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This is a review of the interaction between the motion of a short and
intense bunch of electrons and an electromagnetic wave, both propagating
along the longitudinal axis of a waveguide. The interaction causes stimula-
tion of radiation emission by having the electromagnetic wave to make the
electron bunch oscillate coherently in a plane transverse to main direction
of motion. The excitation has a maximum in correspondence of driving the
waveguide at cut-off. To make realistic estimate of the amount of radiation
emitted, the paper analyzes the case of a general rectangular cross-section
of the waveguide with walls of the most general electro-magnetic properties.

In particular the case of resistive walls is examined.

1. Introduction

In a previous note (AD/AP-35) we have seen that it is possible to convert electromag-
netic power from one frequency to another by letting a short and intense electron bunch
interact with an electromagnetic wave traveling along the axis of a square waveguide. The
method to be effective requires that the waveguide is driven in proximity of the cut-off
where the wave phase velocity is the largest.

In this note we reconsider the basic model of interaction and we take a waveguide
with general rectangular cross-section. Moreover the electric and magnetic fields are esti-
mated with the walls of the waveguide of the most general electromagnetic properties. In

particular we considered the case of resistive walls.
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We found that there is a maximum value of the phase velocity at cut-off due to the
limited conductivity of the walls. We found also that the square geometry of the waveg-
uide is still the optimum compared to a rectangular one. A new set of parameters for a
demonstration of a frequency transformer is finally given with more realistic electron beam

parameters.

2. Scalar and Vector Potentials in a Waveguide

We shall consider an infinitely long waveguide, straight, with rectangular cross-section
of width w and height h. We shall introduce a rectangular coordinate system z, y and z;
where = and y are the transverse distances from the upper left corner of the waveguide
(see Fig. 1) and z is the longitudinal coordinate along the axis. In this section we describe
the propagation of a TM traveling electromagnetic wave in the waveguide. If we use the
Lorentz representation, the fields can be derived from a scalar V' and vector potential A

satisfying the following equations

0 10*v

25 _ LOA
VA - 5= =0 (2)
. 10V
leA+-C_~8—%——O (3)

In cartesian coordinates the explicitly form of Eq. (1) is

32V+32V+32V_i52_V_0 (@)
0z2 Oyt ' 0z 2 Ot2

A solution of Eq. (4) is
V = Vp (sinayz + V; cos a1z) (sin agy + V3 cos agy) elF—«?) (5)

The nature of the traveling wave is described by the last factor where w is the angular fre-
quency and k Jlohe wave number which defines the longitudinal propagation mode. Insertion
of Eq. (5) into Eq. (4) yields

kz-—:ﬁ)——a%—-ag (6)
The horizontal and vertical propagation constants, respectively a1 and as, are to be de-

termined by specifying proper boundary conditions of the electric and magnetic fields at
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the walls of the waveguide. The same boundary conditions will be used to estimate V; and
V2 appearing at the right-hand side of Eq. (5).

According to the conventional waveguide terminology, a TM mode is defined as that
traveling wave with vanishing magnetic field in the main direction of propagation, that is
the z-axis of the waveguide. This mode is associated to solutions of the vector potential
A which actually is completely directed along the z-axis and has vanishing components in

the directions (z and y) perpendicular to the direction of the wave propagation, that is
A =(0,0,A4) (7)
where A satisfies an equation similar to Eq. (4). Moreover, to satisfy the Lorentz condition

represented by Eq. (3)

A =B,V (8)
where

Bu =w/ke (9)
is the wave phase velocity, normalized to the speed of light. Thus the vector potential A

is completely determined from the knowledge of the scalar potential V.

3. The Field Distribution

The electric E and magnetic B fields can be determined from the usual relations

E=-—grad V - %%?— (10)
B =rot A (11)

We obtain after inserting Eqgs. (5, 7 and 8)
Ey = —a1Vp (cosanz — V) sin ey z) (sin gy + Va cos agy) e'? (12)
Ey = —ayVp (sinayz + V) cos o z) (cos apy — Vs sin apy) ' (13)
E,=ik (B2 -1)V (14)

and

By = —py E, (15)
B, = o I, (16)
B, =0 (17)
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where
¢ =kz —wt (18)

is the wave phase function.

