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The Thin Lens Model is extended to higher-orders in the skew-quadrupole strengths.
Its applications are made to describe a variety of effects due to linear coupling in cir-
cular accelerators. The tune-splitting, the tune-shift, the beta-function distortions, the

emittance change and the Thick Ellipse Effect are calculated, up to the second-order.

1. Introduction

The advent of accelerating rings made of superconducting magnets, which are prone to
larger errors, motivates an extension of the Thin Lens Model (TLM) to higher-orders in the
skew-quadrupole strengths.!=® In RHIC, for example, a residual tune-splitting, quadratic
in skew-quadrupole errors, was found in computer simulations.’ This revives an old subject
of the linear coupling problem and gives him a new life.

In the paper we describe the application of the TLM, extended to the second-order,9-16
to various effects due to linear coupling, (the tune-splitting, the tune-shift, the beta-
function distortions, the emittance growth and the Thick Ellipse Effect).

A local tune-splitting correction scheme is described which is complementary to a
global correction scheme, in terms of minimizing of some positive-definite quadratic form

(called “badness”) in the transversal coordinates.*
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2. The TLM in the Second-Order

Consider a ring, of circumference-C, containing N thin skew-quadrupoles of strengths
q1,...,qn and locations 0 < s1 < ... < sy < C. Assume that a transfer matrix of an ideal
ring, that is a ring without the skew-quadrupole errors, is known and is of the (decoupled)

form .
Toz (", 8" 0 J
T Il, ! — [ ,
0 (3 s ) 0 TOy (3”,5')

where Tp; , are the usual 2x 2 symplectic transfer matrices written in terms of the Courant-

(2.1)

Snyder parameters. Passing to the circular representation (normalized coordinates) we get,

(see Appendix)

0 Ry, (s",5)] 0
T no_1 — B n T no 1 B-—-l / — [ ? :| , 2.2
(1) =BT () ) = [T 0] e
where R () are rotations
costy singy
R = , 2.3
%) [—sinz/) cos¢v] (23)
and 1) 4 are the phase-advances
'Qb:c,y (3”731) = ds . (2'4’)
| Ben

The single- turn transfer matrix of total ring, skew-quads including, at the reference point
s = 0, can be written as a polynomial

o]

T= =T, (2.5)

M ;;J} N o (k)
m N k=0

o (k)

where ' is of the k-th order homogeneous polynomial in the skew-quadrupole strengths.
More specifically, its elements can be expressed through the first d) and the second-order
d® driving terms as follows, (see Appendix A1-5):

]\c;_fll = COS iy — dg% cos g + d(cz.%. sin pg +0 (q4) , (2.6)
]\(;[12 = sin iy — dg; cos g + dggg sin pg + 0 (q4) , (2.7)
J\O/Igl = —sin py + d(czz;. Ccos iy + dg% sinpug +0 (q4) , (2.8)
]\0/122 = COS iy + d(c‘?'; COS fig + dg; sin gy + 0 (q4) , (2.9)

and
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0o ) v
Nk1:<Mkl> ) k7Z=172,

and
nyp = —dg% cos g + d %'Sln/"':c +0(s%),
b = —d®) con iy + i sin s 10 (),
nzl = d(c)c. cos fiz + d (S()7 sin pg + 0 (q3> ,
n22 = d( ;cosuz —I—d(;sm,uz +0 (q3) ,
and

A
[} o
mkl = (nu) 5 k, l == ].,2

Here the notations are:
ST
dg; sin py sin pg

N .
dg,lg, Z 0 SIN fL7, COS fy

d(c%k)S’ - COS Yz, SIn gy
dg)C' COS [iz, COS fiy

and for the second-order driving terms

- (2) -
Is3 sin p sin p7,
d(2) Sin /'I’S CcoS /«LT
FON N 2. rgsin(uy = i) P
CS 1<r<s<N COS [, SIN i,
4 COS [ COs 7,
C'C' -

where 7, uy, are phase advances
tg = Pz (5r,0),

and similar for the uj.

The thin skew-quadrupole strengths are

o= BB FY , k=1,...,N.
Sk

The “v” operation replaces z with y and z' and /.

