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1. Introduction

It is well-known that there are no rf power sources of significant amount for frequencies
larger than 3 GHz. Yet, rf sources in the centimeter/millimeter wavelength range would
be very useful to drive, for example, high-gradient accelerating linacs for electron-positron
linear colliders.

Ordinary conceived methods to produce radiation with short wavelengths is to let a
bunch of electrons to travel down a magnetic structure with alternating field direction, up
and down, like in the wigglers or in the undulators, as it is done in circular synchrotron
radiation facilities. Nevertheless, an application of these devices to generate radiation
in the centimeter-to-millimeter wavelength range, though often proposed, has still to be
demonstrated. These devices are ordinarly used to generate radiation of much shorter
wavelength.

We would like to propose an alternative, novel method to produce such radiation, which
still makes use of a short electron bunch, traveling this time down a waveguide which is at
the same time excited by a lower TM propagating electromagnetic wave. It is indeed well
known that radiation can be obtained by wiggling the motion of the electrons in a direction
perpendicular to the main one. The wiggling action can be induced by electromagnetic
fields in a fashion similar to the one caused by wiggler magnets, as we shall indeed show
in this paper. We found that an interesting mode of operation is to drive the waveguide
with an excitation of frequency very close to the cut off. Indeed for such excitation, the
corresponding e.m. wave travels with a very large phase velocity which in turn has the

effort to increase the wiggling action on the electron bunch.

—-1-



2 Scalar and Vector Potentials in a Waveguide

Our method, to be effective, relies also on the coherence of the radiation from electron-
to-electron; that is the bunch length is taken to be considerably shorter than the radiated
wavelength. In this case, the total power radiated should be proportional to the square
of the total number of electrons in the bunch, as opposed to the case where the bunch is
longer and the power is linearly proportional to the number of particles. This is, of course,
a theoretical speculation, easily explained, which nevertheless requires an experimental
demonstration.

In summary we investigate here the interaction of a short bunch of electrons with a
TM electromagnetic wave, both traveling along the axis of a waveguide. This structure
can be driven in a variety of modes. For reasons that will be clear to the reader, we have
chosen a TM mode with an antisymmetric voltage distribution on the plane where the
electrons are to oscillate. We have also taken the lowest order of propagation of such a

mode. Other cases may certainly be possible and are left to future analysis.

2. Scalar and Vector Potentials in a Waveguide

We shall consider an infinitely long waveguide, straight, with square cross-section. Let
the walls be perfectly conductive and the inner side w. We shall introduce a rectangular
cartesian coordinate system z, y and z; where  and y are the transverse distances from
the axis of the waveguide (see Fig. 1) and z is the longitudinal coordinate along’ the axis
itself. In this section we describe the propagation of a TM traveling electromagnetic wave
in the waveguide. If we use the Lorentz representation, the fields can be derived from a

scalar V' and vector potential A satisfying the following equations

1 0%V
2 —_—————
VIV — =0 (1)
2, 10°A
VIA - 5o =0 (2)
1 6V
d. - —=
1VA-I-C 5 0 (3)

In cartesian coordinates the explicit form of Eq. (1) is

oV L PV PV 1oV
0z2 ' Gy? ' 8z2? 2 Ot?

=0 (4)
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A solution of Eq. (4), which is the one next to the lowest order of propagation, is

V = Vpsin <27r%> cos (7r—y—) cos (kz — wt) (5)

w
which satisfies the condition V' = 0 at the wall surfaces z = £w/2 and y = +w/2. The
nature of the traveling wave is described by the last factor where w is the angular frequency
and k the wave number which defines the longitudinal propagation mode. Insertion of Eq.
(5) in Eq. (4) yields the following dispersion relation

w? T 2
b=z -5(3) (6)

w
The condition for the propagation of the wave in the waveguide is that the wave number

k is real, that is

w > Wwe (7)

where
me

We = 5 E (8)

is the cut-off frequency which depends only on the dimension of the waveguide.
It is convenient to introduce the form factor
e
q=Vv5 —
ww (9)

