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Abstract

A detailed study of the in
uence of space charge on crossing second order

resonances is presented and associated with the space-charge limit of high-

intensity rings. Two-dimensional (2D) simulation studies are compared with

envelope models, which agree in the �nding of an increased intensity limit

due to the coherent frequency shift. This result is also found for realistic

bunched beams with multi-turn injection painting. Characteristic features

like the in
uence of tune splitting, of structure resonances and the role of

envelope instabilities are discussed in detail. The theoretical limits are found

in good agreement with the performance of high intensity proton machines.

I. INTRODUCTION

The importance of space charge was realized at an early stage of design of high-intensity

rings. A �gure of merit became a space-charge induced shift of individual-particle betatron

tunes. In conjunction with single-particle framework of betatron resonances this resulted

in a space-charge limit argument for circular accelerators. However, such a widely used

criterion, which is based on the resonance condition for incoherent tunes, overestimates the

threshold for onset of resonances, and, what is equally important, incorrectly describes the
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resonance response. A correct treatment requires one to take into account the collective

behavior of the beam. Understanding such collective beam behavior near the resonances

as well as associated resonance crossing is of crucial importance for the next generation

high-intensity rings under construction and design. It also provides the framework for the

intensity upgrade of existing high-intensity machines.

In this paper we demonstrate the validity of collective beam response to betatron reso-

nances using an example of the Spallation Neutron Source (SNS) accumulator ring which

is currently under construction [1]. We also describe the main features of beam envelope

resonant response and its application to the space-charge limit in the high-intensity rings.

We �rst con�rm this collective resonance theory for a two-dimensional unbunched beam

with various beam distributions. We then extend our studies to a realistic bunched beam as

well as the process of beam accumulation by multi-turn injection. As a result, we explore

the applicability of collective-resonance theory to a realistic beam in high-intensity circular

accelerators.

The structure of the paper is as follows. Section II is devoted to an overview of coher-

ent resonance theory with an application to the space-charge limit in a ring. Section III

demonstrates application of this theory with regard to a half-integer resonance driven by

the gradient errors. In this section both the space-charge limit and envelope response issues

are discussed. Section IV compares beam envelope response to an imperfection resonance

with a similar response to a structure resonance. In particular, one of the proposed SNS

working points is examined and the resulting space-charge limit is discussed. Section V

is devoted to a discussion of the coherent resonance condition and its application to the

envelope instability. Finally, Section VI summarizes the major points which follow from the

coherent-resonance response.
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II. SPACE-CHARGE LIMIT

A. Coherent resonance theory

In the absence of coupling, the resonance condition for the tune can be written as n=m =

�0, where n is the harmonic content of the errors andm is the resonance order. The resonance

order m can be associated with the multipole spectrum of the lattice errors, with m = 2

corresponding to gradient errors, m = 3 to sextupole errors, etc. If we now think about

space charge as a perturbation producing a tune shift of individual particles (incoherent

tune shift) the resonance condition would become n=m = �inc � �0 � ��sc, with ��sc

being the maximum space-charge tune shift. Such a criterion is widely used when one

wants to choose the best working point in the tune space by avoiding dangerous resonances.

However, this condition, based on a single-particle framework, cannot correctly describe the

onset of the resonance and provide the proper picture of beam-envelope resonant response.

For high-intensity accelerators this condition gives too conservative an estimate for low-

order resonances which are most important in consideration of the resonance condition and

underestimates the maximum achievable current. A correct treatment requires one to take

into account the collective behavior of the beam.

The fact that the incoherent tune is inadequate to describe integer resonances was �rst

emphasized by Morin [2] and Lapostolle [3]. It was then Smith [4] who used the envelope

equation to prove that the half-integer resonance does not occur at the incoherent frequencies

either. Smith's analysis was extended to high-order resonances by Sacherer [5] using the one-

dimensional (1-D) Vlasov equation. The theoretical framework was later extended to two-

dimensions (2-D) by Gluckstern [6]. This theory was subsequently con�rmed with computer

simulations by Hofmann [7] and Machida [8]. Recently, a very useful overview was presented

by Baartman [9].

The incoherent space-charge approach to the second order resonance condition fails be-

cause it is based on the assumption that the beam size remains constant. However, the
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beam envelope depends on the oscillation amplitude of the individual particles. Thus, if

the gradient error causes these amplitudes to grow, the beam size also grows which in turn

reduces the space-charge e�ect (this, of course, applies to high-order multipole errors also).

Clearly, the incoherent space-charge approach is not self-consistent. More than that, using

the KV beam, it is easy to show [10], [5] that the e�ect of gradient errors in the lattice is

exactly compensated by the space-charge perturbation induced by those errors if �inc = n=2.

Similar result can be obtained for high-order resonances using the Vlasov equation [11].