(2.10)

(2.11)
(2.12)
(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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For example, for the first-order driving terms we get
(42)" -
()" -
()" - 42,

MY _ 40
(dk8) " = a.
Similar but less symmetric results follow for the second-order driving terms. In particular,

the relations hold

(2.20)

d1d8), — d1dl) = detn = |nl, (2.21)
and

2 212 | &M :
(8 )+ (2= )'] = [Cmetod). e
k=1

In order to estimate a magnitude of an effect we will assume that the skew-quadrupole

errors ¢r,7 = 1,..., N are normally distributed random variables, i.e., that
(gr) =0, (grgs) = 5,»3G3/N, (2.23)

and the phase-advances are such that, for both = and y directions
{sinu") = {cos u") =0,
(2.24)
(sin? ") = {cos” ") = 1/2,
while the averages of mixed products assumed to vanish. In this case we get for the averages

of the driving terms

(M) = (d®) =0, (2.25)
and

(dV") = 1/4 G}, (2.26)
and similar for the ém—driving' terms. As the result one gets the estimates

(n) =0+, (In[) =1/8G5+ -, (2:27)
where
Go ~ 0.25, for RHIC,

(2.28)
Go~05-1.0, for SSC.
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3. Applications of TLM to Some Effects Due to Linear Coupling

3.1 The Stability Problem

If Ay, /\1_1, A2, Ay 1 are eigenvalues of the single-turn transfer matrix T then their sums
A=)\ + /\i'l =2cosp; and Ay = Ay + /\2_1 = 2cos pg, where p; and uy are, so called,

new tunes, are given by the well known formulal

1 1 2 1/2
A = —2-T7‘ (M+N)+ ([é‘TT’ (M — N)] + |7+ n|> . (3.1)

All the elements appearing here can be easily expressed through the driving terms (see
Appendix). The stability conditions

1% Ajp — real,
(3.2)
20 Al <2, k=1,2,

can be most easily satisfied on the resonance, iy = py, since the determinant |7 + n| is
positive, in this case.

3.2 The Tune-Splitting
Let the new tunes p; o differ slightly from the old ones:
p1 = po +21Av1,  po = py + 21Ave,  (pr > py), (3.3)

then from the formula (3.1) it follows that

1
Al/l - 2_7TCOt/«L:c — S—W—SmTT(M-l-N)—
1 1 9 1/2 (3.4)
Y <[§TT(M“N)} +|m+n|> 4,
and .
Avg = — - —Tr (M
T o cot iy 8w sinuyTT( TN+
. . . 1/2 (3.5)
— (|2 Tr(M - N oy e
+47rsin,uy ([2 r( )] —I—Im—l—nl) +
The leading terms, on the resonance puz = py, are
. 1 al i(uk—,uk)
Avy = —sgn (sin pg) pom kz_lqke A R (3.6)
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and

Avy = —Auvy. (3.7)

The higher-order terms in the expansions of %Tr (M + N) contribute to, so called, the
residual tune-splitting which persists after all the first-order driving terms are corrected

to zero,

ANz} = —a — sgn (sin pz) ), (3.8)

resid
and

Avg = —qa + sgn (sin pg) [b], (3.9)

resid

where a, b are expressed through the second-order driving terms as follows

v v(2)

871'0, = dg)c + d.(S?.S)'—*— dCC’ + dss, (310)
and
v w2
8rb = d2) + d2— doo — dgs - (3.11)

In order to correct the tune-splitting, up to the second-order, one requires that, at the

reference point s = 0, the following conditions hold:

1 1 1 1
d) = al) = dl) = 4U) — o, (3.12)
and
v(2)  v(2)
4%} + dSd— dgg — dgs= > grgssin (6, — &) =0, (3.13)
r<$
and
v(2) v(2)
d(C%)C + d.(S?.g'-l_ dC’C’ + dSS: - ZQTQS Sin(ar - Us) =0, (3.14)
78
where
b= i — i op =+ (3.15)

