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1. Introduction

Coupling between the transverse z and y degrees of freedom causes phase plots (z,z') or
(y,9') that are thick ellipses, (the Thick Ellipse Effect). This effect is produced in computer
simulations of the z-y coupling existing in RHIC; a smear of the familiar Courant-Snyder
ellipses (or, rather, circles in suitably normalized coordinates) is produced in, both, (z,z'),
and (y, y')-planes.’? The smear presented in Fig. 1 corresponds to plotting of the (z, ' ),

and the (y,y') components of finite, discrete set of points

T(z0), T(T(=0)), ... ,T(...T(T (%))...). (1.1)
1000 :

This effect is somewhat dependent on the choice of the initial 4-vector zp, and on the
nonlinear couplings included in the single-turn map T. It is not excluded that more of the
phase-space would be covered, including central parts, if different initial vectors would be
employed.

In the paper we examine the linearly coupled motion produced by thin skew-quadrupoles

distributed around a ring, and determine their contribution to the Thick Ellipse Effect.

—-1-



2 Introduction

We reveal the main driving terms responsible for the spread of the invariant curves. We
also show that the spread is removed, at the point where the tune splitting correction is
made. '

In order to be able to accommodate any trajectory, corresponding to any choice of the
initial conditions and number of turns, we are looking for the total areas in the physical
subspaces, i.e. (z,z'), (y,y') and (z,y) subspaces, which are available for the motion. They
are given by projections of the invariant 4-Ellipsoid onto the (z,2"), (y,9') and the (z,y)-
planes. Since the invariant 4-Ellipsoid replaces familiar Courant-Snyder curves, when the
linear coupling is present, we study this rather novel ob ject, in some detail, first.

As usual, 0&4 denotes a two-dimensional surface of the solid four-dimensional ellipsoid

&4. Similar for the lower-dimensionality geometric objects appearing in the sequel.



The Equations of Motion

2. The Equations of Motion

We consider the betatron motion under presence of the linear coupling produced by

skew-quadrupole fields. The Hamiltonian of the system is quadratic

1, 1, 1 1
H=2p*+-p2+=(p"2 — k)2 + =ky® — Nzy.
5P+ 5P+ 5 (P )& + Sky zy

Hamilton’s equations of motion are linear, with periodic coefficients
' = py,
pe = (k—p~*) 2+ Ny,
y' = pi,
p; = —ky+ Nz.
They can be cast in the form of the second-order differential equations
" + (p—2 — k) x = Ny,
y" +ky = Na.

Any solution can be written in the form
z(s) =T(s,50)2(s0),

where

z
xl
z= ,

Y
4

—~

and T is a real 4 X 4 transfer matrix satisfying the symplecticity condition

TST = S,

where

and

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)



4 ' The Equations of Motion

It is well known,? that there exists a real 4 x 4 symplectic matrix-R, such that when

passing to new variables w = R™1z

w= % =(€) (2.9)

v
the motions decouple, i.e.,
w(s) = U (s,30)w(s0), (2.10)
where
- A O
U=R1TR=<0 B). (2.11)

The submatrices A, B are real 2 x 2 symplectic matrices describing the uncoupled betatron
motions, which can be described by the Courant-Snyder parameters. For the single turn

transfer matrix T', we have for the A, B submatrices

A =1cospi + J1sinpu1, (2.12)

B = 1cos 2 + J3 sin g, (2.13)

where the matrices Jy are C-periodic (C-circumference) and symplectic

h:(ak m), (2.14)

Yk —O
[Tl =nfr—of =1, k=12 (2.15)

The ag, Br, 1, and p; are called the new parameters, and they replace the familiar

Courant-Snyder parameters pertinent to the uncoupled z-y motion.



