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1. Introduction

In this note I would like to describe a general scheme of solenoids compensation!—3
using, so-called, “projection” approach due to Y. Kobayashi* and S. Peggs.5 The scheme
applies to the linear coupling compensation produced by a thin solenoid, thus it applies
to the decoupling of detector’s solenoids placed at interaction points in large modern
colliders. One of the two detectors, called STAR, which will be installed in RHIC provide

an opportunity to demonstrate the general decoupling scheme described in the sequel.



2 Description of the Method

2. Description of the Method

Assume that a lattice, without solenoids, is decoupled and that corresponding 4 x 4

transfer matrix T (s”, ') is of the block-diagonal form

2
Ty = | T2 0 |- /// (2.1)

0 Toy % |

In this case the horizontal (z,p;), and the vertical (y, py) variables entering a state-vector

z

F:c
z = , 2.2
y (22)

Dy
transform independently from one another when Tj is applied — they are decoupled.

Imagine now that some insertion containing a number of thin solenoids was installed
in a ring, between the points A and B, as shown in Fig. 1. Later on, one of the solenoids
will be identified as the STAR detector solenoid, and the other will serve as anti-solenoids

which compensate it.

| Py Py .
¥

B N N~ 0
So

SB SN SN-1

Fig. 1.: Schematic layout of N thin solenoids installed in a ring, around the refer-
ence point 0.

In order to ensure that the enriched lattice remains uncoupled we demand that the

transfer matrix Tg4 of the insertion is also of the block-diagonal form
o
Z
7

The product T 4Ty will then also be the block-diagonal. In this way we will find conditions

Tpa = , (Decoupling Conditions). (2.3)

on the solenoid’s strengths, at which the insertion is decoupled.
The T'g4 transfer matrix is given by the expression
Tpa="To (SB, SI]IV‘) Ty (3']'\,-, 3,N> ik (s'N, SIJIV) Tn-1 (s']'v_l, st_l) e

2.4)
R 4 (3'2',3'1) ik (5'2, 3'1') T (3'1',3'1) Ty (3’1,3A) . (
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where the coordinates sj, are placed in a middle of the k-th solenoid while s}, = s —1/2 £,

and s} = sg + 1/2 £, are attached to its ends, as shown in Fig. 2.

k-th SOL
-« /st <
N sy Sl |Sk
Fig. 2.: Coordinates of the k-th solenoid.
Using, so called, the “projection” on the k-th solenoid
Py (s5,50) = Tp (0, s%) Th (s%,5%) To (s%,50),k=1,...,N, (2.5)

the transfer matrix T4 of the insertion may be rewritten as follows

Tpa = To(sB,s0) Pn (s, 80) -+ P1(s1,50) To (s0,54) - (2.6)

This basic formula can be verified by induction, for example. The decoupling conditions

(2.3) can be now expressed as follows

72
Py (sny80) -+ P1(s1,8) = %7 , (Decoupling Conditions), (2.7)
7

since the matrices Tp on both ends of the formula (2.6) are block-diagonal, as well.

We shall see shortly, that for a thin solenoid the following asymptotic expansion, in

the solenoid’s strength 6, holds
Psor (s,30) =14+ 6S (s,80)+0 (92) , (2.8)

where the matrix S (s, sg) is a block-anti-diagonal one

| N
S (s,80) = \\\&\, . (2.9)

Bl

Therefore, to the first-order in the parameters 0y, we have

Py (sn,s0) -+ Pi(s1,50) = [La + ONS (sn,80) + -] -+ [1a + 615 (s1,80) + -] =

N
2.10
=14+E ekS(Sk,So)—{—---. ( )

k=1
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The product of the projections can be of the block-diagonal form as demanded in (2.7)
only if contributions to the anti-diagonal blocks cancel between themselves. Hence, we

obtain the decoupling conditions, to the first-order in 8;’s

(Decoupling Conditions)

to the First — Order (211)