Notice that the last condition (3.14), which corrects the coefficient a to zero, can be
abandoned without affecting the total tune-splitting: Av = % (Av1 — Awp) simply because
this term cancels. Thus the minimal local correction scheme for the tune-splitting consists

of the five conditions as given by (3.12) and (3.13).
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3.3 The Tune-Shift
From the basic formula (2.6)-(2.15) one finds for the traces of the submatrices M and
N

1 1
§T7"M = cos (g + Apy) = <1 — —2-In|> coS fiy + = 5 (d(z) + dgg) sin pgy + -+ -, (3.16)

and

1 1 1 /v@  v(®
§TT'N = cos (fiy + Apy) = (1 - 5[72[) COS [y + 3 doo + dgg | sinpy +---.(3.17)

Hence, for small tune-shifts Apg, Ay, we get

_ 1 PO
Apy = §|n[cot ta =g ( o +dg ) +--, (3.18)
and
vi@) V(2
Apy = “|n| cot iy — 5 <dcc + dss) +e (3.19)

The tune-shift vanishes, at the point where the full tune-splitting correction was done.
3.4 The Beta-Function Distortions
The new beta-functions are given by (cf. Appendix B)
Pr = Po + DBy = (sin 1) ™" As, (3.20)

and

B2 = By + ABy = (sinp2) ™ Bua, (3.21)

where Af; y are the beta-function distortions. Taking into account the formulae for the A

and B matrices one gets the results

AL, . - . -1 e
ﬂﬂ = —1+4 (Besinps) ™" Miz — 21 Av, cot iy + [Be sin o (¢ + N [(m + n) m],, + - +(3.22)
and
A . - . -
—,—Bél = =14 (B, sin p,) ™" Nyy — 27Avy cot py — [B, sin gy (t + 8)] 7 [(m + @) n],, + - --.(3.23)
Y

The leading terms, on the resonance pg = py, are

N of k k
3 gueilit=sb)

k=1

ABy, 1 : ;
5 5sen (sin pug) cot py

+ooey (3.24)
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and

ABy _ B
= (3.25)

There are residual beta-function distortions, coming from the My and Npy terms, after

the tune-splitting correction is locally performed. One notices also, that if one reverses the
order of actions and goes on the resonance p, = p, before the tune-splitting correction,
the beta-function distortions could be large. This is because the quantity (t+ 6)—1 can be

large when on the resonance.

3.5 The Emittance Change Due to Linear Coupling

When the linear coupling is present one considers, instead of two separate invariant

ellipses, a single 4-dimensional ellipsoid, at a point of a ring,3:17

Zolz=1, (3.26)

oy, t
g = ~ )
t oy

is a symmetric and positive definite matrix while 04,0y are symmetric, positive-definite

where

submatrices describing projected emittance and ¢ represents the linear coupling. When

passing from a point sg to another s; in a ring the ¢ matrix transforms as follows
o] = TO’O T. (327)
Assuming that the initial beam is decoupled, (¢y = 0) one gets the relations

0z1 =Moo M +noyo T’;, (3.28)
and

oy1 = Noyo N +moy m. (3.29)
Denoting the initial projected emittances as ey, €y0 we have the point sg

2 2

€20 = losol, €50 = |oyol, (3.30)
and at the point s;
Noy N +moge m|. (3.31)

2 ” ~ 2 _
€z1 = [Mozo M +noy n|, €y1 =
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Assuming for simplicity that the initial beam ellipse are upright and that they coincide

with the machine ellipses (perfect match), we get the results!
e = (1= [n)* g + Inlef + A, (3.32)
and
2
631 = (1_ — In|) 550 + [ne2y + A, (3.33)
and where the positive quantity A is given by the expression

A = €06y [(d(c%)z + (dg;f + (d%y + (da52) ] +0(q). (3.34)

We have used here the formulae which follow from the symplecticity of the transfer

matrixi317
|M| = [N|=1—|n|, (3.35)
and
1) (1 1) L1
[m| = In| = dgbdSd — d5ld5) +0(¢") . (3.36)

It is clear that the projected emittance stays unchanged when the first-order driving
terms vanish. This happens when the tune-splitting is locally corrected, at the reference
point s = 0. The emittance changes from point to point if the linear coupling as represented
by the determinant |n| and the quantity A varies around a ring.