Digression on Invariants 5

3. Digression on Invariants

It follows from the symplecticity conditions (2.6) that, for any natural number k, the
combinations

58T*z k=1,2,..., (3.1)

are independent of the s-variable; they are invariants. They can also be expressed via the

w-variables as follows

28T z = HSU*w =
= UoJ Usin (kpy) + VoJaV sin (kus) =

_ _% [ + (e + )] sim (pur) - (3.2)

— 51; [v2 + (ozzv + ﬁzv')z] sin(kpg) =
= —eysin(kp1) — egsin (kp2), k=1,2.

One sees, that there are only two independent invariants
Wi =UcdiU =

~afJd1 O
=wS(0 0)w= (3.3)
= 2SR (A 0> Rlz(sinp)™ = - <0,

and

:‘T’S(g .;)2)”’= (3.4)

o 0 O 1/ . —
=z5’R<O B)R l(sm,uz) 1= 6 <0,

When the new tunes coincide
g = pg = p, (3.5)
i.e., when the tune splitting is corrected, the invariants coincide, up to a factor
£ST*z = 55Tz - sin (kp) (sin ) ™" . (3.6)
This comes about since all the invariants are proportional to a sum W + W5, in this case.

Thus, it is sufficient to study only the simplest, linear in T invariant

25Tz = wSUw = —esin g — egsin g = \. (3.7)



6 Digression on Invariants

Since in RHIC, the tunes py o~ p1 ~ p1, ~ py are such that sin pz and sin u, are negative,

we restrict our attention to the case when the parameter ) is a positive constant,
A>0. (3.8)

This defines the basic object of our further study - the invariant 4-Ellipsoid, 0&4, in the
phase-space, given by Eq. (3.7), and the condition (3.8).

One knows that if n-ellipsoid equation is cast into the form

1y =1, (3.9)

zZo~

where ¢ is a positive-definite symmetric matrix, the volume it includes is given by the
formula
Vo =[T(n/2 + 1) (det 0)'/2 (3.10)

1

In our case the matrix 07" is, after a symmetrization, given by the expression

oTt=N7Ss(T-1Y). (3.11)

In general, it possesses an inverse, and leads to a finite (four-dimensional) volume. This is
not true for the invariants Wy, Wy since the corresponding kernels o 1 oy ! are degenerate,
as it is seen from the formulae (3.3) and (3.4). Two of the eigenvalues of each kernel are
zero, and any growth in the corresponding eigen-directions is not contained. Thus neither

one of them individually describes a bounded region in the four-dimensional phase-space.
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4. The Machine 4-Ellipsoid

The equation (3.10) of the 4-Ellipsoid d€; can be written in the components

4
28Tz = Z Frozpzp = . (4.1)
k=1

Here, T stands for a single turn transfer matrix calculated at the observation point s = 0.
It is by now customary to work with, so-called, normalized coordinates, 2’, defined by

the relation, (the circular representation),
[+]
z= Bz, (4.2)

where the 4 x 4 matrix B is of the form

B= (%‘ z;)y)’ (4.3)

BY* o _ 1/2 0
By = ( —1/2 1/2) , Bl= ( —1/2  ,=1/2-° (4.4)
azﬂz ,Bz “azﬁx /Bz

and similar for By, B, 1. The oy and B, functions are those of a perfect machine - without

and

the linear coupling. We assume, additionally, that at the observation point, the oy and ay

vanish

az (0) = oy (0) = 0. (4.5)

Hence, we have the usual relations between the coordinates, at the point s = 0,

z=p"z,
o = ﬂ;1/2 3:’
" (4.6)
Yy=0Py Y,
. !
yl =B, 1/2 ?3 '
Taking into account the fact that
B7lSB =8, (4.7)

one gets

320 5 . %0
28Tz = 2Fz =zFz=2z S Tz, (4.8)
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where .
o o]
T=BTB™! = (M Y ) : (4.9)
m N

]
is the single turn transfer matrix in the circular representation. Hence, the coefficients Fi,

are
[o] [o] o °
Moy My na1 n92
o] [o] —_— — f— —_
1 12 n11 n1g
Fre= (5 T) =] : ] e (4.10)
ke ma1 M2 Ny Ny
o o o o
—my —my2 — Nyg — Ny