= wefw

and the phase velocity, normalized to the speed of light,
B =w/ke (10)

It is then seen from Eq. (6) that
1

/Bw - '_—'_/-1Tq—2- (11)

The range of values of the form factor ¢ fulfilling the condition of propagation is
0<gx1 (12)

It is also seen that B, > 1, that is the wave phase velocity is always larger than the speed -
of light.*

* In principle, it is also possible to use material for the walls of the waveguide which is
not perfectly conductive; if the material properties are chosen conveniently, it is possible

to obtain 8, < 1, if required.
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An inspection of the dispersion relation, Eq. (6) shows that below the cut-off, w < w,
there is no propagation, and k assumes no real values. For large values of w, k increases
about linearly. It is also convenient to introduce the wavelength A = 27 [k; it is then seen
that the wavelength is very long in proximity of the cut- off and it gets very short as w
increases.

An interesting plot, shown in Fig. 2, is the display of the wave phase velocity 8, versus

the form factor ¢ as given by Eq. (11). There are two regimes:

(i) ¢ << 1. In this case

o1t () )

Since w >> w,, that is well above the cut-off, the phase velocity is very close to the

speed of light and the wavelength ) is very short.

ii) ¢ ~'1, in proximity of the cut-off and w ~ w,. In this case the wavelength \ is very
P g

long.*

According to the conventional waveguide terminology, a TM-mode is defined as that
traveling wave with vanishing magnetic field in the main direction of propagation, that is
the z-axis of the waveguide. This mode is associated to solutions of the vector potential
A which actually is completely directed along the z-axis and has vanishing components in

the directions (z and y) perpendicular to the direction of the wave propagation, that is
A =(0,0,4) (14)

where A satisfies an equation similar to Eq. (4). Moreover, to satisfy the Lorentz condition
represented by Eq. (3),
A=B,V | (15)

Thus the vector potential A is completely determined from the knowledge of the scalar
potential V. The only parameter left to be defined is the amplitude Vj of the scalar

potential distribution.

* In proximity of the cut-off with w ~ w,, the properties of the wall material do not
affect critically the value of the phase velocity. This is not true for the other case where

g<<1
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3. The Field Distribution

The electric E and magnetic B fields can be determined from the usual relations

E=—-grad V — %%jti (16)
B =rot A (17)
We obtain after inserting Eqs. (5, 14 and 15)
E; = —2%—@ cos (271'3;-) cos (’/T}L) cos ¢ (18)
w w w
Vo . TN . y
E,= m—sin (2#—15) sin (71’;(;) cos ¢ (19)
. z vy .
E,=-k(B% - 1) Vosin (27r-7;) cos (7!';;) sin ¢ (20)
and
By = pyuE; (22)
B,=0 (23)
where
¢ (2,t) = kz — wt (24)

is the wave phase function.

A property of a perfectly conductive wall is that the components of the electric field
tangent to the wall and those of the magnetic field perpendicular to the wall are to vanish
identically. It is easily verified that these conditions are satisfied by the solution.shown by
Eqgs. (18-23).

From the point of view of an electron moving along the longitudinal direction z, the
field distribution given by Egs. (18-24) is different from that the same electron would
experience in the case of a wiggler magnet or a photon beam. To see this we can operate a
transformation of the field distribution in the frame where the electron is at rest. Let B and
7 be the relativistic factors respectively for velocity and energy of the particle. Let us first
consider the case of a planar electromagnetic wave moving in the z-direction. The electric

and magnetic fields are perpendicular to each other and perpendicular to the direction of
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motion. In the coordinate frame we have adopted, the components of the fields of the

plane wave in the laboratory frame are

Ey=E,=B;=B,=0 (25)
E, = B, = E, ¢iF=Y) (26)
where Ej is a constant amplitude, w the angular frequency and k the propagation constant

of the wave. After performing the relativistic transformation, the components of field

distribution of the same wave, in the system where the electron is at rest, are
E;:E'zzB;:B;::O (27)
El =B =y(1+ f) By (¥ ~t) (28)

where we have denoted with prime the variables in the frame at rest. We have

K=~ (k - wé) (29)

w' = (w — Bkc) (30)

