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1. Introduction

This paper finds expressions for the beta functions and the normal mode rotation
angle in the presence of linear coupling. To do this, expressions will be found for the
4 eigenfunctions of the transfer matrix using perturbation theory techniques. It will be
shown that having these results for the 4 eigenfunction is equivalent to having a result for
the transfer matrix, and results for the beta function and the normal mode rotation angle
can then be found from these results for the eigenfunctions.

These results for the beta function and the rotation angle parameter suggest ways of
controlling these effects by controlling certain important driving terms. The same driving
terms appear in the expressions for the beta functions and for the normal mode rotation
angle parameter, and also in the previously found results! for the tune shift including the
higher order tune shift. For all these three effects, the harmonics of the skew quadrupole
field close to v; + vy are found to be the important harmonics.

The problem of finding expressions for the beta function has been treated in a previous
paper.? However, the methods used in this paper are an improvement over the previous
method, and allows other problems to be treated such as the normal mode rotation angle,
emittance blow up at injection and finding expressions for the other orbit parameters that
occur in linear coupling. The eigenfunction results given in this paper will be applied to
the problem of emittance distortion at injection due to linear coupling in a future paper.

Expressions for the emittance distortions will be found which contain the same driving
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2 The Eigenfunclions

terms as those that appear in the results for the beta function distortion, the normal
mode rotation angle parameter and the higher order tune shift. It appears possible to
globally correct all these effects with a skew quadrupole correction system that controls

the harmonics of the skew quadrupole field that are close to vz + vy,

2. The Eigenfunctions

This paper will find perturbation theory expressions for the 4 eigenfunctions of the 4 x4
transfer matrix in the presence of linear coupling. These expressions for the eigenfunctions
can be useful in studying various effects due to linear coupling, such as the distortion of the
beta function, the distortion in the emittance, and the rotation of the plane of the normal
modes. This paper will find expressions for the eigenfunctions which are valid when the
tune is close to a linear coupling resonance and to first order in the skew quadrupole field
generating the linear coupling. These results will be applied to the problems of the beta
function distortion, and to the normal mode rotation angle.

The eigenfunctions may be defined in terms of the transfer matrix, T (s, so),
z(s)=T(s,s0) z(s0) (2.1a)

In Eq. (2.1a), T'(s,s0) is a 4 x 4 matrix, z (s) is a 4 x 1 column vector

z

P (2.18)

)
by
In the absence of solenoids, p, = z' and py = y'. The eigenfunctions are those z (s) that
satisfy
T(s+L,s)z = Az, (2.1¢)

where L is the period of the magnetic guide field.
It can be shown,® that there are 4 eigenfunctions z; (s), ¢ = 1,2,3,4 with eigenvalues

Ai, and which occur in pairs such that for stable motion,

* * * *
o = Z7, T4 = T3, /\2 = )\1, /\4 = /\3.



The Eigenfunctions 3

It can be shown? that the eigenfunctions are solutions of the equations of motions, and
that
z1(s) = exp (i2mns/L) fi(s),

z3(s) = exp (i2ms/L) f2(s).

(2.2)

f1(s), f2(s) are periodic in s with period L, and 11, v» are the normal mode tunes. Note

z; and f; are both 4 x 1 column vectors.

The equations of motion can be written as!

d? 2
<d92 + Va:) Nz = bg (3) Ny

2 2 (2.3)
(E + Vy) My = by (8) s

1/2 1/2
T = z/nza y= y/ny

93: - /ds(l/yzﬂz)a 91/ = /dS (1/1/1/16:’/)
b (s) = V2B (BaBy) a1 /p
by (s) = v2 By (BsPy)"* a1/p

The skew quadrupole field is described by a3 (s). On the median plane, the field B, is
given by

where By is the main dipole field. p is the radius of curvature of the main dipole.

