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On the Validity of Coupling Impedance Bench Measurements

H. Hahn
Brookhaven National Laboratory, Upton, NY 11973-5000

In this paper the validity of coupling impedance bench measurements is theoretically
demonstrated for the standard model of a uniformly extended wall impedance. Integral
equations expressing the magnetic field at the wall are found for the two cases where the
device is excited either by a beam or a central wire. The integral equations are solved by a
perturbation method with the coupling impedance as a expansion parameter, leading to
expressions for the coupling impedance of the beam and the forward scattering coefficient
in the bench measurement. Conditions for the validity of bench measurements are indicated
and the interpretation of wire measurements via the scattering coefficient by the
conventional formulae are discussed.

PACS Codes: 29.27.-a, 41.20.-q
1. INTRODUCTION

The electromagnetic interaction of a charged particle beam with its surroundings in
the accelerator or collider is conveniently described by the coupling impedances of its
components. The concept of caupling impedance apparently was originated by VaccaroIII and
applied by Sessler and Vaccaro“to the analysis of the longitudinal, negative mass instability.
Coupling impedance is basically an engineering concept, since it is defined as the ratio of
voltage divided by current, and as such amenable to established circuit theory. Ignoring the
space charge term in the case of ultra-relativistic beams, the impedance is visualized either as
a lumped element in a perfectly conducting beam tube or a beam tube section of finite
length with a uniformly distributed wall impedance. The impedance can be frequency
dependent but is usually assumed to be linear.

The general procedure to measure the longitudinal coupling impedance was
developed for the LBL-ERAﬁtudy by Faltens et al. by means of an analog in which the beam
is replaced with a conductor.*Underlying this approach is the fact that the fields of an ultra-
relativistic beam on the beam tube wall can be simulated by the propagation of a time-
harmonic TEM mode in the transmission line so formed. An alternate method, not
addressed in this paper, was suggested by Sands and Rees, according to which a short Adelta
pulse is send through the analog structure.*The coupling impedance is then obtained from
the induced wake function by appropriate Fourier transform. Practical aspects of coupling
impeda&lce bench measurements and further references can be found in Caspers- review
papers.

Assessing the validity of coupling impedance bench measurements requires answers
to two questions: first, what is the correct model and mathematical formula for the
interpretation of the experimental results and then, to what degree does this impedance
value approximates the actual interaction with the beam. In spite of the experimental and
theoretical work by many researchers, no definite conclusion has been reached. This paper
attempts to answer these questions for the limited case of nonresonant impedances, which
are small compared to the impedance of free space. However it is believed that the present
results remain a good approximation for the more general cases.
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In the typical bench measurement, the forward scattering coefficient, S,,(DUT), for

the ADevice Under Test( is obtained in the frequency domain and compared to that for a
reference section of equal length. In order to simplify the notation in this paper, the forward

scattering coefficient of the reference line is assumed to be calibrated out, i.e. S, (ref) =1.
The normalized ratio, here simply taken as S, , has been interpreted via standard

transmission line circuit theory. The result for a IHmped device, i.e. short compared to the
wave length, was given by Hahn and Pedersen as

Z,, =22, 1-5, (1)

21

with Z_ the characteristic impedance of the reference line. In addition, their paper pointed

out that the formula is also applicable to two or more separate lumped impedances, provided
that they are small compared to the characteristic impedance. By extrapolation, the formula
was suggested as a first approximation to a distributed impedance structure.

In the course of measuring distributed structures such as kickers, it was noticed that
the HP-formula can yield unphysical negative resistances. Using Falten=s model for
distributed wall impedances, Walling et al, intr%duced the log-formula for use in structures
which are longer than the beam tube diameter,

Z,. =-2Z.InS,, )

log
The log-formula is easy to use and represents a good approximation for a distributed
impedance. Several so-called improved log-formulae have been suggested but are of
questionable value, whereas the recent one by Jensen gives, under certain conditions, better
results and deserves to be compared to the standard formulae.

The justification for the bench measurement of the beam coupling impedance rests
on the plausibility argument, that the electromagnetic field of an ultra-relativistic beam is
very similar to that produced by the coax in the limit of an infinitely thin wire. This
reasoning was, to_ some extent, confirmed by Gluckstern's analysis of the effects of a wire on
a resonant cavity. In Gluckstern=s paper, integral expressions for the beam impedance and
the scattering coefficient due to the cavity impedance are given, based on which equality of
the impedances in the thin wire limit is suggested but without giving details, thereby pointing
to the need for further studies. In the present paper, Gluckstern-s procedure is applied to the
model of a distributed wall impedance, resulting in integral equations for the two cases of
beam and wire. The integral equations are solved by a perturbation method with the
coupling impedance as expansion parameter, leading to explicit results for a comparison of
beam and bench impedance and an improved interpretation of the bench measurements.