W =7(1-pfw (31)
E=du]c (32)

Now let us consider the case of a wiggler magnet, that is a sequence of dipole magnets where
the magnetic field is in the y-direction and changes periodically sign from one magnet to the
next. Let L be the periodicity of the wiggler. In the laboratory frame the field components

are

B,=B,=0 (33)
E,=E,=E,= (34)
By = +B, (33)

where B, is the wiggler field. There is no electric field in a wiggler. After performing

the Lorentz transformation where the electron is at rest, one obtains a field distribution
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similar to that given by Egs. (27-28) except that

E, = fyBu (36)
B = B, (37)

To a relativistic electron with § ~ 1, the wiggler is equivalent to a plane electromagnetic

wave with amplitude Ey ~ B,,/2 and
w' = cvky (38)

where k,, = 27/L. Thus the interaction of an electron with a planar electromagnetic
wave or with a wiggler magnet is the same; if the electron moves against the wave, the
consequence is a Compton scattering by which the electron loses energy and the photon
field intensity increases.

Let us turn now our attention to the field distribution in the waveguide given by Egs.
(18-24). After the Lorentz transformation to the frame where the electron is at rest is

performed, the new field distribution is given by

E,=E, (39)
Ey =71~ BPuw) Es (40)
By =7(1=fBu) By (41)
B. =0 (42)
By = —v(Bw — B) By (43)
By =7 (Buw — B) Ex (44)

where E; and E, are given by Eqgs. (18-19) with ¢ replaced by ¢' = &'z’ — w't' where ¥/
and ' are also given by Eqs. (29-30). Since w and k are related to each other by the phase
velocity given by Eq. (10), it is

' =k (1 - BBw) (45)
W' = vke(Bw — B) (46)

from which the phase velocity in the rest frame is

I'_f_l__ Buw — P
ﬂw_klc_ 1 — BPuw

(47)
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If we neglect, for a moment, the longitudinal component E., it is seen that the two vectors
E’ and B' are perpendicular to the main direction of motion and to each other. Also, for
a relativistic electron, # ~ 1 and the two vectors have about the same magnitude. This
represents also an electromagnetic wave, but having nonplanar properties; for instance,
the amplitude of the wave vanishes at the origin 2 = y = 0 and increases for small
displacements from the waveguide axis to vanish again at the four corners. Since §,, > 1,
it is seen from Eq. (47) that in order for the wave to propagate in the positive direction
of the z-axis also in the frame at rest, the electron should move in the opposite direction
(8 < 0) to start with. This will create an enhancement of the equivalent field as seen by
the electron; otherwise, if the wave and the particle would move in the same direction
there would be a cancellation, which is the most effective when £, ~ 1 that is in the
short wavelength regime, with frequencies w well above the cut-off value w,. In the other
regime with (8, >> 1, in proximity of the cut-off, which corresponds to long wavelengths
A, the cancellation does not apply; a part from a sign, the amplitude of the wave is then
proportional to vf3, independently of the direction of motion of the electron with respect

to the wave.

Thus there are substantial differences between the field distribution generated by an
electromagnetic wave in a waveguide, and those due to either a wiggler magnet or a pure
plane wave in the vacuum. We shall rely on these differences to work out the new method

of interaction between the electron and the surrounding.