The solutions of Eq. (2.3) which have the form of Eq. (2.2) were found in two previous

1,2

papers” when v;,y are near the resonance line v, = 1, + p. These solutions may be

written as

Ne = Aexp (7:7/:1:,391;) {1 + Z fn}

n#E—p
£ = (Vas — vg) 2uzbp exp [—i (n + p) 6;]
" Av (n—vy —1y)(n+p)

(2.4)




4 ' The Eigenfunctions

ny = B exp (tvys, by) {1 + Zgn}

n=p

(vys — vy) 2vycoexp [—i (n — p) by]
Av* (n— vz —vy)(n—p)

On =

Av = (1/4mp) /ds (ﬁxﬂy)% a1 exp [i (—vgsly + vysby)]

1

by, = 47rp ds (ﬁxﬁy)z aj €Xp [z ((n - Vy) b + Vy y)]

Cn

47rp /ds (ﬂzﬂy)z ay exp [¢ (V505 + (n — vy) 6y)]
a: —1/)-'12/7/337 y—@by/l/y
vzs and vy, are the solutions of
Vzs = Uys + D, (Vos — V) (Vys — vy) = |AI/|2 (2.5)

There are two solutions of Eq. (2.5) corresponding to the two normal modes. For the mode
for which vz; — v; when a1 — 0, we will put vy, = 11, vys = v1 — p. For the mode for
which vy, — v, when a; — 0, we will put Vys = Vg, Vgg = 3+ p. The A and B coefficients

are related by

B = MAl for the v1 mode
Av

_— (-1
=N
The results for the eigenfunctions, Eq. (2.3) were found by solving the equations of

(2.6)
By for the v mode

motion to first order terms in aj. It has been assumed that v4,v, the unperturbed tune,
is close to the coupling resonance v; = vy + p and the v, — v, — p can be considered to be
small, of the same order as a;. This last assumption allows the equations to be simplified
and it is the case of most interest to us.

The A and B coefficients in Eq. (2.5) have now to be chosen so that the eigenfunctions
are properly normalized, which means the eigenfunctions can be then expressed in terms
of the orbit parameters like 81, a1, and B3, a2, 1s. To understand this better consider

the 2 dimensional case. If we wish the eigenfunction to be related to 8, by

z = "% exp (i),
then
pr =2 = ,8‘1/2 (—a +1)exp (iv)
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and the two eigenfunctions are given by z3,z} where

g (i%) (2.7
T = exp (2 .
B3 (—a+i)
These eigenfunctions are normalized so that

% Sar=2 (2.8)

0 1

=[5
-1 0

71 is the transpose of z7.

The normalization given by Eq. (2.8) gives the relationship between z; and 8, a,
given by Eq. (2.7). It is shown in section 6, that in the 4 dimensional case the normalization
Eq. (2.8) will allow the eigenfunctions z;,z3 to be related to Bragpr and Baagthy in a

corresponding way. In this case, S is now the 4 x 4 matrix

0 1 0 0
10 0 0

S = (2.9)
0 0 0 1
0 -1 0

Eq. (2.8) will be used to determine the coefficients A, B. This gives the relationship, see
section 5,

AP (vas/va) + |BI* (vys /vy) = 1. (2.10)

Eq. (2.10) together with Eq. (2.6) determine A and B.

For the v; mode
Vi — Uy

By =—
1 Ay A17
NN W J el 4 e
! Vg vy Av o
For the v mode
-y
Az = - N
2 (2.115)
| By (2+ 2t p vz vy ) —1.
vy Vg Av

A case of particular interest is when the linear coupling has been corrected to make

Av ~ 0. There are then two solutions of interest,
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L AV < |vg — vy — pl

2. vz — vy — p| < |Av|
In case 1., Av has been made small enough so that the tune v, vy is well outside the width
of the difference resonance. This may not always be achieved. vz, Vy may be very close
to the difference resonance, and the best setting of the correction system to minimize the
tune splitting does not have to correspond to Av = 0.

If |Av| < |vz — vy — p|, one finds (see section 5)
|41] =1, B; =0,
|Ba| =1, Ay =0.

The two modes appear to be decoupled.
If vy — vy — p| < |Av|, one finds

|A1] = |B1] = 1/V2
|42 = |By| = 1/v2

The two modes appear completely coupled.