Fig. 1: Waveguide Geometry.

4. Boundary Conditions and Propagation Constants

We shall take the walls of the waveguide with the most general electromagnetic proper-
ties, described by the surface characteristic impedance £, a complex function of the angular
frequency w.

The following boundary conditions are to be satisfied at the walls of the waveguide

E, = —¢(B, at z=0 (19)

E. = (B, T=w (20)
and

E,=¢(B, at y=0 (21)
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From Egs. (19 and 21) we derive easily

. fﬂwaj
C— J__ 2
YT TR D .
where we let j = 1 or 2. The other two equations (20 and 22), after some manipulation,
give
Cisin(aqw — p1) =0 (24)
Cy sin (012]2 - /,Lz) =0 (25)
where )
B (82— 1) — 28207
¢ = (85 —1)" — €503 (26)
k(6% —1)
and ( ) )
2l Pyajk (B — 1
tg“jzz 2w12 242 2 (27)
k*(Bs —1)" + 28505
Egs. (24 and 25) can be used to determine the eigenvalues of a; and ary; that is
QW — (] = TN (28)
ash — pp = 7m (29)

with n, m integer real numbers. Other possible propagation modes can also be obtained
by letting either Cy = 0 or C2 = 0 or both at the same time. In turn, Eqs. (28 and 29) can
be used in conjunction to Eq. (6) to calculate the propagation constant k. Because oy and
a3 depend on the phase shifts y; and g, in reality Eq. (27) is a nonlinear equation either
in py or in pp that ought to be solved for the determination of the phase shifts. Since y;
and p9 are in general complex, also the propagation constant k£ will be a complex quantity.
The problem is thus completely solved. The only parameters left to be determined is the

amplitude Vj of the scalar potential function.

5. Perfectly Conductive Waveguide

A special case is a waveguide with perfectly conductive walls, that is £ = 0. In this
case it is easily seen that V3 = V3 = 0 and p1 = pp = 0; moreover k? is real. Solving Eq.

(6) gives the following dispersion relation

wZ
k: —2‘*’—'
C

9]
3] | QEM

(30)
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where
We = TC Z—Z 4 7;7%2 (31)
is the angular frequency at cut-off. It is convenient to introduce the form factor
q = we/w (32)
It is seen from Egs. (9 and 30) that
= (33

The range of values of the form factor fulfilling the condition of propagation, which corre-
sponds to k positive, is

O0<g<l (34)

that is w > we. It is then seen that §, is always real and larger than 1; that is the wave
phase velocity is always larger than the speed of light.

An inspection of the dispersion relation, Eq. (30), shows that below the cut-off, w < we,
there is no propagation, and %k assumes no real values. For large values of w, k increases
about linearly. An interesting plot, shown in Fig. 2, is the display of the wave phase
velocity B, versus the form factor ¢ as given by Eq. (33). Observe that approaching the

cut-off from below, ¢ — 1, the phase velocity 8,, becomes infinitely large.

6. Waveguide with Resistive Walls

In the following we consider the case of resistive walls. For this case the surface

characteristic impedance is

8mo (35)

where o is the electric conductivity and p the magnetic permeability of the wall material.

The dispersion relation Eq. (6) can now be written

w2 w2
B = o — =L - A? (36)

¢ ¢
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where
2

2 np1 | mp |
A? = ,,+h2+2(2+h2) (37)

and k, A are complex quantities. Let us separate explicitly the real and imaginary parts;

that is

k=rFk 4k (38)
A=A+ A (39)
then
wZ . w2 wz . wz 2
2kr2 = —‘z—c - A% + A,z + (—2———c —AZ 4 Af) + 4A%A% (40)
c c
and
AA;
B= 28 (41)
k,

The last quantity k; is the measure of the wave propagation attenuation per unit length,
whereas &, is the proper constant of propagation of the wave. The wave phase velocity is

then given by

= — 42
b= (2
from which we can derive the following relation to the form factor ¢ = w¢/w
9 2
g = — (43)
(1-a"%) + \/(1 —a5°¢") +4et=eigt

where \
_ c

it =1+ 5 (82— aY). (44)

c

Both A, and A; depend on the angular frequency w and the propagation constant k;

nevertheless in the case of a good conductor, for instance copper with 4 = 1 and o = 5x 107

571 one can treat the contribution of the surface characteristic impedance R, given by Eq.