In general, the coherent resonance condition has the form:

n = 
m � m�0 ��
m; (1)

where 
m is the frequency of the mth-order coherent beam mode, and �
m is the coherent

space-charge tune shift of the mth-order mode from its zero-current value (m�0). In principle,

an external driving potential in the form xk cos(m�0�) can drive collective beam modes with

k 6= m. It has been suggested that modes with k 6= m should not be expected to play a

signi�cant role for beams with realistic non-KV distributions [9]. The resonance condition

of Eq. 1 takes into consideration that the resonance is coherent in nature and eliminates a

possible confusion with the incoherent resonance condition. However, for practical estimates

of the space-charge limit in a ring it is not very illuminating since the allowed maximum

intensity is typically calculated through the maximum space-charge tune shift of individual

particles. Therefore, we follow the notation of Ref. [9] and express the coherent space-charge

tune shift as �
m = mCm��sc. The coherent mode frequencies for any order of m were

derived both for the axi-symmetric [6] and non axi-symmetric [12] beams. The corresponding

coe�cients Cm can be easily extracted from Refs. [6], [11], [12] and are summarized for

example in Ref. [9].

In this paper we consider only the m = 2 case which is associated with the space-charge

limit imposed by the half-integer resonance. For a two-dimensional round beam (a = b) there

are two coherent modes of beam envelope oscillation. For the case of very close zero-current

tunes, j �0x � �0y j� ��sc=4, one refers to these modes as symmetric (\in-phase") mode
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with �
2;sym = ��sc and antisymmetric (\out-of-phase") mode with �
2;asym = 3

2
��sc.

As a result, the space-charge limit (coherent-resonance condition for the n=2 resonance) is

expected around beam intensities ��sc=C2, which is 2��sc and 4

3
��sc for the symmetric

and antisymmetric modes, respectively. Note that if a 6= b, the coe�cient C2 depends on

the transverse beam sizes a and b [5], [9]. For the split-tune case, j �0x � �0y j� ��sc=4,

the two envelope modes are essentially decoupled. Although the in-phase and out-of-phase

symmetry of the mode oscillations is still preserved, one can regard such oscillations as one-

dimensional with approximately the same coherent space-charge tune shift in both transverse

planes: �
2;split =
5

4
��sc. The resulting coherent space-charge limit is then 8

5
��sc.

B. Non-uniform distributions

The collective beam modes and coherent resonance condition were derived using the

uniform-density KV beam. However, it was shown by Sacherer [22] that one can use rms

envelope equation for non-KV distributions as well, using the rms quantities. This allows

us to use second-order coherent modes for non-KV beams and treat the coherent envelope

response to the half-integer resonance using the rms envelope equation. This concept of KV

equivalent beams has been used in studies of high-order resonances as well [23], [9], [8].

It turns out, that for a non-uniform distribution the di�erence between a single-particle

approach and coherent resonance condition becomes even more pronounced. This important

feature was speci�cally emphasized by Machida [8] and Baartman [9]. A signi�cant di�erence

is due to the fact that the coherent resonance condition, given by Eq. 1, when applied to

non-uniform beams assumes the rms equivalent uniform beam (KV) tune shift. However,

for non-linear distributions the maximum space-charge tune shift is bigger than the one of

a uniform beam. For example, for a Waterbag (WB) distribution ��sc;max = 1:33��KV ,

and for a Gaussian distribution ��sc;max = 2��KV . As a result, the incoherent space-charge

tune shift can signi�cantly exceed a single-particle resonance condition until the coherent

resonance condition for an rms equivalent KV beam is met.
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C. Decoherence e�ects

The theory of collective beam-envelope response to a resonance at coherent frequencies is

based on a two-dimensional beam model. For bunched beams the onset of the resonance can

be predicted to some extent by using the bunching factor parameter and thus considering

the resonance condition for the portion of the beam in the vicinity of the highest longitu-

dinal charge density. However, to what extent this coherent resonant response is altered in

the presence of other e�ects, such as synchrotron motion, beam energy spread, multi-turn

injection, etc., is not obvious without dedicated study. One may expect that impact of such

e�ects is not strong for the SNS beam parameters due to the very slow synchrotron motion.

These e�ects are explored in Section IV with an application to the SNS accumulator ring.

III. HALF-INTEGER IMPERFECTION RESONANCE

To demonstrate the coherent-resonance theory we have chosen the SNS working point

with zero-current tunes (�0x; �0y) = (6:45; 4:6). The gradient error is then introduced in

order to investigate the half-integer resonance with harmonic n = 9.