Notice, they are not symmetric in their indices &, £. The coefficients Fp can be found from

the relation

F=BFB. (4.11)
It appears useful to consider symmetrized coefficients given by the expansion
¢S5 TS=
= Fpoa® + 2Fpza’ 4 2Fy 0y + 2F,yzy + Fyrpa'?+ (4.12)

+ 2Fz/y:v' Y+ 2Fw1ylw'y' + Fyyy2 + 2F,yy + Fy/y/y'z =
We dropped the little circles above since we will work, exclusively, with the circular rep-
resentation. The new coefficients are related to the previous, and to the transfer matrix
elements, as follows
Fig = F1y =1\3_fz1,
2Fpy = Fi2 + Fy =J\°422 - ]\(;Illa
2F;y = Fi3 + Fy; =ng; + ma,

(] [+}
2Fpy = Fia + Fy =ngy — mn,

Fpig = Fpy = — —7\0/112, (4.13)
2F,1, = Fys + F33 =mgy — ny,
2Fyy = Fou + Fip = — 1y — mag,
Fyy = F33 =-7<721,
2Fy = F34 + Fy3 =-7c<722 - Jt{’ll,

0
Fy’y' =Fyy=—Nyg.
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The positive-definiteness of the quadratic form (4.12) implies the following inequalities

Fip >0, (4.14)

Fa:z F:ca:’
Fz’z Fz’z’

and similar for the third, and for the fourth-order principal minors. Another three more

= FyyFyry — F2, >0, (4.15)

zz!

sets of the inequalities can be obtained from the previous one upon the cyclic permutation
of the variables z,z’,y,y'.

It is clear, that the projection of the &, onto, let say, (z, z')-plane will contain, together
with a boundary curve, all the internal points, as well. In particular, it will include the

origin x = 0, 2' = 0, since, for this point, one gets from Eq. (4.12) the condition
Fyyy® + 2Fyyy’ + Fyy' = A, (4.16)

The whole ellipse, in the (y,y’)-plane, corresponds to the origin in the (z,z')-plane, and

vice-versa.
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5. Expression of the 4-Ellipsoid’s Coefficients Through the Driving
Terms

Using the relation (4.13), and our knowledge of the single-turn transfer matrix derived
from the thin lens, discrete model>~® we can express the coefficients Fyz, etc., through the
driving terms. It is assumed here that the N thin skew-quadrupoles of strengths gz, and

location sj are distributed around a ring
yk=1,...,N. (5.1)

= (ﬁxﬂy)l/ 2 0 Y .

The single-turn transfer matrix can be written as a polynomial in the ¢’s
N
T=> 10, (5.2)
k=0

where T(*) can be expressed via the k-th order in the ¢’s, driving terms. We list the

4-Ellipsoid’s coefficients, up to the second order in the ¢’s.

Fpp = —sinpy, + dgc) sin pg + dg) COS lig + ... (5.3)
2F . = dgs) sin py + d(c) COS g + d(s) COS g — dgc) sin piy + ..., (5.4)
2F;, = dgc) sin pg + £3) sin py + dg}) (cospz +cospy)+...= 2F‘zy, (5.5)
2F,, gs) sin py + dES) (cos pz + cos py) — dcc sinpry + ..., (5.6)
Py = —sin iz +dS9) cos g — d sin g + ..., (5.7)
2F 1, = 2F,,, (5.8)

2F 1y = dgs (cos pg + cos py) — Y sin Py — dY sin fho + ... =2Fp,, (5.9)

F?J?J =F$$5 v (510)
oy =2 (5.11)
iy = e (5.12)
Here the driving terms of the first order d(!) and of the second order d(? are defined
as follows "
dss sin (7, sin p;
dgi) Y sin pz cos fuy,
L ) 5.13
dg) TZ__; ! COS [tz Sin py (5.13)

FS) cos iy, €os f1y,
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and @
dss sin pS sin ul,
d? ) sin p3. cos pr
z;) = Z grqs SIN (,U'; - ,L‘;) z . : )
des 1<rca<N cos p3 sin pl
a2 cos s cos pu”

and py, py, are phase advances

(2)

11

(5.14)

(5.15)

Additional sets of driving terms, denoted as Jﬂ?, dss , etc. are obtained from the above

equations by simply exchanging z and y, ' and y' inside of it. That is by the operation

T Yy
! !
T .
z = e 4 y = Z.
Yy x
yl .'EI

In our case this yields simply
d® (z,y) = d® (y,z), k=1,2,

and similar for the conjugate coefficients F..

