same

instant ¢ one can associate the longitudinal coordinate s, which is given by
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the interception of the zy plane with the reference orbit. Since there is
a unique correspondence between s and ¢, it is possible and actually more
convenient to take the longitudinal coordinate s as the independent variable,
instead of the time ¢. The displacements are then taken as functions of s,
that is z = z(s) and y = y(s).

In the following we shall denote with a prime the derivative with respect
to s. We shall also denote the components of the magnetic field as B,, B,
and Bi;. '

It can be proven* that the exact equations of motion, for the FODO test
model are

2" = _é‘“ + 2?2 + y?[B,(1 + ") — B,z'y’ — B,y/] (3)
y/l — EqE /1 + 2 - yl2[B$(]_ + y/2) — By.’E,yl —_ BSIL'I] (4)

It can also be proven* that the following relation holds
z' 2" 4+ y/y// —_ 2(1 + z'? 4+ y12)3/2(y/Bz — y) (5)
p

The last relation may be found useful in a variety of situations.

4 A Symplectic Integration

The general integration of the system made of Eqs. (3 and 4) is very difficult.
It may not be possible to prove their integrability in general. One can see
that there are two features that contribute to the difficulty of the problem:

1. There are kinematic terms which are represented by the ' and y’
factors which are usually neglected.

2. There are the field contributions, represented by the components B,,
B, and B;. Usually the longitudinal component is neglected as well as the
edge effects.

We need to find a symplectic integration method which allows us to solve
the equations of motion, satisfying all energy and momentum conservation



Figure 2: Replacing a full length quadrupole with a sequence of thin lenses
and drifts

laws. Conventional methods, like Newton, Lagrange, Runge-Kutta, etc.,
may not be valid for this purpose. We find the "TEAPOT - like” method of
replacing each element with a sequence of thin lenses and drifts, as shown in
Figure 2, a valid one.

The length [ of the quadrupole magnet is divided in IV steps. Each step is
made of a drift of length A = I/N with a thin lens quadrupole in the middle.
Each of these IV thin lenses is a quadrupole magnet with zero length. In the
limit of A — 0 or NV — oo, one can recover the original model of full length
quadrupole.

In a drift B, = B, = B, = 0, so that the equations of motion are simply

.'E” — yll — 0 (6)

with solution represented by straight line trajectories.

The integration through the thin lens quadrupoles is shown in Figure 3.
The trajectory of the particle is made of straight lines before and after the
thin lens. The trajectory is deflected by the thin lens leaving the position of
the particle unchanged and altering the velocity by an amount which depends
on z,y,z’ and y' as well as on the field gradient in the magnet.



(wla yl)2

(x’,’)/l'/ (x,y)

Figure 3: The trajectory of a particle going through a thin lens

5 Exact Field Expression

We wish to calculate the exact expression for the magnetic field distribution

of a finite length n-pole magnet, including the distribution at the edges. For
~ this purpose we introduce two functions: the dimensionless function f(s)
which defines the longitudinal shape of the magnet and

9n(2,9) = (an + ibn)(z + iy)" (7)

which describes the longitudinal field potential inside the n-pole magnet. It
is easily verified that

Vign(z,y) =0 (8)

Let B and A be respectively the magnetic field and the magnetic vector
potential. They satisfy

VA =0 (9)
VZA =0 (10)

and
B=VxA (11)



Since we are using rectangular coordinate system (z,y, s) equation (10)
is equivalent to

VA, =V?A, =V?4,=0 (12)

Tt can be proven by direct substitution that the following expressions
solve Eqgs. (9) and (10) for any chosen functions f(s) and g.(z,y):

Ay(2,Y,8) = gn D Cr(a® +y%)m fC™ (13)

m=0

Aus(2,Y,8) = —gn(z + iy) Z z? 4 )" O (14)

Ay(z,y,8) = —gn(y — iz) E m—l— +1)(a: +y?)m O (15)

m=0

where the coefficients C,, are related to each other according to

Cr—1 = —4m(m + n)C,, (16)
Co=1 (17)
and
(m) _ dmf(s)
g = TI) (19)

Inserting Egs. (13 - 15) into Eq. (11) yields

B, =ign 3 Cal(@m +n)z —ingl(a? + 217 (19)

m=0

= 19y Z Crl(2m + n)y + inz](z? 4 y?)™~1 FC™) (20)