3. The Transfer Matrix in Terms of the Eigenfunctions
Given the four eigenfunctions z;,7 = 1,4 which are normalized such that
%; Sz; = 2i, (3.1)

then it will be shown that one can find the transfer matrix T (s, s) from
T (s,50) = (=1/2:) U (s) U (s0)
U=5US (3.2)

U =[z1 z3 z3 z4].
U is a 4 x 4 matrix and z; is a 4 X 1 column vector.
Eq. (4.2) will be derived for the 2-dimensional case. The generalization to 4 or more
dimensions is clear. In two dimensions a solution of the equation of motion can be written

as
T =aiT1 + ax2, T2 = x*,

i . R . (3.3)

a1 =21 Sz /2, az = a] =z, Sz/(~2)
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Evaluate a; and a using z (sp). Then

2 = (1/23) (21 () 71 (s0) — 22 (s) % (50)) S z(s0)
z = (1/2i) (331 (s) 71 (s0) — ¥ (5) 71 (30)) S z(s)

%1 (s0) (3.4)
v =(1/20)[e1(s) <}(s)]S [N 30 ] S z(s0)
z = (=1/2)U (s)U (s0) (s0).
Thus
T(s,s0) = (=1/20) U () U (s0) (3-5)

One may note that V = (—Qi)—% U (s) is symplectic as T'(s,s) = I and VV = I.
Eq. (3.5) shows that knowing the eigenfunctions z; is equivalent to knowing the transfer
matrix T'(s,s0). Eq. (3.5) also shows that T'(s, sp) is symplectic as it is the product of

two symplectic matrices, V (s) and V (sq).
4. Applications of the Eigenfunction Results

The results found for the eigenfunctions in section 2 will be used to compute the orbit
parameters ;1 and B, the beta functions of the normal modes, and ¢, the normal mode
rotation angle. To compute the orbit parameters one needs the relationship between the
eigenfunctions and the orbit parameters.

In 2 dimensions there are just 3 orbit parameters and the eigenfunctions are related to

these 3 parameters by

812 (—a + i) exp (it) “)

In 4 dimensions, there are 10 orbit parameters. These include £1, 01,11 and B2, ag, 19 of

oy = [ BY2 exp (i) ]

the two normal modes. In addition there are 4 parameters that define the transformation
to the normal mode coordinates.” These 4 parameters may be denoted by ¢ and D where
D is a 2 X 2 matrix and |D| = I. In terms of these 10 orbit parameters the eigenfunctions

are given by, see section 6,

[ cosp p } [Esingo ,ug]
T] = . T3 =
| —Dsiny py COS (P 42
‘ i 3 1 (4.2)
" By . ﬂz .
m=| o) m=| exp (i)
| 6 % (a1 +9) —By * (—az +1)
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where D = DL,
If the eigenfunctions are known, then Eqs. (4.2) can be inverted to find the 10 orbit

parameters. One can use additional relationships.

i 1 dpy 1
5T B (43)

1 1
a1 = —-—2—,6'1 + PrLtanpde/ds, ag = —-Eﬂé + B tanpdyp/ds
which are valid in absence of solenoidal fields. Egs. (4.1) and the results for the eigenfunc-

tions (Egs. (2.3) will now be used to find f; and fs.

For the 11 mode, using the first element of z; one finds

—]-: .
cos 7 exp (p1) = =11

Ty = Alﬂz% exp (1116;) (1 + Z fn>

nF—p (44)
— B (142 et ) | e |i [t o 5 =5 |-
2 21
n#E—p nFk—p
Thus we find for ¥
1 *
¢1 = 116; + Z Z (fn - fn) . (45(1)
nF#—p
From 17 one can find () from 1/; = di1/ds
1 Vi 1 .
o= + —n — + , 4.5b
-p
B1— By _ V1 — Vg bn .
5 Z Av n—w—m exp[—i(n+p)0z] +cc. p. (4.6a)
all n
Using the third element of z3, one finds for fy
,32 - ﬂy Vo — Uy Cn )
—at = ~i(n— o 6b
By %: Aot (n—1p — iy S PITH(RmP) bl e (4.60)
all n :