A case of interest is the following. The electron and the e.m. wave, as seen in the
laboratory frame, are moving in the same direction, which is the positive direction of the
z-axis of the waveguide, as shown in Fig. 1. Assume 8 ~ 1 and B, >> 1; then, from Eq.
(47), Bi, ~ —1 and, in its own frame at rest, the electron sees a wave moving against its
position; the consequence is again a forward Compton scattering. Let us also suppose that

initially = y = 0, then the only nonvanishing field components are

B, = 2y (8 ~ 1) cos ¢ (48)
B, = —2#%—7 (Bw — B) cos ¢ (49)

which have an amplitude
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V .
YE, = 27r—u7°7ﬁw (50)

that can be compared to the value vB,, corresponding to a magnetic wiggler. Inspection
of Eq. (50) shows that the field amplitude can reach very large values when driving the

waveguide in proximity of the cut off.
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4. Power Flow in the Waveguide

The constant Vj in Eq. (5) determines the amplitude of the field potential and is related

to the power flux in the waveguide. The flow of energy is described by the Poynting vector

c
S=—ExB
8 %

(51)

To evaluate the total power flow P we integrate the axial component of S over the

cross-section of the waveguide, that is:

+2 42
P=§ (E.By — B,E,)dz dy

ol
e

Insertion of Eqgs. (18,19 and 21,22) in Eq. (51) gives

_ bme

pP=_"
64

Bw Vi

Inserting this equation at the right hand side of Eq. (50) gives

2567 B, P
o=\ 5o

(52)

(83)

(54)

For a constant input rf power P, the equivalent amplitude of the field has still large values

of driving frequencies close to the cut-off.
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5. The Equations of Motion

Consider now an electron with mass at rest m and electric charge e moving down the
waveguide. The motion is relativistic and mainly along the axis of the waveguide but it
could have either direction, that is along or against the direction of propagation of the

electromagnetic wave.* The components of the equations of motion can be derived from
—=c¢E+e—xB (55)

where p is the electron vector momentum and v = (¢, 9, z) the velocity vector. By inserting

Egs. (21-23) in Eq. (55) we obtain

dp; z A

el (Z,Bw - 1) E; (56)
dp z

= (Gpe-1)m, 0
dp. (& y

e € (cﬁwEx + cﬂwa + Ez) (58)

The equations of motion simplify considerably if we assume that the motion of the electron
is confined to the y = 0 plane. In this case y = § = 0 is a solution of the equations of

motion since Ey = 0. We have then, with Eqs. (18-20) taken into account

dpg Vo T
e = 2re ( Buw — 1) — cos (27TZU-> cos ¢ (59)
dpy
=L =0 (60)
dpz Vo x

= —Q7re—0f,, — 2
o7 2me ﬂw 5 o8 ( T— ) cos ¢+ (61)

— ek (,812‘, — 1) Vo sin (2#;) sin ¢

where the phase ¢ is given by Eq. (24). These equations are exact as long as energy losses

to radiation are neglected.

* Throughout the paper, the electron velocity 8 can take positive and negative values.
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6. Hamiltonian Formalism

If again the radiation effects are neglected, the motion of the electron satisfies energy

conservation principles and can be described by the following Hamiltonian

2
H=eV+e \/m?c2 + (P - -Z—A) (62)

where P is the generalize momentum vector related to the actual momentum p by the
relation

P=p+—z-A (63)

and canonical conjugated to the vector r made of the position coordinates z, y and z of
the particle.
We shall continue to consider only the case of planar motion with y = P, = 0. For this

case, since A is given by Eqgs. (14-15),

H=6V+c\/m2c2+P3+(Pz—%ﬂwV)2 (64)
where from Egs. (5 and 24)
V=V sin u cos ¢ (65)
and we have set
u = 2#—3 . (66)

It 1s possible to replacé the canonically conjugated variables z, P, with u, P, by adopting

the following new Hamiltonian

2 2
H = eVysinucos¢ + ¢ \/m262 + 4%P3 + (PZ - gﬁon sin u cos cﬁ) (67)

and

w

We found also convenient to perform a canonical transformation which replaces the
longitudinal variable z with the phase angle ¢ as given by Eq. (24). For this purpose we

introduce the canonical generating function of the third kind

P,
F=-—=(¢+wt) (69)

= F (¢, P;,t)
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which relates the new variables ¢, P4 to the old pair z, P, with the relations

_oF ¢+wbt

=R Tk (70)
oF P,
Py=—35=7 (71)