Bs — ign Z Cm(xz + yZ)mf(Zm-i-l) (21)

m=0

As a special case let us consider a quadrupole magnet in normal orienta-
tion, that is n = 2, by, = 0 and a; = —G//2. After taking the imaginary part
- to obtain the real field representation, we have
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By = GyfO+ G Y Cula® +y?)™H[(2m + 1)z%y + 1% FO™ (22)

m=1

B, = GefO + G Y Cu(a® +y*)™ H(2m + 1)ay? + o3 fC™ (23)
m=1

B, =G Cpay(z? 4 y?)m fCm+1) (24)

m=0

If we retain only the linear terms in z and y, we get

B, = Gyf(s) (25)
B, = Gzf(s) (26)
B, =0 (27)

6 Linear Model

Let us neglect all the kinematic terms in Egs. (3 and 4) and retain only the
linear terms in the field expansion, that is Eqgs. (25-27) where f(s) is a step
function equal to 1 in the quadrupole and zero everywhere else.

The resulting equations of motion in a quadrupole are

"= —-Kz (28)
y" =Ky (29)
where, for convenience
q G
{ = G = —
| ch Ep (30)

In the drifts, between quadrupoles, the equations of motion are

=y =0 (31)

These equations are linear. They can be easily solved and their solu-
tion is usually represented by the matrix notation which involves the lattice
functions® By and By as well as the phase advance functions® ¥z and Uy
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As an example we shall take the following values which approximate reg-
ular cells in the arcs of RHICS:

Bp = 840 Tm (32)
G = 81T/m (33)
L =14m (34)
l=1m (35)

The lattice functions for this system, obtained with the SYNCH code’,
are plotted in Figure 4. The quadrupole gradient has been chosen to make
the phase advances across one FODO cell equal to 90° in both planes.

7 The TEAPOT Model

Let us now examine the approximation of a quadrupole magnet by a sequence
of thin lens magnets and drifts, as shown in Figure 2. We shall still adopt the
linear approximation, as it is done in TEAPOT code®. The only difference
from the equations of motion of the Linear Model is that the function f(s)
is a delta function at each thin lens, positioned at s = s;

f(s) = Xé(s —s;) (36)
where A = [/N is the length of a step which is approximated by one thin lens
and a drift.
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The position coordinates z and y of a particle crossing the thin lens are
unchanged, that is

Az=Ay=0 (37)

At the same time the angles 2’ and y’ receive a change

Az’ = —KXz (38)
Ay = Ky (39)

This model can be easily integrated and investigated. The results are
given for comparison in Table 1. The maximum and minimum values of
the amplitude functions are reported as well as the phase advance across
the FODO cell, A¥/27. The results for the Linear Model in Table 1 have
been derived with the SYNCH code”. The results of the approximation of
the whole quadrupole by one thin lens are computed manually, since for this
case the following relations hold

A=A (40)
AU, MK
Sl]l(—'—z'—) = '——2——' (4:]_)
2 [24 AlK|
N ik EINIT (42)

2 l 2 — Al|K]|
Brmin = IIK|\| 2+ Al|K] (43)

Remaining entries in the Table 1 are obtained with a TEAPOT type of
code, for several different numbers of sequences in which each quadrupole is
subdivided. The last three entries correspond to the Simpson-Bode® method
of integration where magnets are subdivided into thin lenses each carrying
a different weighted strength. Several different number of subdividing steps,
shown in brackets, are presented.

It can be seen that the single thin lens model provides results which are
- only few percent from those of the exact Linear Model. Subdividing the
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Table 1: Comparison of different Linear Models

MODEL Braz Brmin AV /2x
Linear Model 50.80254 | 8.86074 | 0.24992
Thin Lens 51.75140 | 8.31240 | 0.25734
TEAPOT (2) 50.71639 | 8.77329 | 0.25176
TEAPOT (4) 50.78029 | 8.83885 | 0.25038

TEAPOT (10) 50.79895 | 8.85724 | 0.24999
TEAPOT (20) 50.80164 | 8.85987 | 0.24994
TEAPOT (100) 50.80231 | 8.860052 | 0.24992
TEAPOT (200) 50.80250 | 8.86071 | 0.24992
Simpson-Bode (2) | 51.15743 | 8.73205 | 0.25115
Simpson-Bode (3) | 50.78102 | 8.83882 | 0.25038
Simpson-Bode (4) | 50.75739 | 8.84859 | 0.25027

quadrupole in more thin lenses gives a closer approximation. Nevertheless,
even if we divide magnet into 200 thin lenses the results are off by an error
of 1075 for the amplitude function.