A. Coherent space-charge limit

The single-particle approach predicts a resonance condition at an intensity which cor-

responds to the space-charge tune shift of ��sc = 0:1 in the vertical direction. For a

beam with a uniform density, the tunes of all particles are thus placed at �y = 4:5 when

I � ��sc=��inc = 1. Here, the incoherent space-charge limit ��inc is de�ned as the distance

from the bare tune to the half-integer resonance line: ��inc � �0y � n=2. For non-uniform

distributions, the incoherent resonance condition occurs for the intensity parameter I less

than unity (if I = 1 is taken to be an intensity where the resonance condition for a uniform-

density beam is satis�ed) because the maximum space-charge tune shift of a non-uniform

beam is larger than the one of a uniform-density beam. Speci�cally, for a Waterbag (WB)
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distribution ��sc;max = 1:33��KV , where ��KV is the space-charge tune shift of a beam

with uniform-density KV distribution. As a result, the incoherent space-charge limit for a

WB beam is expected at intensity I = 0:75. On the other hand, the coherent beam res-

onance is expected at similar intensities both for a KV and WB beam. For the working

point discussed in this example, j �0x � �0y j� ��sc=4, the coherent resonance condition is

expected around I = 8=5. Space-charge limits discussed above are summarized in Fig. 4

which shows the collective beam response to the n=2 = 4:5 resonance. In this �gure, the

green vertical line indicates the incoherent space-charge limit for a WB beam, the pink line

corresponds to the incoherent space-charge limit of a uniform density beam, while the red

line shows the coherent resonance condition.

B. Beam envelope response

Some important features of space-charge e�ects on crossing of the half-integer resonance,

such as coherent frequency shift, nonlinear detuning and saturation of beam envelope growth,

can be retrieved from the envelope equations [5]. Obviously, the e�ect of frequency spread

- as a possible source of decoherence - and the �lamentation in the phase space due to

halo formation are beyond the level of description of an envelope model. Furthermore, the

possibility of envelope instability needs to be considered in some special cases as will be

shown in Section V.

Noting that the e�ect of the error resonance depends primarily on the tune and not

the details of the focusing lattice, we start with an assumption of constant focusing. We

consider the half-integer resonance near the unsplit-tune working point �0;x;y = 4:6 and

assume n = 9, where n stands for the error Fourier harmonic. Hence, the expected coherent

resonance condition is


2 = 2�0 ��
2 = 9; (2)

where �
2 is the coherent space-charge tune shift of second-order modes 
2. An anti-

symmetric error in x and y (as would be produced by a single quadrupole) then drives an
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out-of-phase mode resonance, while a symmetric error is needed to drive the in-phase mode

resonance (note that for su�ciently split tunes a single quadrupole error will drive both

modes).

We assume equal emittances in x and y and solve the envelope equations with error

Fourier harmonics of 1 � 10�3 units (relative to the unperturbed focusing constant) and a

small initial envelope mismatch of 2%. To demonstrate the e�ect of space charge on the

envelope, Fig. 1 shows the case of a symmetric error driving the in-phase mode resonance

with beam parameters such that the single-particle tune is just on resonance (incoherent

depressed tune �x;y = 4:5). The envelope undergoes a small periodic beating due to the

proximity of the coherent tune to the resonance; note the relative smallness of the e�ect for

the incoherent tune sitting exactly on resonance. The maximum envelope excursion grows

with increasing beam intensity (decreasing of the depressed tune �x;y), which brings the

coherent mode frequency closer to the resonance. In Fig. 2 we show the maximum envelopes

for this case as the function of depressed incoherent tune �x;y for both the symmetric and

anti-symmetric errors, which drive the in-phase and out-of-phase modes, respectively. The

envelope increases noticeably only with the coherent frequency crossing the integer, which

occurs at �x;y = 4:467 (beam intensity equal to 4

3
��inc) for the out-of-phase mode, and at

�x;y = 4:4 (beam intensity equal to 2��inc) for the in-phase mode. Due to the nonlinear

dependence (increase) of the envelope eigenfrequency with amplitude the maximum growth

happens for higher beam intensities at �x;y = 4:44 for the out-of-phase and �x;y = 4:37 for

the in-phase mode. For completeness, a zero-current envelope response to this 1=2 resonance

is obtained by varying the working point �0;x;y.

The size of the maximum envelope excursion, as well as the width of beam envelope

response curve, is a function of the strength of the imperfection resonance (magnitude of an

error). To demonstrate this e�ect, Fig. 3 shows the maximum y-envelopes for the split-tune

working point (�0x; �0y) = (6:45; 4:6) and three di�erent magnitudes of an error: 3 � 10�3; 1 �

10�3; 1=3 � 10�3 (an anti-symmetric error was chosen, but the results are very similar for

a symmetric error). The intensity parameter I � ��sc=��inc (abscissa) is expressed as
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space-charge tune shift normalized to the distance from the bare tune to the half-integer

(��inc). Such a response diagram explicitly shows the bene�cial e�ect of the coherent

resonance condition compared to the incoherent space-charge limit, corresponding to I = 1.