(5.16)

(5.17)
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6. Symmetries of the 4-Ellipsoid

Due to the relations (5.3) - (5.12) between the coefficients F and their conjugates F,
one may rewrite the equation (4.12) for the 4-Ellipsoid in the form
Fo,z?+ 2F, xz’ + Fryzy + 2F$y/:1:y' + lez/wm + Fmry/x'y'-i-
+ (Fast® + 2F, 008’ + Foyay + 2Fppay’ + Fypa' + Fyyaly')' = A, o
One notices immediately that this equation stays unchanged under the two different trans-

formations:

1° 2z — —z, (6.2)
2° z—3 F-F. (6.3)

The first symmetry means that the 0&;-Ellipsoid is centered around the origin. Any plane,
passing through the origin, divides 8&; into the upper 35§+), and the lower 65{) parts
which, both, project onto the same sets. This may be seen clearly on the models in two,
and three dimensions, cf. Fig. 2.

The second symmetry reduces the algebra involved by half, since the half of quantities

of interest follow from previously found, by the v-operation.
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7. The Projections of the 4-Ellipsoid Onto The (a:,:c'), (y, y’), and
The (z,y)-Planes

To project the 08, onto, let say, (z/,y,y')-space, means to find a domain on which
the coordinate = of the upper branch 6€ ,£+) (or, equivalently, the lower branch 084_)), is
defined. There are four distinct projections onto different three-dimensional spaces since
the 4-Ellipsoid’s equation can be solved for the z4, @/, or the yx and g/, coordinates, cf.

Fig. 2. In order to see this we write the 4-Ellipsoid’s equation (6.1) in the four distinct

forms:

az® + bz +¢c =0, (7.1)
ay? + by +é= (az® + bz + c)v =0, (7.2)
pr'? + gz’ +r =0, (7.3)
W+ gy +F= (pa;'z + gz’ + r)v =0, (7.4)

where the coefficients are
a = Fgg, (7.5)
b= 2Fxx/a:' + 2Fyy + 2ny/y', (76)

c= F‘,,,;/:,;/:i,‘l2 + 2Fz/ymly + 2Fz/y1x’yl 4 Fyyyz + 2Fyy1yyl -+ Fy/y/yl2 — A, (77)

and

p=Fyy, (78)
q=2F,z+ 2Fz/yy -+ 2F$/y/, (79)
r = Fypz? + 2Fyzy + 2F,pzy’ + Fyyy2 + 2F,yy + Fy/y/y’2 - A (7.10)

Solving Eq. (7.1), we get for the upper and the lower branches

Ty = —2—1; (—b:l: Vb — 4ac) =z (7, y,9), (7.11)

Y+ = (xzi:)v =Y+ (yla €T, 32’) ) (712)
1

Tl = 5—1; (—q +1/q2 — 4pr) = :v'i (:c,y,y') , (7.13)

vh = (2h)" =k (z,2',y). (7.14)
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It is understood that the solutions are real, which means that the following inequalities

hold

b% — dac >0, (7.15)
b — 4aé > 0, (7.16)
q* — 4pr > 0, (7.17)
G2 — 4p7 > 0. (7.18)

They define the domains, solid 3-ellipsoids, on which the solutions z., etc., live. Hence,
we found the projections of the 4-Ellipsoid, 84, onto four, solid 3-ellipsoids, &, & and
Ms, M;,

!