The new Hamiltonian, expressed in the new variables, is obtained by adding to the right

hand side of Eq. (67) the partial derivative of F' with respect to time, that is

H=c¢e¢Vysinu cos¢ —w Py +

2 . 2 (72)
+c y/m2c? + 4——2—P3 + (kP¢ — —fuVosinu cos ¢S)
w c

Some of the parameters appearing can be eliminated with proper scaling. We chose to

replace the independent variable ¢ (time) with
s=ct (73)

that is the distance traveled by an e.m. wave moving at the speed of light. Also, we

introduce the reduced momenta

Pug
Qug = —=, (74)
the normalized parameter for the voltage amplitude
eV
I'= —3 (75)
and the new Hamiltonian is
w2
mce
T'si 6 —2Qu+
=I'sinu cos¢ — —
co ) (76)

2
me . 2
+ \/1 + 4;0—2—623 + (kQ¢ — Bwl'sinu cos ¢)
As usual the equations of motion are given by the following system of differential equations

of the first order

du 9K
ds  0Q,

(77)
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d¢ 8K

% =70, (78)
dQ, 0K

ds  Ou (79)
dQg 0K
o - 0s (80)

Though there are five parameters entering the Hamiltonian given by Eq. (76), only
three are really required since the others can be derived from relations established in
Section 2. We prefer to assign the amplitude parameter I, the angular frequency w of
the e.m. wave, and the form factor ¢. From Eq. (9) we then derive the cut-off frequency
w, and the required width w of the waveguide from Eq. (8); finally Eq. (11) is used to
evaluate 3, and Eq. (10) the propagation constant k.

To determine the motion of the electron, the system of differential Eqs. (77-80) is
solved by specifying the initial values of the four variables u, ¢, P,, P4 at the starting

location that can be taken to be s = 0.
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7. The Longitudinal Motion

It is important to understand first of all the motion of the electron along the axis of
the waveguide. I is easily seen that if u = P, = 0 then the trajectory is a straight line and

coincides exactly with the axis of the waveguide. For this case the Hamiltonian becomes

e . ¥ 202
K =-2Q4+/1+12Q} (81)

which involves only one of the two canonically conjugated variables ¢, Py and the two of

the three previously defined parameters: T, w and ¢. The equations of motion are then

dg_ w  KQ

=t 82
dQy _
s " (83)

It is seen that, since the phase velocity 8, > 1, the second term at the right hand side of
Eq. (82) is always less than unit, so that d¢/ds can never vanish and actual takes always
negative values. We can refer to this as the phase slippage. This fact could also have been
seen easily from the definition of the phase given by Eq. (24); taking the time derivative
of both sides

p=ki-w
~kv—w (84)
~ck(B - Buw) =
Since By > B this quantity is indeed always negative. A slow phase slippage occurs when
the particle and the electromagnetic wave are traveling in the same direction and for
frequencies w well above the cut-off value wy, that is 8, ~ 1. In proximity of the cut off
where 3, >> 1 the phase slippage Qy ~ w.
It is reasonable to assume that during the interaction with the electromagnetic wave,
the velocity B of the electron does not change considerably and it remains close to unit.

In line with this approximation, Eqs. (82-83) can then be replaced by
d¢

k(8- o) = —Qo/e (85)
dQs
= =0 (86)

In particular the integration of Eq. (86) leads to a constant value of the particle momentum.
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8. The Transverse Motion

We can solve Eq. (59) in the approximation that the particle energy and velocity do
not change appreciably. Thus we replace Z with the total velocity v and neglect the 4 term
at the left hand side of Eq. (59) itself. Moreover we shall consider only small displacement
z << w, so that the cos function at the right hand side can be replaced by unit. We obtain

& = Q%wcos ¢ (87)
where ,
02 = ze%voﬂﬂ“’ —1 (88)
w mo7y
Eq. (87) can also be written as
d’z
P v2w cos ¢ (89)
with
v=Q/Q (90)

The solution of Eq. (89) can be easily derived to be
T =—a cos ¢ (91)

that is an oscillation at the frequency equal to the phase slippage Qo given by Eq. (83)
and amplitude

a=w v (92)

The solution given by Eq. (91) is correct only as long as the amplitude a of the
oscillation is small compared to the width w of the waveguide, that is »? << 1, which

gives the condition
r (B = Bu)’
— << =7
T2 ¢85 (BBw — 1)
setting a limit on the value of the voltage amplitude Vj.