Note that the coherent envelope frequency is exactly on resonance for the normalized tune

shift of 1:635, the number obtained by direct solution of the full dispersion relation for the

coherent frequency. This number is slightly higher than the approximate coe�cient 8=5. The

stopbands shown in this picture are related to the out-of-phase mode, while the in-phase

mode resonance would appear if �0;x were chosen correspondingly above 6:5. The strongly

asymmetric shape of the envelope response curves is a result of the nonlinear nature of the

envelope equation, in particular the increase of envelope frequency with amplitude. The

basic features of such response curves are summarized in Appendix A. We now proceed to

the realistic SNS lattice with the working point at (�0x; �0y) = (6:45; 4:6). The gradient error

is introduced in a single quadrupole with the normalized strength of an error �k = 2:5 �10�3

units. Simulations were done using the Particle-In-Cell (PIC) code ORBIT [20]. The results

of simulations are presented in Fig. 4, which con�rm the beam envelope response expected

based on the envelope equations (Fig. 3). All major features of the coherent resonance

response are transparent: resonance happens at higher intensity than the incoherent space-

charge limit, it leads to a �nite increase of beam envelopes, and the maximum envelope

amplitudes are reached at intensities higher than the middle point of the resonance. Note

that our statement about �nite envelope excursions during the resonance crossing in the

direction of the normalized tune shift (intensity) increase is true only for simulations with

a �xed intensity for each individual run. This allows the possibility of getting out of the

resonance condition with envelope oscillations around a small-amplitude stable �xed point.

With a slow adiabatic increase of beam intensity the beam envelopes are expected to grow

with oscillations around large-amplitude stable �xed points (see Appendix A). Both of these

features of an envelope response were recently demonstrated using the envelope equations

and PIC simulation with a multi-turn injection for the LANL PSR [14], [15]. Also, similar

features of non-linear envelope response were recently shown in simulations for FNAL booster

9



lattice [16]. An important feature of coherent non-linear resonant response is signi�cantly

di�erent beam behavior depending on whether the resonance is crossed in the direction of

increasing or decreasing space-charge e�ect (see Appendix A). Recently, an experimental

study of this e�ect was performed by Uesugi et al. [18].

IV. HALF-INTEGER STRUCTURE RESONANCE

One of the recently proposed SNS working points (�0x; �0y) = (6:23; 6:20) seems to be

a good operational region due to the absence of dangerous imperfection resonances [21].

However, this working point lies very close to the systematic half-integer structure resonance

with harmonic n = 12 due to the SNS superperiodicity of 4. It is thus extremely important

to understand intensity limitations for this working point. This resulted in our studies of

this working point with regard to the coherent-resonance condition and its applicability to

the structure resonances.

A. Uniform distribution

We start our PIC simulations with a uniform-density KV beam. The maximum space-

charge tune shift of a full-intensity SNS beam with N = 2 � 1014 protons can be as big as

��sc = 0:2, depending on the beam distribution. For unbunched beam the e�ective number

of particles should be increased to keep a similar equivalent space-charge tune shift. We use

such an e�ective intensity parameter ~N through our presentation of unbunched beams while

realistic number of particles N will be used for later description of bunched beams. Here we

assume typical SNS beam parameters at energy 1 GeV with unnormalized horizontal and

vertical emittance �x; �y = 120 � mm mrad (for a KV beam �x;y = 4�x;y;rms). As a result,

~N = 6:6 depresses betatron tunes towards the 2�y = 12 resonance. Note that no magnet

errors are included in the simulations so that only lattice harmonics are present, with n = 12

being the structure harmonic due the SNS superperiodicity of 4. Slightly higher intensity

of ~N = 7:3 distributes incoherent tunes around the 2�y = 12 resonance line which would
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ensure beam blow-up and particle loss following the standard single-particle approach. The

corresponding tune foot-prints are shown in Fig. 5. However, for both intensities no 2�y = 12

resonance is observed as can be seen in Fig. 6, where rms beam emittances over the �rst 50

turns are plotted. The small emittance exchange observed in Fig. 6 is due to the coupled-tune

working point with some details addressed in Ref. [19]. Following the coherent resonance

condition in Eq. 1 our intensity should be increased by a factor 4=3 to be at the middle of

a coherent resonance 12 = 
2. The corresponding tune distribution for ~N = 9:7 is shown

in Fig. 5. The tune foot-print is shown just after one turn but one can already notice the

spread due to a resonance in the vertical direction. The associated increase of the vertical

rms emittance is shown in Fig. 7. Due to the fact that the beam size was increased the e�ect

of space charge was reduced as can be seen in Fig. 8 from the tune foot-print of particles

after the increase of emittance saturated at 100 turns.

B. Non-uniform distributions

Once again, for non-uniform distributions the maximum space-charge tune shift is big-

ger than the one of a uniform beam. As a result, the di�erence between a single-particle

approach and the coherent resonance condition becomes even more pronounced. Similar to

the case of an imperfection resonance, we perform PIC simulations for various beam inten-

sities to generate a resonance-response diagram for a WB distribution. Our major goal is

to determine the onset of signi�cant excursions in the beam-envelope response curve, and

thus understand whether there is any intensity gain due to the coherent resonance condition

in the vicinity of the structure resonance. Figure 9 shows the response diagram for this

structure resonance. Perhaps unexpectedly, the noticeable excursions in the the response

curve are comparable to the one driven by the imperfection errors in Fig. 4. With inten-

sities already higher than the incoherent space-charge limit, only a modest beating of the

envelopes is observed. Clari�cation of such behavior in the vicinity of a structure resonance

is given in Appendix B.
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C. Bunched beams and multi-turn injection