Egs. (4.6) show that the dominant driving terms by, ¢, are those for which n ~ v; +v,.
Close to the coupling resonance, when |v; — vy —p| < |Av/|, then (81 — Bz) / Bz is linear in
ai since |(v1 — vz) /Av| ~ 1 when v, vy are close to the coupling resonance. Far from the
coupling resonance, when |v; —vy—p| > |Av|, then |v1—v;|/|Av| ~ |Av| and (1 — Bz) /B

is quadratic in aj.
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4.1 Normal Mode Rotation Angle, ¢

Using Eq. (4.4) for the v; mode one finds

cos so/ii% — |41]82 (1 +% > (fat f;)) (4.7)

nE—p
and
cos o = || (B/p1)} (1 + ;;; (Fat f,t)) .
From (4.5b) p
oapnt L POERIERND «9)
cosp = | A4 (1 + -;-1; + ; (Fo + 12) (-;- - ”;f)) (4.9a)
V] — Vg 2v; b, '

fn‘:

A (n—vs—vy) (nFp) P FP)6]

2
|Axf? (ﬂ-*-yl_p >=1

One can find another expression for cos¢ by using the z3 eigenfunction. This gives

Vi — Vg

Av

cos ¢ = | By| (ﬂy/ﬂz)% (1 + % z(gn + 9;:))
n#p

lvy — v, 1 n-—
cosp = | By| (1+; L+ (gn + 95 (5— 4Vp))
< Y Y

n#p (4.91))

vy — vy 2vycy
In =

Avt (n—y, — Vy) (n— ?) exp [—i (n— p) ey]

2
| Ba|? <2+V2+p > =1

The results for the beta functions, Eq. (4.6) and the results for cos v, Eq. (4.9), show

Vz—lly

Av

that they have same important driving terms by, ¢y for n ~ Vg + vy. The higher order
v-shift also has the same driving terms.! Thus a correction system that corrects these

driving terms might be able to correct all these three effects simultaneously. In addition
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to the driving terms by, cp, n ~ vy + vy, a complete linear coupling corrections would also
have to correct b_, ~ cp which drives the nearby difference resonance and the lowest order

tune shift.

5. Calculation of the A and B Coefficients

In section 2, expressions for the eigenfunctions were given in Eq. (2.3) which contained
two normalization coefficients A and B and it was stated that A and B are determined by

the normalization conditions .
7 S ] = 2
(5.1)

The relationship (Eq. 2.8) between A and B will be found in this section using the
conditions Eq. (5.1).

It is convenient to go from the z, p,, y, p, variables to n,, Pnzy My, Ppy Variables,

() =6 ()
DPa Dz
/N 0 (5.2)
Ge=|__o _1_
VB \/Bs
Gs is a symplectic, |G| = 1. In a similar way Y, py are related to 7y, pyy by Gy, and in

4-dimensions

r=Gn
o[ 2]
0 Gy
(5.3)
T Ne
— | P= = | Puz
z = , =
Y " My
by Dy
Because G is symplectic, Eq. (5.1) becomes
~k ~k
r Sz=nSn=2 : (5.4)
one then finds
0 1 0 0
-1 0 0 0
S = (5.5)
0 0 0 1
0 O -1 0
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n*Sn = (Mypns — cc) + (ipyy — cc) = 2i
Im (n3pys) + Im (nypgy) = 1 (5.6)

From Eq. (2.3)

n#—p

Nz = AeXP (iyxsex) (1 + E fn) ’ (57&)

and it can be shown that pp, = (1/v;) dng/d, so

DPpz = A exp (Zste ) I:V:cs (1+ Z fn) +_ Z ( (’I’L-l—p))fn:l (5'76)

nF—p "% ng—p

n;petaz = IAIZZ

Vgs v

4 (fat fa) 4 — Z (=(n+p)f } (5.8q)
- Yoo Ve,

In some way one finds

Mypgy = | Bl { ) (o +gn) T Cto Z( (n—P))gn} (5.8b)

n#p naép
Since Im (n}pys + U;Pny) = 1, when Eqgs. (5.8a) and (5.8b) are added together, the terms
depending on 6, and 6, have to cancel each other. Only the constant terms remain. Eq.
(5.6) then gives
|APvys /vy + | B 2uys vy = 1 (5.9a)