(93)
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9. Energy Loss by Radiation

Consider an electron which is moving at relativistic velocity along the z-axis and at
the same time is performing small amplitude oscillations on the y = 0 plane at the angular
frequency $o. It is well known that the electron will lose energy by radiating electromag-
netic waves moving forward in the same direction of the motion of the particle, within an
angular aperture of about 1/. In the approximation that the oscillatory motion has been
occurring for an infinitely long period of time, the spectrum of the radiation is made of

only one line at the angular frequency
Wrad = 2")/290 (94:)

The radiated power at that frequency by one electron can also be calculated

_162

4 204
Py = 3E7e Qs (95)

where a is the amplitude of the oscillation which in our case may be given by Eq. (89)
combined to Eq. (90) and Eqgs. (84,88). In the case the electron has been performing
only a limited number of oscillations, say n, then the frequency spectrum of the radiation
is more complicated and similar to that usually observed in a wiggler or undulator, with
more lines appearing beside the main frequency given by Eq. (94), spaced in wavelengths
by about 1/n. We shall assume that n >> 1 and still consider only the frequency line
given by Eq. (94).

The spatial distribution of the electrons in a short beam bunch all performing the
same oscillatory motion is also important. In the extreme case where the beam bunch
is much longer than the wavelength of the radiation 27c/w,q, each electron will radiate
independently from the others and the total power radiated is P,,q = N Py where P, is the
power from a single electron, given by Eq. (95), and N the total number of electrons in
the bunch. On the other hand, when the bunch length £ in considerably smaller than the
radiated wavelength, that is

{ << 2mc/wiaq (96)

it is conceivable that all the electrons are radiating coherently and in this case the total

power is

P..a=N?p (97)
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At the same time, though, in order to take advantage of this effect, it is also important
that the transverse dimensions of the electron beam are made as small as possible. Indeed,
they should not exceed the amplitude of the oscillations given by Eq. (96) and should be
smaller than the bunch length itself.
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10. Applications

It is convenient to define two parameters that best summarize the interaction between
the electron motion and the field in the waveguide. One is the frequency transformer
Tatio T = wraq/w, that is the ratio of the radiated frequency to the input frequency to the
waveguide. From Egs. (84 and 94) we derive
2Bw — B

Buw

Since the phase velocity 8, > 1, it is easily seen that the frequency transformer ratio can

r=2y (98)

never be less than one; that is, the radiated frequency is always larger than the frequency
in input to the waveguide.

The second parameter is the power amplification factor n = P,,q/P, that is the ratio
of the power radiated by the beam bunch to the input power to the waveguide. Assuming
that the condition of short bunches expressed by Eq. (96) is satisfied, we derive from Egs.
(53, 88, 90, 92, 95 and 97)

256 7'(2) 2 2(ﬂ,3w—1)2

']7 =
which is valid of course in the case of small amplitude oscillations (v < 1), that is when
the condition given by Eq. (93) is satisfied. As it could have been expected, the power
amplification factor does not depend on the voltage amplitude V4 in the waveguide.

We suggest two possible modes of application to take advantage of the interaction

between the motion of the electrons and the field traveling in the waveguide. They are

expressed by the following conditions.