For a coasting beam, there is general agreement that the coherent-resonance theory ap-

plies and that the resonance condition is de�ned by the coherent frequencies. However,

several e�ects should be taken into account (including the e�ect of images) when one wants

to apply it to experimental observations. For bunched beams there is no good conceptual

analytic framework. For long ellipsoidal bunches the transverse modes are decoupled from

the longitudinal one but it is not clear to what extent the synchrotron motion will im-

pact the resonance condition of the transverse coherent modes. In some accelerators where

synchrotron motion is negligible (in the SNS the full injection process of 1000 turns takes

about one synchrotron oscillation) it seems reasonable to expect that the impact of syn-

chrotron motion will not be important. In fact, some recent experiments and simulations

for the bunched beam in the LANL Proton Storage Ring (PSR) seem to support the above

discussion [13] - [15]. Here we explore these e�ects for a realistic beam of the SNS.

Simulations are performed with 1052-turn injection for a beam with momentum spread

of dp=p = 0:7%. The tune foot-prints of a �nal full intensity beam are plotted at the end of

accumulation process. Figure 11 shows foot-prints for three beam intensitiesN = 2�1014 (red

color), N = 3 �1014 (pink color), N = 4 �1014 (green color). Here N is the number of protons

in the SNS beam. Note that a dp=p spread was present in the simulation but its e�ect on the

tune spread was excluded from Fig. 11 for a clear presentation of the space-charge detuning

discussed in previous sections. Modi�cation of the space-charge induced foot-print by dp=p

spread is shown, as an example, for N = 2 � 1014 in Fig. 12 and is discussed elsewhere [21],

[24]. Time evolution of the vertical rms emittances corresponding to Fig. 11 is shown in

Fig. 13. As expected, no e�ect of the resonance is observed until the beam gets into the

bandwidth (response curve) of the coherent resonance which occurs around N � 3 � 1014

(Note that this does not mean that no particle loss is expected until N � 3 � 1014 because

here only an e�ect of the n=2 = 6 systematic resonance is considered with all magnet errors

excluded from simulations).
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V. ENVELOPE INSTABILITY

In this section we extend the discussion on the half-integer resonance with space charge

to include the issue of envelope instability, which was introduced in Ref. [29] for high current

transport systems. To clarify the di�erence, we point out that the half-integer resonance is

an integer resonance of the envelope (n = 
2), whereas the envelope instability is a half-

integer resonance of the perturbed envelope with the matched envelope of a periodic focusing

system (n=2 = 
2); the latter is therefore an instability with exponential growth from an

initial perturbation (likewise there exists an exponentially damped mode), while the former

is independent from the initial mismatch. Since the matched envelope adopts the periodicity

of the lattice this resonant instability occurs if the zero-current phase advance per focusing

cell is above a quarter-integer, i.e. for �0 > 900. Space charge then leads to an extended

stopband starting slightly below � = 900 as was discussed in detail in Ref. [29]. In the

absence of space charge the envelope instability vanishes completely, in contrast with the

half-integer resonance, which is shifted by space charge and also present without it.

In a circular machine lattice the envelope instability occurs if the basic focusing cell is at

the same time a super period and 2�=n approaches 1/2. For a working point above �0x;y = 6,

as in the SNS, this would be the case if the basic 24 cells were all identical. As an example,

we have calculated, in Fig. 14, the instability stopband for a symmetric FODO cell with

�0 = 960 corresponding to �0x;y = 6:4. We have used the KVXYG [23] code, which matches

KV-envelopes and determines the eigenvalues (growth factors) of envelope perturbations. It

is noted that the pronounced instability stopband with a growth factor above unity (likewise

a damped solution with \growth factor" below unity) starts for full-current phase advance

� < 88:840 (corresponding to a tune �x;y = 5:92). The strong 
utter of the matched FODO

envelope couples the in-phase and out-of-phase eigenmodes and leads to a single stopband.

The question may be raised if an envelope instability is also driven by an imperfection

term as opposed to the strong \structure resonance" discussed above [28]. This might be

expected, for example, in a lattice with working point above 6.25, if a 25-th harmonic
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gradient error were present (n=2 = 
2). We have taken a constant focusing lattice with

�0x;y = 6:333 and such a gradient error (symmetric), which implies �0 = 91:20 per error

harmonic. For the quite large error of 4% a very narrow stopband of the out-of-phase

eigenmode is found at � = 89:590, and a somewhat broader one of the in-phase mode at

� = 88:780. Related to the full circumference the corresponding tunes are �x;y = 6:222 and

�x;y = 6:165, which re
ects the same coherent tune shift as found above for the half-integer

resonance (Fig. 15). More important, we found that for errors of 2% and 1% the width of

these stopbands decreases linearly with the error strength, hence the instability gets detuned

at a very low level. A similar e�ect was found for a 1-st harmonic error, which can drive the

same mode, but yields even more narrow stopbands. This allows the conclusion that the

imperfection driven envelope instability for working points above the fractional tune of 0.25

(likewise 0.75) is ignorable. Note that the discussion above should not be confused with the

4th-order resonance driven by the octupole-like errors.