It has been assumed that a more effective way of integrating the motion
through a magnet is the Simpson-Bode method. This method is commonly
used in tracking particle motion through non-linear elements. Its effectiveness
cannot be easily proven except in a linear case where the results can be
compared to the exact solution. The results reported in Table 1 are evidence
that the Simpson-Bode method has a better convergence property than the
method a 14 TEAPOT.

Let (z,2') and (y,y’) be the particle position and angle in the middle of
any of the two quadrupoles, QF and QD. Then the following quantities are
invariant®

2
€Eg = _.’B_ + :CIZ,BH (4:4:)
Pu
_Y e
ev=——+y By (45)
Bv

The values of the amplitude functions Bz and By vary somewhat from
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model to model as shown in Table 1. In the following we shall take the Linear
Model as the reference one.

8 The Kinematic Model

The kinematic model is defined by the set of exact Egs. (3 and 4), where
kinematic terms are retained to any order but the field expansion is truncated
beyond the linear terms, Eqgs. (25-27). This model is truly symplectic.

The investigation of this model is relevant to determine the magnitude
and the importance of the effects of the kinematic terms. This can be done
by comparison with the Linear Model.

We shall continue to approximate a quadrupole with a sequence of thin
- lenses and drifts. Indeed this is the only method we know for numerical
symplectic integration.

The equations of the motion through a thin quadrupole now become

g = —KM/1+ 32+ y? (z + z2” — yz'y')8(s) (46)
y"' = KM/1+ 22 +y2 (y + yy”? — z2'y')é(s) (47)

can be integrated exactly yielding kicks

Az’ = —KM\/1 42" +y?(z + 22" — ya'y') (48)
Ay' = KJ/1 + z? + yl2(y + yyfz _ :cx’y') (49)

where z,2’,y and y’ at the right hand side correspond to the instant just
before entering the lens, as it is proven in the Appendix.

We have not been able to derive invariants similar to those given for
the linear model. Nevertheless, it can be noticed that the kinematic terms
introduce coupling between horizontal and vertical motion. The coupling
disappears only if the motion is purely horizontal (y = y' = 0) or purely
vertical (z = 2’ = 0). In these cases the equations of the motion reduce to
either

"= —KXz(1 4 2)%%5(s) (50)
=0 (51)

< 8
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or:

' =0 (52)
y" = Ky(l +y?)*?6(s) (53)
Let us take, for instance, the purely horizontal motion. In this case we

- can decouple our second order differential equation of motion, Eq. (50), into
two first order differential equations:

z = Pz H4
o (54)
P, = —KXz6(s) (55)

which can be derived from the following Hamiltonian:

KX —

9 The Maxwellian Field Model

The Maxwellian Field model is obtained by neglecting all the kinematic terms
in Egs. (3) and (4) but retaining the exact field series representation, Egs.
(22-24). Only B, and B, field components enter the equations:

q
(IJ” = —'&)'By (57)
" q
= —B, 5
V=2 (58)

Inserting Egs. (22-24) we obtain

" = —KX{z6(s) + i Cou(® + y?)™ H(2m + 1)zy? + 2°]6C™) (5)}

" (59)
y" = K\{yé(s) + i Crn(a® +y*)" 7 [(2m + 1)2’y + 316%™ ()}
(60)
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where again a thin lens representation has been assumed.
The integration of Eqs. (59) and (60) is cumbersome, but it can be exactly
derived. If we retain only the linear, m = 1 and m = 2 terms, we obtain

1 1
Az = —K\(z — Ezvy’z —yy'z’ — zz +

2
1 3
%wyhi + Zywa, + _Z_mymxlz _ Zyy’mB . Emmﬂi) (61)
/ 1 12 1 1 1 12

Ay =K/\(y—§yx ~ Yy —oyy” +
5 4 5 131 5 12 12 ]‘ 1 13 3 14
= b b - - 62
1e¥e” + geety + guey” — Zway® — =y ) (62)

The particle coordinates z,z’,y and y’ appearing at the right hand side
have, again, values by which particle was described just before entering the
thin lens.

The factors in 2’ and y’ which appear in these equations do not originate
from the kinematic terms. They are introduced by the integration across the
derivatives of the delta function.

It is important to notice that higher order terms in the field expansion
cause higher order terms in the equations of motion. Therefore, raising the
truncation in the expansion of the field beyond m = 2 will not change the
terms in the equations of motion up to the fifth order but will only generate
terms higher than fifth order.

We like to point out that this model is also symplectic, whatever is the
order of truncation in the expression of the magnetic field.