(35), as a perturbation to the field distribution. In proximity of the cut-off we can then
let R = R, where R; is R evaluated for w = w,. Inspection of Eqgs. (43 and 44) shows
that 82 is always a positive quantity for any value of ¢; the maximum occurs for ¢ = ¢q,

which can be interpreted as a shift of the cut-off frequency. At cut-off the maximum is

w2

2 ~ c
’meax - C2A7-Ai (45)
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where we have also approximated gg ~ 1.

From Eq. (37) we derive

AN =T (n-’Lil—Z +m '2‘;) (46)

provided |p;| << 7. In proximity of the cut-off By, >> 1, then from Eq. (27) in good

approximation
R n?  m?
A 20— [ —  — 47
A wwc/c(werhg) (47)
which inserted in Eq. (45) finally gives
3
'l?l')max ~ wc 2 2 (48)
223 R, (%g b ']7:3>

7. Power Flow in the Waveguide

The constant Vj in Eq. (5) determines the amplitude of the field potential and is related
to the power flux in the waveguide. The flow of energy is described by the Poynting vector

C
S=—E 4
a x B (49)

To evaluate the total power flow P we integrate the axial component of S over the cross-

section of the waveguide, that is:

c

w h
P= //(EB — B,B,)dy do (50)
s
00
Insertion of Egs. (12, 13 and 15, 16) in Eq. (50) gives

_C,Bw w2
P = ol Vo (wn +hm> (51)

where we have ignored the resistivity of the walls since it gives only minor modifications.
For a constant input of power P, the voltage amplitude V} is estimated when the dimensions

of the waveguide and the mode of propagation are assigned.
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8. The Equations of Motion

Consider now an electron with mass at rest m and electric charge e moving down the
waveguide. The motion is relativistic and mainly along the axis of the waveguide with the
same direction of the propagation of the electromagnetic wave. The components of the

equations of motion can be derived from

dp v
E—€E+62XB (52)

where p is the electron vector momentum and v = (2, g, z) the velocity vector. By inserting

Egs. (15-17) in Eq. (52) we obtain

dps z

=€ (Eﬂw - 1) E, (53)
Wy _ (25 _1)\E (54)
dt Y y

dp . T Y

o= (Eﬂsz + =Buby + E) (55)

The equations of motion simplify considerably if we assume that the motion of the
electron is confined in proximity of the y = —h/2 plane. In this case, if n is even and m is
odd, y = y = 0 is a solution of the equations of motion since E, = 0. Moreover, if also z

is very close to the z = w/2 axis, then in good approximation the equations of motion are

(Z ~e <E'Bw — 1> Vooy cos ¢ (56)

dpy '

o~ 0 (57)

P ¢ 8 Vo cos b (58)
~ —e—f, Voo

dt c 0%t

where we have also taken the real part of the traveling wave exponential factor.
It is seen that the perturbation to the longitudinal motion is of first order in % and it

can thus be neglected. At the same time

do .
E—Az—w
~kv—uw (59)

~ k(B — fu) = —So
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Since By > B this quantity is always negative. A phase slippage occurs when the particle
and the electromagnetic wave are traveling in the same direction. In proximity of the cut-
off, the phase slippage ¢ ~ w. It is reasonable to assume that during the interaction with
the electromagnetic wave, the velocity § of the electron does not change considerably and
it remains close to unit. In the approximation that the horizontal displacement remains

small, that is ¢ << w/2, Eq. (56) can be written as

& = Q%wcos ¢ (60)
where
0% = e%al% (61)
With a change of variables Eq. (60) becomes
%:g— = v2wcos ¢ (62)
with
v=20/Q (63)

The solution of Eq. (62) can be easily derived to be
T = —acos¢ (64)
that is an oscillation at the frequency equal to the phase slippage €y and amplitude
a=wv? (65)

The solution given by Eq. (64) is correct only as long as the amplitude a of the oscillation
is small compared to the width w of the waveguide, that is 2 << 1, which sets a limit on

the value of the voltage amplitude V}.