At the end we would like to collect some estimates of magnitudes of the various effects

using (2.23) - (2.27). One has, for example, the relations

(Apia) = (Dpig) =0+ - | (3.37)

and
(Aﬂ:,;) = <é_@§l_> = 1/2Gy|cot pg| +--- (3.38)

IBx rms ,By Tms

and
(A) = GEezoeygo + -+ >0, (3.39)

and
(1) = €20 + Ghezoeyo + G5/8 (2o + 6Zo) +e, (3.40)

<5§1> = 630 + Ghesoeyo + G3/8 (e:cOZ + 630) +oee (3.41)
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Appendix A. Derivation of the Basic Formulae (2.6)-(2.15)

To extend the TLM beyond the first-order one uses so called “projection approach”$:’

which yields the following basic formula for the single-turn transfer matrix

T=TyPy---P, (A1)
where the “projection” on the k-th skew-quadrupole is
1, Fy
P, = , k=1,...,N. (A.2)
G 1
and where
— _r _k k> ik k)
Fy 1/29kR( 2) [R( Py + by +R( Hg = Hy J], (A.3)
and
v
G =F}., (A.4)
and
1 0
J = . A.5
b 3] (45

Performing the multiplications of the projections leads to the expansion (2.5), and to the

basic formulae (2.6)-(2.15).

Y

Expressions of the traces %Tr (M 4 N), and determinant | + n| through the driving terms

- Using the basic formulae (2.6)-(2.15) one gets the following results

37 O + ) =2 (1= Jinl ) coslr v + vy eosfr (v — )] +

@) @) v(@) (2 '
+ doo +dget+ dog + dgg | sin| T (Vs + vy)| cos [ (v — vy)] + (A.6)
v(a) w2
+ = 5 (d(2) + d(z) doo — d55> cos [ (v + vy)] sin [r (e — 14)] + 0 (¢*),

and
%TT‘ (M —-N)= <1 - —|n| sin [ (vp + vy)]sin |7 (vy — vy)] +

v(2) v("))

4= (d(z) + d( st doo + dgg | cos[m(vg + vy)] cos[m (vy — 1)) + (A7)

+

DN =

@) (,, VORERVC) .
d¢e + dgs— doc — dss | sin[r (v + vy)]sin [7 (v — )] + 0 (¢),
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and
N ok E : N ok k ’
| +n| = Z gre'(Fe=1)| sin? [7 (ve + vy)] — Z ek )| gin? [7 (vs — 1)) +0 (%) .
k=1 k=1
(A.8)
Owing to the definitions (2.16) of the first-order driving terms one has the equalities
N ? 2 2
i(pk—pk 1 1 1
Sttt — (sh+ )"+ (43— )’ (49
k=1
and
N 2 2 2
(4t 1 1 1
Soaeetm)| = (dB) - did) + (432 +a8)) (4.10)
k=1

Appendix B. The Universal Parameterization of the Single-Turn
Transfer Matrix

It was shown by Edwards and Teng,? and by Talman,* that the single-turn transfer

matrix T can be brought to a quasidiagonal form as follows: If

M n
T= [ } (B.1)
m N
is a 4 X 4 real, C-periodic and symplectic, single-turn transfer matrix, then
A O
U=R~1TR:[ ] (B.2)
0 B
where A, B and R are symplectic and
A=M+(t+8) 7" (m+n)m= [COS’“ tasinp Aengm ] , (B.3)
—~1 sin py COS {41 — @1 Sin i1
and
B=N-(t+8§ " (m+m)n= [COS“’”L,QZSIMZ Pasin iz } . (BA4)
—7Y2 811 42 COS [t — (ug S1NL 49
and
1
t=§Tr(M——N), (B.5)
1 2
§= -iTr(A—B): (t* + |7 + n[)l/ . (B.6)

The diagonalizing matrix R can also be expressed through the submatrices of T' (cf [4], for

example).
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