N
Z GkS(Sk, 80) = 0
k=1

These matrix conditions may be analyzed, and solved for the parameters 6 while the
S-matrix is given.
Notice, that the above decoupling conditions make the product of the projections equal

to the unit matrix, to the second-order, and, as the result, the transfer matrix T4 becomes
Tpa=To(sp,50)(1a+---)To(s0,54) =To(sp,s4)+ -+ . (2.12)

This means that the insertion becomes transparent, when decoupled.
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3. The S-Matrix for a Solenoid

A transfer matrix for a solenoid of length ¢ and longitudinal field By, with the cylin-

drically symmetric thin fringe fields is known,®
c¢? K~1sc sc K—1s2
—-Ksc 2 —Ks? sc
Tsor(£) = - =
—sc —IK 12 c? K~ lsc
i Ks? —3sc —Ksc c? ]
F F—l
1 0 0 0 1 K1lsc 0 K12 1 0 0 0
o | 1] -K |o0|]0O ? —s? 0 2cs 0 1| K |0
0 |0 1 010 | =K' | 1 | Kles 0 0 1 0
K | 0 0 1] (0 —2cs 0 | E-s?2||-K | 0 0 1)
FRINGE FIELD FRINGE FIELD
CONTRIBUTION CONTRIBUTION
c 0 S 0 c K1s 0 0
_ 0 c 0 S —-Ks c 0 0 (3.1)
-3 0 c 0 0 0 c K-l
| O -3 0 c|] L O 0 —-Ks c |
R(6) S (ﬁ, Kz)
The matrices, R(#) and S (E, Kz), commute and the notations are
0 = KUY, (3.2)
B
K=" 3.3
2(Bp) (3:3)
(Bp) — magnetic rigidity, (3.4)
¢ = cos#, (3.5)

s =siné. (3.6)
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Assuming Ksmall, which is the case for STAR solenoid, and taking into account that
Ks~0,

K s~y (3.7)

c~1,

we get for the S (ﬁ, K 2) matrix a drift matrix

1 1/ 0 0
s~ |2 00 14l o =D(0), (3.8)
0 0 1 14 0 ‘ d(¥)
00| 0| 1]
where the 2 X 2 matrix d(¥) is, of course
a= | LA (3.9)
0 1
For the R (0) matrix we get in the thin lens approximation
1 0 0 0
RO~ |11 L 1O 161 4 40 L o (3.10)
0 0 1 0 -1, 0
| 0 —6 0 1]

Hence, for the (thin) solenoid transfer matrix we get according to the formula (3.1), the

result

Tsoz (£) ~ D (£) R(6) = R(6) D (£). (3.11)

We are now in a position to calculate the projection matrix Psor (s, sg) using the definition

(2.8)

Psor (s,30) = To (30, 5") Tsor, (3", 3') To (3', so) =14+65(s,8)+0 (92) ,
(3.12)
s=s-1/20 , §'=s+1/24,
Using the relations

To (s',50) = To (s',8) To (s,80) = DL (£/2) Tp (s, s0) (3.13)

and
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Ty (30’ 3") =Ty (307 '5) To (3’ 5”) = T()_1 (3’ 30) D (6/2) ’ (3'14)
we get using the results (3.8) and (3.10)

PSOL (S,So) == To—l (S,So)R(G) Tg (5,30) +.e =

0 ’ Tiak T
— 14 _'_ 9 0z (3780) 0y (3?30) + (3.15)
-—Td;l (S, 50) Toz (S, 30) ‘ 0
Comparing with (3.12) one finds that
S (s,80) = | —2 | (o) , (3.16)
-7 (s,30) 0
where the o (s,30) 2 X 2 matrix is of the form
0(3730) = TO_:E1 (3750)T0?/ (3v30)7 (3'17)
and 7 is its symplectic conjugate*
7(s,80) = TO”?'J1 (3,80) Tz (s,50) = 07 (s,50) . (3.18)