& (z',y,y') = Proj {8&& )/83 'y, y )} {z',y,y'; 0* — dac > 0}, (7.19)
& (v, z ,#') = Proj {agf)/& (v, =, :c)} = {y,:c,:c;bz—élacZO}, (7.20)
) = Proj {35( 105 ( ,y,y')} ={z,y,9';¢" —4pr >0},  (7.21)

M; (y, :c,cc') = Proj {65,£ )/M3 (y,:v,:v')} = {y,x,m'; G2 — 4pr > O} . (7.22)

!

M; (z,y,y

The surfaces, €3 and OMj3, of these solid 3-ellipsoids correspond to loci of points on
the 4-Ellipsoid, &y, where the solutions z4 and z_, etc., coincide. They determine the

boundaries of the projections, cf. Fig. 2. The loci are thus characterized by the conditions

{op =z} = {0® —dac = 0} 5 863 («',y,v) (7.23)
{yr =y-} = {B? —4ae = 0} 5 085 (¢, 2,2') (7.24)
{zy =21} = {¢ —tpr =0} 5 Mz (2, y,y) | (7.25)
{vh =y }={P-apr =0} 5 oM (y,2,2"). (7.26)

In the second step, we project these 3-ellipsoids onto the (z,z'), (y,y') and the (z,y)-
planes. That is we use only four, out of the twelve distinct possibilities to project the
3-ellipsoids onto the various coordinate planes, cf. Fig. 3. In principle, to find projections
of these 3-ellipsoids, one could repeat the above construction, however, another way of
projecting seems more appropriate in these imaginable cases.

In order to project, for example, the surface 8&; (¢',y,y') onto the (y,y')-plane, we
slice it first with the planes

' =, (7.27)
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where the parameter ¢ varies as it is indicated in Fig. 4, and project the intersecting
ellipses onto the (y,y')-plane. Taking the envelope of the projected ellipses 0&; (¢, y,y'),
with the respect to the parameter ¢, one gets the ellipse —8E, (y,9'). The final ellipse,
which is composed of the d¢; (y,y'), and its internal points, is now called the projection

of the 9&, ellipsoid onto the (y,y')-plane

Proj {0&4/ (y, y')} = [Envagz (c,y, y')] =& (y, y') . (7.28)

The inclusion of the internal points is indicated by the solid brackets [...].
By projecting the slices, y' = ¢, onto the (z,2)-plane, and by taking their envelope,
one finds the projection of the €, ellipsoid onto the (z, ' )-plane

Proj {864/ (z,2")} = [EnvdE; (c,z,2")] = & (z,2'). (7.29)

Similarly, the slicing the dM; (z,y,y') with the planes y' = ¢, and the M; (y,z,z") with
the planes 2’ = ¢, and by finding the corresponding envelopes, one constructs two projec-

tions of the 0&, ellipsoid onto the (z,y)-plane,

Proj {964/ (z,4)} = [EnvdM; (2,9, 0)] = My (z,y), (7.30)
and

Proj {084/ (z,y)} = [EnvdM; (y,z,¢)] = M> (y,z). (7.31)

It is not clear, at this point, that both projections My and M, of the 4-Ellipsoid, onto
the (z,y)-plane, coincide. This is because our method of projecting consists of two steps.
In the second step one considers projection of a projection, resulting from the first step.
Since the two different intermediate projections are involved, it is not obvious that they
will yield the same final projection.

To find the envelopes one has to eliminate the parameters z', y' from the supplementary

conditions

0 1o

@ o (b* — dac) =0, (7.32)

b. 6% (8* — 4ae) =0, (7.33)
0

c. Ew] (q2 —4pr) =0, (7.34)
J . .

d. 37 (6% — 4pF) = 0. (7.35)
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The first two conditions yield

t' = Ay + By, (7.36)
y = Az + Bz'. (7.37)