Eq. (5.9) together with Eq. (2.4)

By = —_(7/21&-_%:)Al
( Y ) (5.95)
= vy — l/y
Az = Av* B

determine A and B for the two modes.
The solutions of Eq. (5.9) for A and B are particularly interesting when the difference
resonance has been corrected so that Av ~ 0. There are then two solutions of interest

|Av| < |z — vy — p|

lve — vy — p| < |Av|
For the sake of simplicity, the solutions will be found for case when p = 0, and v,, Vy

is near the vy — vy = 0 resonance.
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For the case when |Av| < |v; — 1| then, from Eq. (2.5),

V1= vy £ 2|Av|?/|v, ~ vy

vy = vy F2|Av[?/|vy — vyl
2Av
T — Vy
2Av

Vg — Uy

|B1| =

|A1| < A4,

2] = |

|B2| < |B2].

For the v; mode
lAll ~1

IB1I ~0

for the v9 mode
IAzI ~0

|Bz| ~1
For the case when |Av| > |v; — vy

1
=g (ve + vy) = |Ay|

1
v= 5 (e + ) F A

(et ) /2 AV — v,
Av

By = (|Av|/Av) A4

B1 = Al

Ay = F(|Av|/Av*) B,y
Thus one finds
|Bi] = |A1] and |Bs|=|As],

(5.10)

(5.11a)

(5.11b)

(5.12a)

(5.125)

The motion is completely coupled. Assuming that v, vy are close to the resonance, Eq.

(5.9a) gives
41| = |B1| =1/v2

|42] = |By| = 1/v2
From Egs. (5.12) one also gets the relationship

A%By + AiBy =0

(5.13)

(5.14)
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6. The Eigenfunction and the 10 Orbit Parameter

In this section, the eigenfunctions will be related to the 10 orbit parameters for the
coupled motion.
In two dimensions, the eigenfunction is related to the 3 orbit parameters 3, o, ¢ by
g2 .
zi=| | exp (2) (6.1)
p7E(—a+i)

and z2 = z}, 1 obeys the normalization condition
~k .
zy Sa1=21 (6.2)

In four dimensions, one can go from the coordinates, z,p,, y, py to an uncoupled set of

coordinates v, py, u, p, the normal coordinates, by the transformation®

z=Rv (6.3)
R— ( Ico?ga _D—singo) (6.4)
—Dsingp Icosep

I and R are 2 x 2 matrices. I is the 2 X 2 identity matrix. D = D! and |[D|=1. Ris a

symplectic matrix, .
RR=1
e (6.5)
R = SRS
¢ and the 3 independent elements of D may be considered as 4 of the orbit parameters.
They are periodic in s. The other 6 orbit parameters are the 81, a1,%1 and B2, ag, s of
the 2 normal modes.

It can be shown that 'a\:J* Sz is a constant® of the motion. Also if z and v are related

by a symplectic matrix then

7 Sz=7 Sv (6.6)

The transfer matrix for v coordinates is given by
v(s) =U(s,50)v(s0)

U =R (s) TR (s0)

(6.7)

It can then be shown that the eigenfunction of U and v;, and the eigenfunctions of T are
related by
z; = R v; (6.8)
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The v coordinates are uncoupled, so the v; eigenfunctions can be written down using

Eq. (6.1) as

0 2
o}

1 € exp (11), po= 1 exp (12)
Br ? (—aa +1) By ? (a2 +7)

(6.9)
g =

* *
'U2='Ul, 7)4:7.)3

one may note that %JISvl = 5;5'03 = 2i. The z; can then be written down using z = Rv
( 41 COS )
Ty = .
—Dyy sing
(ﬁ,uz sin go)
rg =
12 cos @
Eq. (6.10) relates the eigenfunctions z; to the 10 orbit parameters. Also EI,Sazl =;;
Szg = 2.

as

(6.10)
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