The matrix o (s,sp) is simplest when s = sg, i.e., when the solenoid is placed at the

reference point 0. We have in this case
o (s0,50) = 1o, (3.19)

and we get for the S-matrix the result

S (50, 80) = [ 0 12} . (3.20)
-1 0

It is interesting that the same result is valid for a solenoid placed a drift away from

the reference point since the relations hold
Tos (3)30) = d(‘s - 30))

3.21
Toy (5,80) = d(s — o), (3.21)

* A symplectic conjugate of a 2 x 2 matrix A = [ccz s} is A = [ d _ab]. For A

symplectic, A = A~! holds.
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and, as the result we get the remarkable property of the S-matrix
S (50 -+ dI,SO) =S (So - d”,So) = S(So, 30) .

The decoupling conditions (2.11) simplify considerably because of that

N N 0 1
> 618 (58, 50) = (Z&) 21 =0,
k=1 k=1

—~15 0

and reduce to the single requirement

N
> 6y =0.
k=1

(3.22)

(3.23)

(3.24)

We will now demonstrate the above general formalism on the example provided by the

STAR solenoid in RHIC.
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4. Application of the General Scheme to Decoupling of the STAR.
Detector in RHIC

RHIC will contain initially two large detectors, STAR and PHEN IX, located at 6 and
at 8 o’clock in the rings. The STAR detector will contain a solenoid of 4m long producing
longitudinal magnetic field B; = 0.5 Tesla. The PHENIX detector, currently under a
construction, will not be considered here.

In order to apply the decoupling procedure, one needs to assume that the RHIC lattice
(1991 lattice) is globally decoupled. This means that some correction scheme has been

devised, using a part, Cj, of the available a;-correctors
Co=c{v P, (4.1)

Y-YELLOW, and B-BLUE rings, and, correspondingly—correctors.
Since both, YELLOW and BLUE rings are identical, apart from their opposite direc-
tioms, it is enough to consider the insertion in one of them, say the BLUE ring, only. The

relevant parameters of the STAR’s solenoid are:
Ly = 4m,

B, = 0.5T, Ilongitudinal field inside the detector,

0.0026, at injection,

K, = (4Bp)~! = { (4.2)
0.0003, at top energy,

0.0104, at injection,
9* = R’*E* - {
0.0012, at top energy.

The K, and 0, parameters are rather small, indeed, due to large values of the rigidity. We

shall consider two decoupling schemes:

A. Single anti-solenoid placed before or after the detector, see Fig. 3.

B. Two anti-solenoids, one on either side of the detector as shown in Fig. 4.
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a.
STAR A-S0L /BPM
1= BLUE RING <—£¢;“> ///
< 3 < 77T
o /A/
/47
. d' >,
8.8m >
b.
BPM A-SOL STAR
e [ —)
// o BLUE RING 1P
_< e d
Tty 9 -y
W) 5
d Ty
e 8.8m

Fig. 3.: Decoupling scheme of the STAR detector solenoid using a single anti-

The decoupling condition (3.24), at N = 2 reads, in both cases (a) and (b),

solenoid before the detector {a), or a single anti-solenoid after the detector

(b).

or, equivalently, using (3.2)

0, +0, =0,

Bl, + Byl, = 0,

(4.3)

(4.4)

where B, is a longitudinal field inside the anti-solenoid. Hence, the decoupling strength is

Ba == —E*/ﬁa B*.

(4.5)
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The distances d',d"” can be arbitrary, within the insertion limits. Assuming, for example,

£, = 1m, we get for the decoupling strength the value

B,=-4x05T=-2T. - (4.6)

A-SOL'! STAR A-SOL'!

17

N

N

Ty

/ ]

///// < f o> \P BLUE RING <~ ﬁ‘:“} f/;;/
7 il

/

5 dll X d'

8.8m Soelet 8.8m .