A. Power Amplifier
r~1 and n>>1 (100)

In this model the electrons are radiating power at a frequency very close to the one in
input to the waveguide. It is known that there are no power amplifiers for frequencies
larger than 3 GHz which can deliver power in significant amount, for instance few
MWatt. The waveguide can be driven nevertheless by a low-input available power
source at a given frequency w and stimulate a short electron bunch to radiate to a

frequency very close to w. In this mode, then one requires a large power amplification,
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that is § >> 1. Ideally, one would require exactly r = 1. Inverting Eq. (98), this is

obtained only if

_ 2
ST

Since B < 1, this condition can be satisfied only allowing f,, < 1. For a ultra-relativistic

Buw (101)

electron, v >> 1, actually one derives

1

The only way to obtain a wave traveling with a phase velocity slower than the speed
of light is to modify the boundary conditions at the wall of the waveguide. This can
be done by making use of a non-perfectly conducting material as it will be shown in
a subsequent paper. We shall continue here with the model of perfectly conductive
wall of a waveguide in the vacuum. For the operation of a power amplifier the input
frequency is well above the cut-off value, that is f,, ~ 1, in which case as a good

approximation

r~ 14 (7g)” (103)

We found some difficulties to find optimum beam and waveguide parameters for this

mode of operation.

. Frequency Transformer

r>>1 and p~1 (104)

In this mode of operation the power radiated by a short electron bunch is at a frequency
larger than that used in input to the waveguide. In this case it is sufficient that the

power gain is close to unit. Inversion of Eq. (98) gives

29°8
B = 57 (105)
Very likely r << 2% and with a good approximation
r—1
Bw =1+ 57 (106)

Thus again it seems that one should drive the waveguide at frequencies well above the

cut-off. Nevertheless another interesting situation corresponds to values of r very close
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to but not exceeding 2v%; this makes the denominator at the right hand side of Eq.
(105) positive and very small. The phase velocity now is f, >> 1, which requires

driving the waveguide at a frequency dose to the cut-off value. An example of this case

is shown in Table 1.
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11. Conclusions

A practical demonstration of the method exposed in this paper would be very valgable.
It would be sufficient to start with a demonstration of the principles involved, for instance
with lower initial power amplification factor and more modest electron beam intensity.
There are nevertheless still a number of technical and design issues that ought to be

solved. For instance
(i) How to drive efficiently the waveguide with the 1.3 GHz power source?
(ii) How to excite the wanted traveling mode and exclude all the others?

(iii) How close to the cut-off can one drive the waveguide, without loss of stability in the

rf power source?

(iv) The electron beam energy is low and the required intensity large. How does one cope
with space charge effects? How small can one make the bunch length and the transverse

emittance?
(v) Experimental evidence of coherent radiation is crucial in our model.

(vi) The electron energy may be too low, so that one should re-evaluate the radiation

mechanism for non ultra-relativistic particles.

(vii) To produce a clean narrow-band spectrum of the radiation, it is important that elec-
trons travel a distance long enough to include several transverse oscillations. If the
waveguide is 2.6m long, about ten complete oscillations would be executed; what are
the consequences on the radiation spectrum? In the meantime each particle would

have lost about 0.1 MeV; what are the consequences from the energy loss?

This list of unsolved issues can be made very long indeed; but we are just at the
beginning of our research. We plan to continue by examining closely the interaction of
a short electron bunch with an electromagnetic wave of the most general (TM or TE)
propagating mode, traveling in a waveguide. We would like to consider also more realistic,
less conductive wall material which could have the effect of slowing down the phase velocity.
We plan also to determine numerically the general equations of motion outlined in Sections
5 and 6. For instance we would like to find ways to take advantage of the longitudinal

electric field to restore the energy lost by the electrons to the radiation. As more results
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will be available, other possibilities will surface for improved optimization of the design.

We are just at the beginning of our program...
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Table 1: An Example of Frequency Transformer

Kinetic Energy of Electrons
Number of Electrons
Bunch Length

Input Frequency

Radiated Frequency
Frequency Transform Ratio
Power Amplification Factor
Phase Velocity, .,

Cutoff Frequency
Waveguide Dimension, w

Period of Oscillations

4 MeV
4 x 101!

1 mm
1.3 GHz
190 GHz

146
1.06
15.5
1.2973 GHz
25.8 cm

24.5 cm
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Fig. 1 - The rf Wiggler Concept
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