Similarly, for the conditions c. and d. one finds the solutions

y = Pz + Qy, (7.38)
z' = Py + Q. (7.39)
where the coefficients are
A=AV (FopFpy — FpuFuy), (7.40)
B = A" (Fpp Fpy — FpyFory) (7.41)
pP=v! (Fz’y’ ol — Fz’z’ny’) , (7.42)
Q=V""(FyyFyy— FypFyy), (7.43)

and for the denominators A and V we get

A = FppFpy — F2, >0, (7.44)
V = FypFyy — F%, > 0. (7.45)

Substituting the solutions (7.36) - (7.39), back into the conditions (7.23) - (7.26), we obtain
the equations of the ellipses 8&; (y,y'), &2 (z,2'), and OM; (z,y), OM, (y,z),

0& : Epy® + 2E,yy’ + Ey/y/y'z =, (7.46)
& Epyz?+ 2gyyzwx' + g'y/y/a:'z =}, (7.47)
OMy:  Mypz® + 2Myyzy + Myyy® = ), (7.48)
OMy:  Mypy? + 2Myyay 4+ My,z? = ), (7.49)

where the coefficients are given in terms of the F’s. Up to the second order in the ¢’s the

coefficients are

Ey = Fyy+ (sin )™ (FL, + F2,) + ..., (7.50)
Eyy = Fyy + (5in pio) ™ (FoyFyyr + Fpy For)) + ..., (7.51)
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Eyy = Fyy + (sinps) ™ (FL, + F2y) + .., (7.52)
Mgy = Fyq + (sinpiy) "' F2y + ... = My,, (7.53)
Mgy = Fpy+...= Mgy, (7.54)
Myy = Fyy + (sinpip) " F2 + ... = My, (7.55)

Thus we have arrived at our goal; the solid ellipses &, £, My, M, constitute the
projections of the invariant 4-Ellipsoid onto the (y,y'), (¢, z') and the (z,y)-planes. Notice,
that up to the second order in the ¢’s, the equations (7.48) and (7.49) coincide. Thus we
obtain the same projection of the invariant 4-Ellipsoid onto the (z,y)-plane, independent

of the intermediate steps involved.
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8. Possible Measures of the Thick Ellipse Effect

Let us denote (the projected emittance, in absence of the linear coupling),

€ = A (—sin )",
' 1 (8.1)
€y = A(—sinp,) ",

and let us rewrite Eqgs. (7.46) - (7.49), for the projections, as follows

a. eyy?® + ey 2yy’ + ey = ¢y, (8.2)
c. Mmgge, txd + My (e,;ey)_l/2 2zy + myye?;ly2 =1, (8.4)
d. rhuey_lyz + iy (ezey)_l/2 2zy + myye;1x2 =1, (8.5)

(equivalent to the previous equation), where the new coefficients are

eyy = (—sin #y)_l Eyys (8.6)
eyyt = (—sin ,uy)_l Evyt (8.7)
eyt = (—sin i) 7" Eyrys (8.8)
and
Mgy = (— sin,um)_1 M,,, (8.9)
Mgy = (sin piz sin /.Ly)_l/2 My, (8.10)
Myy = (—sin Ny)_l Myy. (8.11)

Putting the skew-quadrupole strengths, ¢’s, equal to zero, one gets from the formula (7.50)

- (7.55), and from the formula (5.3) - (5.12), the results

enl =1 e =0, epy| =1,
0 0 0
(8.12)

Mye| =1, Mgy

0

=0, myyl =1.

0 0

Hence, we recover the familiar invariant Courant-Snyder circles, in the (z,z'), and (y,y')-

planes

yr+y? = €y, (8.13)

and
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2?4 2% = ¢, (8.14)
and the ellipse in the (z,y)-plane
2 2
24l (8.15)
€& €

Both ellipses, (8.4) and (8.5), coincide in the zero-coupling limit, cf. Fig. 5. Areas
in between the curves with, and without the coupling, are available for the spread of a
trajectory when the linear coupling is present. For this reason we propose to consider the
characteristic dimensions, §’s, of these areas as a measure of the Thick Ellipse Effect. They

are related to the coefficients e’s and m’s as follows, (in the same order as shown in Fig.