Fig. 4.: Decoupling scheme of the STAR detector solenoid using two anti-solenoids,

one on either side.

For the decoupling scheme using two anti-solenoids one gets from the condition (3.24),
at N =3
0.+ 0, +6) =0, (4.7)

or, in terms of strengths and lengths
Bl. + By, + B¢, = 0. (4.8)

Assuming, for simplicity, the same lengths, and strengths

e =1 =40,
(4.9)
B, = B! = B,,
we get for the decoupling strength
B, = —L(,/2¢, B,. (4.10)

The distances d',d" are arbitrary, within the limits. Taking, for example, shorter solenoids

£, =0.5m, (4.11)
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we get for the decoupling field strength
B, =-2T, (4.12)

which is quite acceptable.
Of course, it is possible to install more anti-solenoids but it does not seem practical,

in the case at hand.
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5. Decoupling of the YELLOW RING Using Anti-Solenoids

The decoupling of the YELLOW RING is completely analogous to the decoupling
scheme for the BLUE RING. One should only notice that reversed (YELLOW) beam sees
the same magnetic field of the STAR solenoid as the BLUE beam, and the decoupling field
is directly opposite to it. Therefore, all the anti-solenoids, in the BLUE and the YELLOW
RINGS should be equally powered as shown in Fig. 5.

(Ba)verLow = (Ba)BLUE - (5.1)

Fig. 5.: Anti-solenoids in the YELLOW RING are powered in the same way as
corresponding anti-solenoids in the BLUE RING.
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6. Conclusion

In conclusion we would like to collect main pros and cons for using anti-solenoids for

the decoupling of the STAR detector.

ADVANTAGES DISADVANTAGES

1. Anti-solenoids can be placed 1. Consume valuable space around the 1P.
arbitrarily in the insertion.
Phase advances do not enter the 2. Anti-solenoids are costly.
decoupling condition.
3. The scheme with anti-solenoids does

2. Particles of all energies decouple not utilize already available a;- correctors.
in the same way, no dependence on
dispersion. 4. Anti-solenoids would have to be moved
sideways when different species are accelerated
3. Strength of the decoupling field is in both RHIC’s rings, and geometry

constant during acceleration period, does of beams changes.

not depend on the magnetic rigidity.

It seems that the displayed above disadvantages suggest that a different decoupling
scheme, using skew-quadrupoles placed sufficiently far away from 1P, should also be con-

sidered. Such scheme will be presented in the next technical note.




Acknowledgments 15

7. Acknowledgments

I am indebted to Satoshi Ozaki, Michael Harrison and Alessandro Ruggiero for their
interest in the subject, encouragement to write this note. I thank Thomas Ludlam for
discussions and for reading the manuscript. Also, I would like to thank Tom Shea for
explaining to me his design of the PHENIX detector magnet. I also thank Harald Hahn

for critical remarks and suggestions.



16

References

8. References

1.
2.

E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958).

D.A. Edwards and L.C. Teng, IEEE Trans. Nucl. Sci., Vol. NS-20, No. 3, p.
885 (1973, see also

L.C. Teng, “Concerning N-Dimensional Coupled Motion”, Fermilab Report
FN-229 (1971), and “Coupled Transverse Motion”, FNAL-TM-1566 (1989).
R. Talman, “Single Particle Motion”, in Frontiers of Particle Beams, Observa-
tion, Diagnosis and Correction”, Proceedings, Anacapri, Italy 1988, Eds. M.
Month and S. Turner, Springer Lecture Notes in Physics No. 343.

Y. Kobayashi, Nucl. Instrum. Methods, 83 (1970) 77.

S. Peggs, Particle Accelerators, 12, (1982) 219.

R.H. Helm, SLAC Report No. 4, Aug. 1962, see also K.L. Brown et al.,
TRANSPORT, A computer program, CERN 80-04 (1980).