For completeness of the discussion we have also examined (with the KVXYG code [23])

the detailed picture of exact matching and appearance of an envelope instability (here of

integer type n = 
2) near the half-integer imperfection resonance which was considered in

section III B (with symmetric error of 1 � 10�3). The result is shown in Fig. 16, using on the

abscissa the phase advance per period of the error (1/9-th of the circumference), hence the

working point corresponds to 1840. The program determines the matched periodic envelope,

which is plotted in black. Again, no e�ect is seen for the single particle tune passing through

1800. With increasing space charge, and the out-of-phase mode phase advance approaching

3600 (00 in the graph), the matched envelope develops an increasing 
utter due to the

gradient error (response curve of n = 
2 resonance). The envelope beating, described as

resonance curve in section III, (with initial envelope determined by ignoring the gradient

error) must therefore be interpreted as oscillation about this new envelope matched to the

error. The region where the out-of-phase mode phase advance is exactly 3600 is associated

with a small stopband of the envelope instability (of the integer type n = 
2, in contrast

with the half-integer one discussed above). The relatively large width of this stopband can
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be understood as a result of the 
utter of the matched envelope due to the vicinity of the

half-integer imperfection resonance. There is, however, an uncertainty in the left boundary

of this stopband since the program did not converge on a matched solution in the gap

between 175.550 and 174.10.

In conclusion, we �nd that the suggestion of Ref. [27] to consider the envelope instability

as a possible limitation to working points above quarter (or three quarter) integer fractional

tunes should not be applied to the imperfection case of gradient errors. This has been

con�rmed by corresponding PIC simulations in the presence of gradient errors (no octupole-

like errors) for a typical high-intensity ring tune depression, using the SNS lattice, which

did not show any resonant behavior near a quarter integer fractional tune (or n=2 = 
2).

VI. DISCUSSION

An application of the coherent-resonance theory allows some increase in the space-charge

limit due to the onset of the resonance at higher intensities than expected from a single-

particle approach (incoherent space-charge tune shift). The largest advantage occurs for the

split-tune working point due to the di�erence between the coe�cients 8=5 vs. 4=3 in the

coherent space-charge limit condition, with a = b. For the split-tune case, an experiment

was recently performed at LANL PSR [13]. A subsequent numerical simulations con�rmed

that observed beam broadening is due to the coherent half-integer resonance [14]. Also,

both PIC simulation and direct solution of the envelope equations showed the non-linear

response of the beam to this resonance [15]. Similar experiments were performed at other

accelerators as well in an attempt to achieve higher beam intensity. For example, at the

CERN Proton Synchrotron (PS), Cappi et al. [17] observed signi�cant emittance growth

at intensities higher than predicted by the space-charge limit based on the incoherent-tune

approach. In fact, the data collected from various high-intensity machines [26], [27] show

that the experimentally achieved space-charge tune shift is in good agreement with the

coherent space-charge limit (Table I).
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TABLES

TABLE I. Comparison of experimentally achieved space-charge limit with coherent

space-charge limit.

�0x=�0y ��inc ��exp ��coh

KEK-B 2.17/2.3 0.17 0.23 0.27

FNAL-B 6.7/6.8 0.2 0.4 0.32

ISIS 3.7/4.2 0.25 0.4 0.4

AGS 8.75/8.75 0.25 0.58 0.33

AGS-B 4.8/4.9 0.3 0.5 0.48

CERN-PS 6.22/6.22 0.22 0.27 0.29

CERN-PS-2 6.22/6.28 0.22/0.28 0.36 0.35/0.37
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In Table I, the incoherent space-charge limit ��inc is the distance from the bare tune to

the 1/2 resonance line, and ��coh is the coherent space-charge limit calculated as ��inc=C2

(see Section II), with an approximate values for the C2 coe�cients in the rough assump-

tion of a = b. To obtain more accurate numbers for the C2 coe�cients and corresponding

space-charge limit one has to solve directly the dispersion relations in Ref. [12]. Note, that

our calculated coherent space-charge limit is di�erent from the one in [27] for the reasons

summarized in Section V. Also, two limiting values are provided in the CERN-PS-2 example

for the horizontal and vertical directions, respectively. It is clear, that the experimentally

achieved ��exp depends on many parameters, such as correction of the resonance line, limit-

ing aperture of the machine, corresponding beam loss, etc. As a result, direct comparison of

��exp with theoretically predicted ��coh should be done only for a speci�c machine know-

ing all the information hidden behind the \experimentally achieved" statement, as well as

calculating more accurately ��coh for a speci�c beam parameters. Without taking into con-

sideration these details we �nd a good agreement with the coherent space-charge limit: the

largest envelope oscillations occur in the vicinity of the coherent limit resulting in beam loss

and providing the experimentally achieved limit. Even for very limited-aperture machines

it may be possible to approach the coherent space-charge limit by careful correction of the

resonance line. For a machine with a large aperture to beam size ratio it may be, in fact,

possible to slightly exceed the coherent resonant condition provided a good correction of the

resonance strength is achieved (see Figs. 2 - 3). Once again, experimental data of Table I

were adopted from Ref. [27] as a reference data for our comparison without entering into

detailed discussion needed for speci�c machines. For an example of detailed study of this

e�ect in a speci�c machine we refer to Refs. [13]- [15].