5),

. P
a. 8= ()™ =1 Vo 8y =|(eyy) ™ 1] V&, (8.16)
b b= |(@) P =1 Ve b= [(opy) T - 1] Ve, (8.17)
c. bg = (mm)_l/z - 1] Ves, &= [(myy)_l/z — 1] Ve, (8.18)

or, equivalently, the last thicknesses can be expressed as

d 6= _(Thyy)—l/z - 1] €z, 5y = [(mzz)—1/2 - 1- \/q (819)

The areas in between the curves can be expressed via the above thicknesses, §’s, and via

the mixed coefficients e, and mg,. For example, for the case a. we have the result

_1/2
SA = [(eyyeyzy; — ezyl) - 1] Tey, (8.20)

and similar for the other cases. We will return to this point after averaging over the random

q’s, which will simplify the considerations.



20 Averaging Over the Random Skew-Quadrupole Strengths. RHIC - An Ezample

9. Averaging Over the Random Skew-Quadrupole Strengths. RHIC
- An Example

Assuming that the ¢’s are normally distributed random variables, we have

<g >=0, (9.1)
and
<g¢>=G%N, r=1,...,N. (9.2)
Further, assuming that, for both z and y directions
<sinp” > =< cosyu’ >=0, (9.3)
and
<sin? p? > =< cos? y" >=1/2, (9.4)

while the averages of mixed products assumed to vanish, we get for the averages of the

driving terms

<d® > =0, (9.5)
<d® > =0, (9.6)
<dV > =1/462. (9.7)

The averages of squares of the second-order driving terms are small. The averages of
products of different first-order driving terms vanish.

For the averages of the coefficients e and m we get the results

< eyy > =< Mgy >=0, (9.8)
<eyy > =< eyy >=1-k/4, (9.9)
and
< Mgy > =<myy >=1- k/8, (9.10)
where the parameter « is
k= G2 (sin iz sin p1) L. (9.11)

For the averages of the conjugate coefficients one has, in general

<é>=<e>', <m>=<m>". (9.12)
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The equations (8.2) and (8.3), after the averaging become

Y4yt =< >, (9.13)

2? +2"? =< g >, (9.14)
where, according to the formula (9.8), we have
<& > [ey =< & > [er =< ey > =14 /4. (9.15)
The equations (8.4) and (8.5), both, yield the same equation
2/ x4 .27 2
where the new average projected emittance is given by the relations
<& > Jeg =< &> Jey =14 £/8. (9.17)

Corresponding to the equations (9.13), (9.14) average characteristic dimensions are

< by >0 =< by >,= K[8, /6, (9.18)
and
< b >p =< by >p= k[8\/€5. (9.19)

The average characteristic thicknesses corresponding to Eq. (9.16) are even smaller

< Oy >¢ = £/164/€g, (9.20)
and
< by >c= K,/lﬁ\/t‘:_y-. (9.21)

The average areas in between the curves in Figs. 5a and b, are according to formula

(8.20), equal to

< 6A >, = k/dney, (9.22)
and

< 6A >p = k/4me,. (9.23)
For the case c., in Fig. 5, one gets the result

< 6A >c= K/8T,/ez€y. (9.24)
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Thus, all the relevant quantities are expressed through the parameter &, which, for case of

RHIC, where

P = 2m X 28.827, sinpg = —0.885,

and

Py = 2m x 28.823, sin p, = —0.896, (9.25)
and

Gy = 0.25,
is equal to

K = Gj (sin 1 sin y1,,) ' = 0.007, (RHIC).