Il. INTEGRAL EQUATION

The coupling impedance, R, is assumed to be caused by a wall impedance, R,
uniformly distributed over a length, g, in an infinitely long beam pipe of radius b ,

g9
=—R 3
b 3

An ultra-relativistic beam, or a central conductor in the case of bench measurements,
generates the azimuthal component of the magnetic field at the wall, which is given byEI

(in natural units ¢ =1, u, =1,and Z, =cy, =1)

_kb?
J_
g

—ikz 4] ' '
Hy =oe "+ X R[Td2H, (0,2)K, () @

with K (u) the kernel appropriate for the pipe region, either empty or with central
conductor, and

u=|z-z|.
This represents the integral-equation for the problem studied and explicitly takes into
account the fact that the wall current, associated with an azimuthal magnetic field, produces
a longitudinal electric field,

E, (b,2) =-R,, H, (b,2). (5)

The integral equation can be solved by a perturbation method, where R is taken as
the perturbation parameter. The magnetic field is expanded as

H, (b,2) = Fy(z) + RF(2) + R*F,(2) +...
. I
with F, = ——e™ 6
0o (6)
and the higher order terms obtained by iteration according to
. b? o,
Fa=—Jk EL dz'F (2) K, (u) ()

I1. ANALYSIS for the BEAM

The solution of the integral equation in the case of a beam is obtained via the kernel
for the pipe region. The full expression for the pipe kernel assumes loss-less boundaries
whereas in real cases fields above the tube cut-off are damped and can be ignored. Thus for
the purpose of the present study, the kernel is limited to the terms below cut-off,
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P - b2 Z /\ (8)

with A, :%,/1—(kb/ i)’ )

and J,, the zeros of the Bessel function J,(j,,) =0.

The coupling impedance seen by the beam is defined as

_l g jke
IJ; E,(b,z)e"™dz

2 (10)
=r+RLPF (z)e’dz +
I IO 3
After lengthy, but straightforward integrations, one finds the coupling impedance to 2™
orderinR (or R/Z, in MKS units)
Z=R+ 12@ RR,, Z
g JonA (12)
<{iz (A, g -1) + 2k?? —[2b KA, sin©+ (2k?b? — j2 )cos@|e ™9 }
with the electrical length of the impedance © =kg.
Low-frequency Approximation
Of particular interest is the low-frequency limit, kb <1, where A = j,, /b and
U 2 , il
Z=Rg+j2kb—quZ%(jmg/b—1+cos®e"°"g”’)g (12)
| g 7 Jon [l

This result suggests that the beam sees the wall impedance, R, with the addition of end
effects, the latter depending on the strength of the perturbation, R,

Lumped Impedance

One approximation further, by taking the limit g — 0, one finds the expression for a
lumped impedance

z =R§+j2nkbRZ}/jonE (13)

Note that the end effects in the case of the lumped impedance depend on the coupling

impedance itself rather than R, , which here is only a mathematical tool.



I1l. ANALYSIS for the WIRE MEASUREMENT

Bench measurements are performed in order to experimentally determine the
forward scattering coefficient by inserting a wire into the device, thus transforming it into a
coaxial transmission line with outer and inner radii, b and a, respectively. The analysis
objective in the case of a wire measurement is now to find a theoretical expression for this
coefficient, which is defined as

| .
Sy =H,(b+0)/ ——e™, 14
21 s OO)/ZTID (14)

The solution of the integral equation for the magnetic field is obtained in full analogy to that
for the beam, but now with the kernel given by

1 el -
K, (u)=- et -2 ot 15
o) Taoz,® Tt Z A =~

where the characteristic impedance of the coaxial structure is ( in natural units)

z, ==

In
©2m

, (16)

@ | T

and the other kernel quantities are given by

A, = %,/1 (kb/iy, )2 (17)

J,2(i,,a/b)
‘]Oz(iOna/b) - ‘]Oz(iOn)

(18)

n =

with iy, being the zero solutions of
Jo(igna/ b)Yy (igy) = Yo (ig,a/b) Iy (ig,) .

The theoretical expression for the forward scattering coefficient now follows after
some manipulations as

R 1R
S =1——+—% 1-j= tort P-e)+
21 27 2 Zc§§ i ) ( )D

12 By a e

fiZ (A,g -1) + 2k?b? - [2kb?A, sin @+ (2k*b? —i2 ) cos O}

(19)



Low-frequency Approximation

Bench measurements, and certainly the present paper, implicitly assume that the validity of
the results is limited to the frequency range below cut-off where kb << 1, even though the

electrical length ® =kg can be finite. The scattering coefficient in low-frequency limit simply
follows from eg. (19) by taking A, =i,, /b, resulting in

R % 17, é_’@ 92(1 ) JOE

ZZ
¢ D'-ZJ&quza (On g/b 1+C05@€Xp( IOn g/b)