In this paper we have demonstrated the applicability of the coherent resonance space-

charge limit for the SNS case, including realistic beam parameters and the multi-turn injec-

tion process. Another �nding is that no strong intensity limitation is expected in the vicinity

of the resonance with a structure harmonic n = 12 of the SNS lattice. Subsequent simula-

tion in the presence of various magnet errors has shown that the main intensity limitation
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is expected due to the skew-quadrupole sum resonance. This prevents us from increasing

the intensity signi�cantly beyond N = 2 � 1014 for the working point (�0x; �0y) = (6:23; 6:20)

unless a correction scheme is applied or the working point is adjusted accordingly. Note that

the coherent resonance condition is applicable to coupling resonances as well [12]. In fact,

our studies of the skew-quadrupole sum resonance in the presence of space-charge suggests

a beam envelope response similar to the one-dimensional resonance presented in this paper.

These studies will be reported in a separate paper.

VII. SUMMARY

In this paper we discuss the space-charge limit in the high-intensity rings based on the

coherent resonance condition. The coherent resonance condition allows some increase in

space-charge limit due to the onset of a resonance at higher intensities than expected based

on the incoherent resonance condition. Application of this condition both to the imperfection

and structure resonances are discussed. We also explore an applicability of such an e�ect to

a realistic bunched beam and multi-turn injection process. In addition, we address the issue

of the envelope instability in a circular machine.
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APPENDIX A: RESPONSE DIAGRAM

The response curves in Figs. 2 - 4 show a typical non-linear response of an oscillator to a

resonance. Both the phase-space diagrams and response curves can be obtained by applying

the phase-amplitude averaging technique [30] and plotting solutions for the stationary �xed
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points. This technique was applied to the envelope equation in the vicinity of the half-integer

resonance by Smith [4] and later systematically described by Sacherer [5]. We use Sacherer's

notation for the �xed points to describe the response curves. Consider, for example, the

blue curve in Fig. 3. A sudden jump in envelope excursion for a critical intensity parameter

corresponds to the fact that for intensities lower than a critical value there is only one stable

�xed point S� while for intensities above critical value there are two stable �xed points

(S�; S+), with only S+ amplitudes plotted above the critical value in Fig. 3. For the critical

intensity, in the location of the jump, S� corresponds to the upper point of the jump, S+ to

the lower point, with U+ located in between. Here U+ stands for the unstable �xed point,

S� is the large-amplitude stable �xed point, and S+ is the small-amplitude stable �xed

point. Con�guration points near S+ and S� oscillate with small amplitudes about these

points whereas points near U+ may follow the separatrix and make much larger excursions.

A consequence of such response curves for situations with a slow adiabatic change in

the intensity parameter I is a di�erent beam behavior depending on the direction in which

the critical value is crossed. For the beam in the S+ state, if I is decreased (for example

due to the acceleration), the beam envelope jumps to the top of a response curve when a

critical value is reached, which results in oscillations around S�. As can be seen from Fig. 3,

the maximum excursion corresponding to S� decreases with further decrease of I. As a

result, one can cross the resonance if the beam pipe aperture allows the maximum envelope

excursion given by S�. Clearly, the maximum of S� decreases with the resonance correction

as demonstrated in Fig. 3. In the other direction of increasing I, the beam envelope continues

to grow along the S� state which results eventually in a beam loss.

This e�ect of resonance crossing is demonstrated in Figs. 17 - 18 for the 10�3 error case

of Fig. 3. We sweep over the stopband increasing space charge by parametrically increasing

the perveance in the envelope equations (as might occur during rf capture) or, alternatively,

in the opposite direction (during acceleration, for example). The resulting single-particle

fractional tune is shown as well as the value of the fractional tune where the small amplitude

envelope resonance with n = 9 occurs (dotted line at �y = 4:4375, corresponding to I = 1:635
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in Fig. 3). In the �rst case the envelope oscillation maintains the condition of resonance

far beyond the small amplitude resonance condition (near turn 60) by a steadily increasing

amplitude; in the second case the envelope increase is limited as the system jumps across

the resonance near the exact resonance condition (near turn 80) with a bounded envelope

increase. For detailed mathematical description of this phenomena we refer the interested

reader to [5], and for the experimental studies of this e�ect to [18].