Therefore, we obtain the following numerical characteristics of the Thick Ellipse Effect,
produced by the random skew-quadrupoles, in RHIC

< eyy > =< eyryr >=< Mgy >=< myy >= 0.99,
<& > [ey =<& > [e; = 1.017,
<& > ey =< & >' Je; = 1.008,
< by >4 =< 6y >,=0.008 /ey,
< g >p =< by >3=0.008 /e,
(9.26)
< bp >c = 0.004 /e,
< &y >¢ = 0.004 /&y,
< 6A >4 = 0.017 ey,
< 6A >3 = 0.017 7eg,

< 0A >; = 0.008 7,/ez€,.
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10. Influence of the Tune Splitting Correction on the Thick Ellipse
Effect

An assumption that the new tunes, g and pg, coincide lies at the heart of our choice
of the linear in T invariant. In other words it is tacitly assumed that the tune splitting
produced by the linear coupling has been corrected. One knows®%5 that this implies

vanishing of all the first order, and some of the second-order driving terms

d) =, (10.1)

and
4P +d =, (10.2)
d? +d® =o. (10.3)

As the result, the averaged coefficients e, m become negligible small (at the point s = 0,
where the tune splitting correction is done).
One has, in particular,

= eolt
Av=0

10.4
(10.4)

<e.>

10.5
om0 = 105)

<m._.>

and, as the result the Thick Ellipse Effect vanishes, at the point of the tune splitting

correction

_5'

L =0, (10.6)

< 6> =
g=0

and

=0A

<6A> l
Av=0 g=0

=0. (10.7)
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11. Matching Conditions at the Observation Point

The averaged equations (9.13), and (9.14) suggest, that one can match the linearly
coupled beam, at the point of observation, s = 0, by a beam with modified machine
parameters. Writing these equations as (machine ellipse equations, in the original phase-

space coordinates)

Xp;lX =g, (11.1)
and
Yp;'Y =g, (11.2)

where

o= ( ‘&w) , (11.3)

—0g Yz

and similar for p,, we find the following matching conditions, at the point of observation,

Gy = g =0, (11.4)

Bz = Pa, (11.5)
and

€ =< & >= (14 £/4) e, (11.6)

and similar for the y- parameters.
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12. Concluding Remarks

A method of constructing projections of the invariant 4-Ellipsoid onto various planes
of interest, is described. It can be applied to any invariant surfac;es in the four-dimensional
phase-space, including those corresponding to the non-linear coupling, as well.

Contribution of skew-quadrupole errors to the Thick Ellipse Effect, in RHIC, was found
small. Hence, by large, the non-linear effects are responsible for the smears of the invariant
curves, observed in the computer simulations in RHIC. Their treatment, however, requires
employment of rather different methods, than those used here, which are suitable for the
linear coupling case. We calculate an impact of the linear coupling, up to the second
order in the skew-quadrupole strengths, on various quantities of interest. It seems, that
our averaged projected equations, (9.13) and (9.14), can be useful when matching linearly
coupled beams at the injection point in RHIC - for example.

The invariant equations (7.46) and (7.47) or, equivalently, the equations (8.2) and (8.3)
provide a counterpart of the familiar Courant-Snyder invariants when the linear coupling

is present. Notice, that they are written in the normalized coordinates.
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Figure 1: The Thick Ellipse Effect in computer
coupling in RHIC (courtesy of G. Fritz Dell).
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Figure 2: Projections of the upper y4 (z4), and the lower y_ (2-) branches
of the ellipse, a. (ellipsoid, b.) coincide, and are symmetrically centered
around the origin 0.
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Figure 3: Projections of the 684 onto the three-dimensional ellipsoids, and the elli'pseé of interest, as indicated
by the arrows. Eight, unused possibilities are indicated by the broken arrows, and circles.
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\ tangential to projected ellipse, having
maximal y-coordinate, at the point (x ¢, y¢)

Figure 4: Slicing of the ‘3—ellipsoid with the planes; z = ¢, —cg < ¢ < ¢y and projecting the intersecting
ellipses onto the (z,y)-plane. The projected ellipses posses the (elliptic) envelope.
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(b)

(c)

Figure 5: The Thick Ellipse Effect produced by the linear coupling. The
outer ellipses correspond to Egs. (8.2) - (8.4), while the inner curves cor-
respond to Egs. (8.13) - (8.15).