9. Energy Loss by Radiation

Consider an electron which is moving at relativistic velocity along the z-axis and at
the same time is performing small amplitude oscillations at the angular frequency Qq. It
1s well known that the electron will lose energy by radiating electromagnetic waves moving

forward in the same direction of the motion of the particle, within an angular aperture of
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about 1/v. In the approximation that the oscillatory motion has been occurring for an
infinitely long period of time, the spectrum of the radiation is made of only one line at the
angular frequency

Wrad = 27°Qo (66)
The radiated power at that frequency by one electron can also be calculated

1e?

P=-%
0 3037

o208 (67)

where a is the amplitude of the oscillation which in our case may be given by Eq. (65)
combined to Eq. (63) and Egs. (59, 61).

The spatial distribution of the electrons in a short beam bunch all performing the
same oscillatory motion is also important. In the extreme case where the beam bunch
is much longer than the wavelength of the radiation 2wc/w;.q, each electron will radiate
independently from the others and the total power radiated is P,,q = N P, where P, is the
power from a single electron, given by Eq. (67), and N the total number of electrons in
the bunch. On the other hand, when the bunch length ¢ is considerably smaller than the
radiated wavelength, that is

£ << 2mefwrag (68)

it is conceivable that all the electrons are radiating coherently and in this case the total
power is

P.q= NP, (69)

At the same time, though, in order to take advantage of this effect, it is also important
that the transverse dimensions of the electron beam are made as small as possible. Indeed,
they should not exceed the amplitude of the oscillations given by Eq. (65) and should be
smaller than the bunch length itself.

10. Applications

It is convenient to define two parameters that best summarize the interaction between
the electron motion and the field in the waveguide. One is the frequency transformer

Tati0 T = wpaq/w, that is the ratio of the radiated frequency to the input frequency to the
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waveguide. From Eqgs. (59 and 66) we derive

2Pw — B
B

In proximity of the cut-off 8,, >> 1 and with good approximation r ~ 2+2.

r =27 (70)

The second parameter is the power amplification factor n = P,,q/P, that is the ratio
of the power radiated by the beam bunch to the input power to the waveguide. Assuming

that the condition of short bunches expressed by Eq. (68) is satisfied, we derive

_ 64N2riy2an? (BBy — 1)2
3hw (2 + 22) B,

(71)

where rg = 2.82 X 1071 m is the classical electron radius. An optimum case is given
by a waveguide with a square cross-section, that is A = w, and by the lowest order of

propagation, namely m = 1 and n = 2. In proximity of the cut-off then

256 .o 9T
=75 mN=y Wﬂw (72)
and from Eqgs. (31 and 48)
92 WWwe
w & 73

An application is a frequency transformer. In this mode of operation the power radiated
by a short electron bunch is at a frequency larger than that used in input to the waveguide.
In this case it is sufficient that the power gain n ~ 1. An example of frequency transformer
is shown in Table 1, where the waveguide material is taken to be warm temperature copper
and the waveguide itself is driven in proximity of the cut-off where the phase velocity B,

is the largest.
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Table 1: An Example of Frequency Transformer

Kinetic Energy of Electrons 4 MeV
Number of Electrons 6 x 1010
Bunch Length 1 mm
Input Frequency 1.3 GHz
Radiated Frequency 190 GHz
Frequency Transform Ratio 146
Power Amplification Factor 0.5
Phase Velocity, B, 350
Cut-off Frequency 1.3 GHz
Waveguide Dimension, w 25.8 cm
Period of Oscillations 24.5 cm

11. Conclusion

We have shown in this paper that it is possible to convert electromagnetic power
from one frequency to another with reasonable efficiency by letting a short electron bunch
interact with a waveguide driven by an electromagnetic wave in proximity of the cut-off. We
have estimated the maximum power gain and the required electron bunch and dimensions;
they are within reach of present state of the art of electron sources. Our method to be
effective relies on the coherent radiation by which, if the wavelength radiated is larger
than the bunch length, the power radiated is proportional to the square of the number of

electrons in the bunch.