APPENDIX B: IMPERFECTION AND STRUCTURE RESONANCE

As discussed in Section III, the width of beam response to a coherent resonance is a

function of the amplitude of the introduced imperfection error. As a result, for a very large

magnitude of an error a noticeable beam response (envelope beating) may start at intensities

even lower than the incoherent space-charge limit. This, of course, can be determined by

measuring the magnitude of the errors. Structure resonance may be regarded to as an

imperfection resonance with a large magnitude of an error. How large the amplitudes of

speci�c structure harmonics are depends on the speci�c lattice. One superperiod of the

SNS lattice for the working point (�0x; �0y) = (6:23; 6:20) is shown in Fig. 10. Fourier

analysis of the vertical beam envelope showed that the amplitude of harmonic n=12 is

comparable in size to the amplitude of an error harmonic used in Section III, which explains

a modest width of beam response curve near the structure resonance with this harmonic.

For comparison, in the horizontal plane, Fig. 10 shows two strong peaks in each superperiod.

Thus, the large amplitudes of structure harmonics at n = 4 and n = 8 are expected. Fourier

analysis of the horizontal envelopes shows that the magnitude of these structure harmonics

is approximately a factor of �ve stronger than the amplitudes of other nearby structure

harmonics. As a result, for the SNS lattice, the coherent resonance with harmonic n = 12 is

not expected to introduce a signi�cant intensity limitation which is in agreement with our

PIC simulations shown in Fig. 9.

To summarize, the structure half-integer resonances are potentially very dangerous, and,

20



if possible, the working point in the vicinity of such resonances should be avoided. It appears,

however, possible to have a working point in the vicinity of a structure resonance without

signi�cant intensity limitation if the relative harmonic in the lattice is su�ciently weak.
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FIG. 1. Beating of envelope near half-integer imperfection resonance with 10�3 symmetric error

at harmonic n = 9 (single particle tune on resonance with �x;y = 4:5).
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FIG. 2. Maximum envelope excursions (normalized to initial value) for symmetric and

anti-symmetric focusing errors at variable intensity with �xed bare tune �0;x;y = 4:6, and for

zero space charge case varying �0;x;y (10
�3 level error at harmonic n = 9).
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FIG. 3. Maximum y-envelopes excursions for three magnitudes of focusing errors with �xed

(�0x; �0y) = (6:45; 4:6) as a function of normalized tune shift (intensity parameter I with I = 1:635

indicating the small-amplitude envelope resonance condition, and I = 1 the single-particle reso-

nance).
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FIG. 4. Response of the vertical beam envelope to the coherent imperfection resonance at

harmonic n = 9.
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FIG. 5. Tune foot-prints of a KV beam for the SNS lattice working point (�x; �y) = (6:23; 6:20),

shown by a blue dot. Intensities ~N = 6:6 (red), ~N = 7:3 (green), ~N = 9:7 (pink).
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FIG. 6. RMS emittances of a KV beam for ~N = 7:3. Vertical emittance is shown with red color

while horizontal emittance is shown with blue color.
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FIG. 7. RMS emittances of a KV beam for ~N = 9:7. Increase of vertical emittance due to the

1=2 coherent resonance.
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FIG. 8. Tune foot-print of a KV beam after saturated beam increase (at 100 turns) due to the

coherent resonance for ~N = 9:7.
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FIG. 9. Response of the vertical beam envelope to a coherent resonance with harmonic n = 12.
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FIG. 10. Horizontal (red) and vertical (green) beta-functions of the SNS lattice with

(�0x; �0y) = (6:23; 6:20) for one superperiod.
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FIG. 11. Tune foot-prints at the end of 1052-turn injection process for the SNS beam. Intensi-

ties: N = 2 � 1014 (red), N = 3 � 1014 (pink), N = 4 � 1014 (green) in the absence of magnet errors.

SNS working point (�0x; �0y) = (6:23; 6:20).
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FIG. 12. Tune foot-print at the end of 1052-turn injection for the SNS beam with N = 2 � 1014

particles. SNS working point (�0x; �0y) = (6:23; 6:20). Space-charge tune spread alone (red) and

combined e�ect of the space-charge and chromatic detuning with dp=p = 0:7% (yellow).
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FIG. 13. Vertical rms emittances during the multi-turn injection process for three �nal intensi-

ties: N = 2 � 1014 (red), N = 3 � 1014 (pink), N = 4 � 1014 (green), in the absence of magnet errors.

SNS working point (�0x; �0y) = (6:23; 6:20).
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FIG. 14. Growth factors (per cell) for envelope instability of symmetric FODO cell with

zero-current phase advance of �0 = 960, corresponding to �0x;y = 6:4.
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FIG. 15. Growth factors (per error period) for imperfection driven envelope instability with

working point �0x;y = 6:333 and error of 4% on harmonic n = 25.
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FIG. 16. Matched beta-functions (in units relative to zero space charge value), phase advance

of envelope perturbations (in units of degrees deviating from 3600), and integer (n = 
2) envelope

instability growth (in percent) for imperfection half-integer resonance as in Fig. 2.
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FIG. 17. Envelope for crossing over the stopband in the direction of increasing space charge

(�y decreasing linear in time from 4.48 to 4.37).
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FIG. 18. Crossing of stopband with decreasing space charge (�y increasing linear in time from

4.37 to 4.48).
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