E g n IOn

Thin Wire Approximation

It is well known that wire measurements require the use of the thinnest wire permitted by
mechanical constraints in order to obtain meaningful coupling impedance results. In the thin
wire limit one finds

i :j +£:j 2Y (Jon JOn
On on on TE] (JOn) D 2b

with y being Euler's constant. It follows that

(20)

21_

Mmoo

a, =1+37 (Jon) €’

It should be noted that in the thin wire approximation the relative contribution from the end
effects is identical in the expression for the beam impedance and the forward scattering
coefficient. This fact justifies combining the straight tube impedance, R, with the end effects
into a total impedance value, Z. This also suggests that bench measurements should be
performed on devices with beam tubes attached as part of the unit. For the sake of
simplicity, the sequel of this paper will assume the thin wire approximation. The simplified
expression for the forward scattering coefficient now takes the form

j—+—(@1-e®)e™! % (21)

Lumped Impedance

Correspondingly, the scattering coefficient for a lumped impedance follows as

z 5012
S, =l-——+2 22
wlog oty ch (22)



I11. TRANSMISSION LINE ANALYSIS

The standard formulae used to interpret coupling impedance bench measurements
were all derived in the framework of transmission line theory. The field configuration on an
ideal transmission line is a TEM wave with purely transverse components. A finite wall
conductivity changes the field into a mode with an axial component of the electric field. The
assumption in the transmission line theory is, however, that the analysis can be performed
with ideal walls and the real situation is handled by appropriately modifying the characteristic
impedance and propagation constant. Terminal effects, i.e. the local appearance of
evanescent modes, for example aﬁhe junction of two different transmission lines is also
considered to be negligibly small.= Notwithstanding its limitations, transmission line analysis
represents a powerful tool and its results must be compared with the field analysis in the
present paper.

Distributed Impedance

The transmission line analysis of a distributed impedance can be based on Faltens model in
which the characteristic impedance and propagation constant of the DUT is defined as®

. Z
Zoyr =Zc11_J®T:an (23)
/ . Z
and kDUT =k 1‘]5 =I7k (24)

Representing the amplitude of the forward and reflected wave by a and b respectively,
one can apply field matching ﬁe. voltage and current matching in the transmission line)
which leads to the conditionst

- at the input port

ain + bin = a‘DUT + bDUT

(ain - bin ) = (aDUT + bDUT )

S |-

- at the output port

= J®pur ~i®pur —
a'DUT € + bDUTe - bOU'[

1 n .
E(aDUTe 1ot _bDUTe 1Bour ):bout



With the scattering coefficient defined as

STEM —_ bout
21 -jo
q;,€

one finds after simple manipulations

4 e—(n—l)e
s =T (25)
n+D)"-(n-1)e ™

Taylor expansion with regard to the coupling impedance, Z, leads to

S =1- -2 A et e )

A first order approximation to Eq.(26) leads to Walling's log-formula®,

Z.. ==2Z.InS,, 27)

log

Recently, Jensen proposed an improved log-formula for a distributed impedance :

InS
ZLog :—ZZcInSﬂ% J 2(;% (28)

Lumped Impedance

In the limit of © - 0, the distributed impedance turns into a lumped impedance with

Z Z
Syt =1-—+ 2 é +...

which to 2" order is in agreement with the expression found in standard text books

2Z Z
STEM — c . 29
TR sz % (29)

Note that the second order difference between transmission line and field analysis for the
lumped impedance is

S;M-s,, = . %éwhich is a consequence of neglecting evanescent modes in
5z,

the transmission line analysis.



IV. INTERPRETATION of BENCH MEASUREMENTS

The field analysis results presented in this paper are claimed to represent a more
accurate description of the coupling impedance bench measurements than that obtained
from the standard transmission line treatment. However, the formulae are complex and do
not lead to explicit expressions for the coupling impedance. On the other hand, they can
serve to estimate the error made by using the standard formulae.

Applying the appropriate theoretical scattering coefficient, Egs. (21) and (22), to the
standard impedance formulae yields the following expressions for the systematic error in the

- Hahn-Pedersen lumped impedance formula, Eq. (1)

Z
—he :1_L (30)
z 8Z

c

- Walling et al. log formula, Egs. (2) and (27)

7 : _ ami®Ya-i@
11 =42 %%_a.eege E (31)

- the log-formula in the limit of © - 0

Z 1o _1_32 (32)
z 8Z,

- Jensen improved Log formula, Eq. (28)

7 _a-i0)a-io
=1y : ee)e 9

C

The error analysis confirms the improvement in Jensen's log- formula. However, the
improved log-formula is restricted to long structures with © =1, whereas the regular log-
formula could be used for lumped impedances, albeit with reduced accuracy.

In summary, it can be stated that the present analysis in all cases confirms the validity
of coupling impedance bench measurements well below cut-off, provided that the wire size
Is made sufficiently small and the measurement is performed with attached beam tubes of

sufficient length in order to avoid the effects due to evanescent modes.
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