10 Comparison and Conclusion

Let us introduce the General Model where the equations of motion have the
exact representation of the kinematic terms retained and the Maxwellian field
series expansion included to a sufficiently high order. In particular we shall
retain only the field expansion up to and including the m = 2 terms of Eqs.
(22-24). Integration through a thin lens then leads to the following changes
of the particle velocity
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Az’ = —K\/1+ 2%+ y%(z + —;—:I::c'z — 3yy'z’ — gwylz +

13 13_1 25 12_12 3 113 ]‘3 4 3 4

Yy z + gy e +4yy:c +16ar:y T ) (63)
/ 1 12 .1 3 12

Ay =K)\\/1+a:’2+y'2(y+§yy — 3z2y — 5y +

13 3,1 25 12,12 3 113 13 " 3 "4

720y + ey 4 ey + ey — ™) (64)

One can see that the square root term is not expanded but retained
~ exactly to preserve the nature of the kinematic terms. This model also pre-
serves the symplectic properties. The terms which appear within the round
brackets are proper to the field series representation and truncation.

' We have thus developed four models given by the sets of Eqs. (38-39),
(48-49), (61-62) and (63-64). Each of these models represent different ap-
proximation and can be easily tested against each other to determine the
importance of either neglecting or including the kinematic as well as the field
expansion terms for the stability of a particle motion over long periods of
time.

It is easy to estimate the correction to the usual linear approximation
for each of the models. Retaining only the lowest order part without cross
terms, we have:

A%, = —KAa(1 + ggﬂ) (65)
Axl = —K\a(l - %x'z) (66)
Azl = —KXz(1 + 2%) (67)

corresponding respectively to the Kinematic, Maxwellian and General model.

These equations are not to be used in real simulation but only to estimate

the magnitude of the correction introduced, as they are not symplectic.
According to Linear Model

Az’ = —K)z (68)
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Using parameters typical of the arc FODO cell in RHIC® each model gives
a correction of magnitude

Azl — Az’
Az!
These correction factors are not important to determine the motion of
only few revolutions and for ring design. They may be very important and
cannot be ignored to determine the stability of motion of a particle for a long
period of time.

~1078 —-107° (69)
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Appendix

- We are interested in the integration of the following equation:

g’ =F [z(s),z'(s)] 6(s) (A1)
where F' is an analytical function in a sufficiently large interval around s = 0.
- Let us replace the delta function with a step function H (s, €), which is
zero everywhere except in the interval from s = —e to s = +¢, where it is

equal to one,
g = F (z,2') H—(zﬁ (A2)
The exact solution of the original equa,tioneis obtained by taking the limit

e — 0.

In particular

€
Az’ = lim —1-— F(s)ds (A3)

e—0 2€ J_,
This integral can be estimated by subdividing the 2¢ interval into N
substeps of length h = 2¢/N, so that

Az' = lim {—L lim

e—=0 2¢ Nooo

N
Z F(—e+ nh)] } (A4)
n=1

Using the analytical characteristics of the F'(s) in the interval of inte-

gration, we can expand:

F(—e+nh)=F(—¢)+ F'(—€¢)nh + —F”—(z—ﬁ(nh)2 + ... (A5)

Substituting this expansion into Eq. (A4) yields

, 1 / N F(m) N

T . _ _ m m

Az —%1_1)%]\/11_%0—]\[ NF (—¢)+hF' (—¢) E n—l—...-{-———! h ng_ln + o
(A6)

n=1

18



" As ZnN____l n™ is a polynomial in N of the order m+1, in the limit N — oo

we derive

29" F™ (-

I 12 _ I_
Az —15% F(—e)+2eF' ( e)+...+m+1 —

(A7)
In the limit € — 0 finally

Az' = F (z,2') (A8)

where F is evaluated just at the entrance of the integration interval.
The generalization to a system of two second order differential equations

is straight forward.

References:

1. F.C. Iselin; Computer Programs for Accelerators, CAS Proceed-

ings, CERN, Geneva, (1987).

H. Wiedemann, PEP Note 220, (1976).

R. Talman, L. Schachinger; SSC-52, (1985).

K.L. Brown; SLAC - 75, Stanford, (1972).

E.D. Courant, H.S. Snyder; Theory of the Alternating Gradient

Synchotron, Annals of Physics, Vol. 3, 1-48, (1958).

Conceptual Design of RHIC, BNL 52195, (1989).

7. ED. Courant, A.A. Garren, A.S. Kenney, M.J. Syphens; A Users
Guide to SYNCH, BNL, (1985).

8. Handbook of Mathematical Functions; Edited by M. Abramowitz

and A. Stegun, Ninth Printing, NBS, Washington, (1970).

Otk L

o

19



