

BNL-105595-2014-TECH

BNL/SNS Technical Note No. 026;BNL-105595-2014-IR

The 4 Fold Symmetric Lattice for the NSNS Accumulator Ring

Y. Y. Lee

February 1997

Collider Accelerator Department Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

THE 4 FOLD SYMMETRIC LATTICE FOR THE NSNS ACCUMULATOR RING

BNL/NSNS TECHNICAL NOTE

NO. 026

Y. Y. Lee

February 19, 1997

ALTERNATING GRADIENT SYNCHROTRON DEPARTMENT BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK 11973

The 4 Fold Symmetric Lattice for the NSNS Accumulator Ring

Y. Y. Lee Brookhaven National Laboratory

February 19, 1997

ABSTRACT

The 4-fold symmetric lattice for the National Spallation Neutron Source(NSNS) replacing original 3-fold symmetric lattice¹ is presented. There are several reasons for new lattice. The lattice is to accommodate realistic beam scraper in the ring, to avoid dangerous structural resonances, and ease of tuning and of installing correction elements.

THE LATTICE

The storage ring consists of four 90° arc and long straight sections, schematically shown in the fig. 1. Four FODO cells with a $\pi/2$ phase advance makes the arc section. Each half cell consists of a quadrupole, a .45m space, a 1.5m long dipole, a 1.55m space, and a quadrupole. The total length of the arc half cell is 4 meters. Four full cells of $\pi/2$ phase advance insures the zero dispersion in either side of the arc. Two FODO cell without a dipoles form each long straight section. The cell lengths for the straights are kept same with the 3-fold symmetric¹ case so that the injection and ejection could be kept similar. The half cell length for straights are 5.293 meters. The phase advance in the straights are adjusted to make the tune of the ring to be 5.82 horizontal and 5.8 horizontal. The lattice functions for one super period is shown in fig.2. The relevant ring parameters are given below in table I. A program SYNCH output is attached in appendix A.

Table I NSNS Accumulator Ring Parameter

Kinetic Energy	1.0 GeV
Magnetic Rigidity	5.658 T-m
Circumference	220.688 m
Periodicity	4
Structure	24 FODO
$\beta_{max}X/Y$	19.2/19.2 m
$Xp_{max/min}$	4.1/0. m
v X/Y	4.82/4.82
γт	4.933
$\xi_{natural} X/Y$	-6.5/-7.3

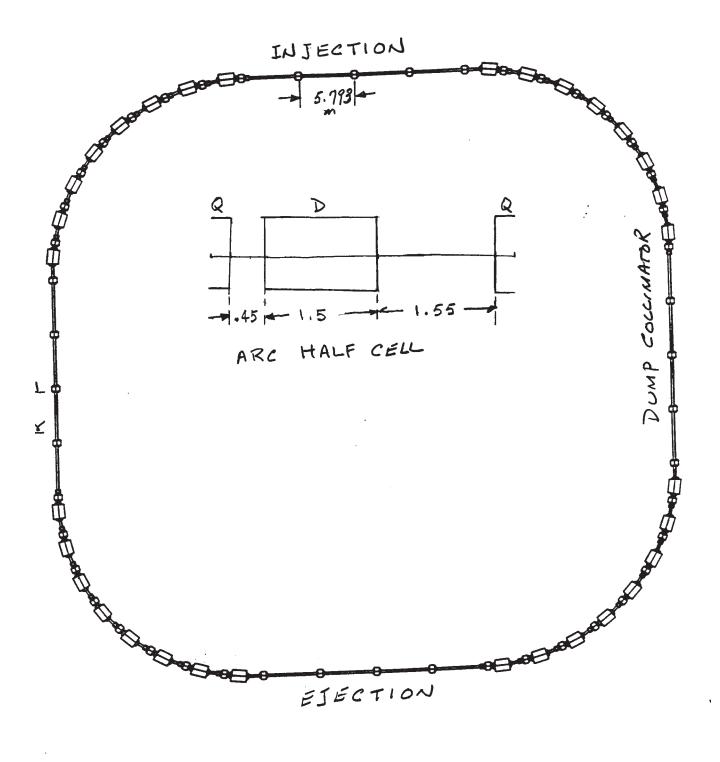


Fig. 1 RING LAYOUT

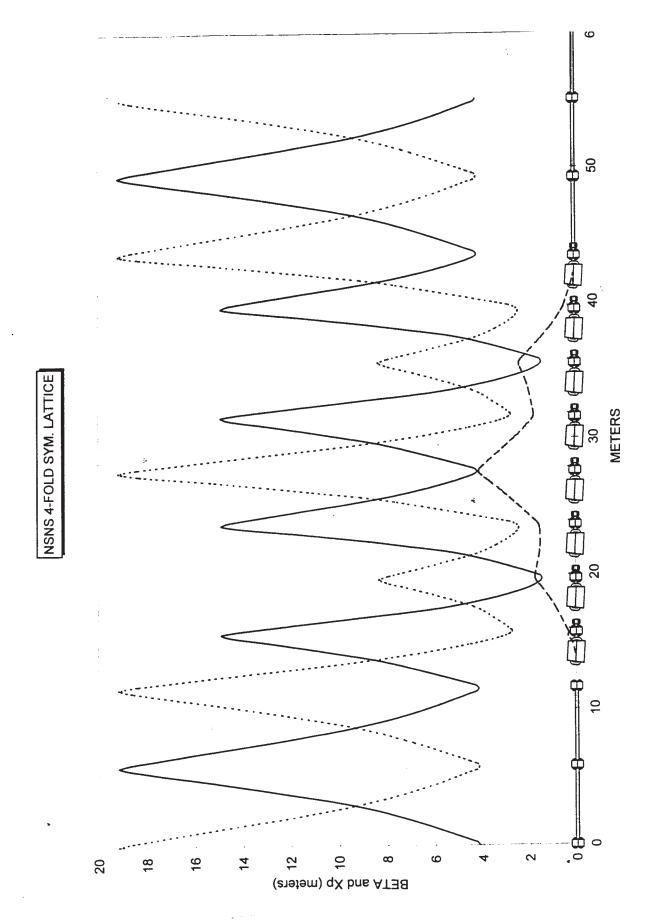


Fig 2

CHART 4

· 47

The primary assignment for the long straights are, injection, ejection, rf cavities, and last one for the beam scraping collimators. Any half cells not being used for the primary functions shall be used for other functions such as tune meter kicker, transverse damping system in case needed.

The 1.55m space between a quadrupole and a dipole consists of beam position monitor(pickup electrode), correction dipole and skew quadrupole combination, higher order correctors, and a vacuum pumping port.

TUNABILITY AND CHROMATIC BEHAVIOR

Under certain circumstances, it is desirable for accumulator ring to run different set of a betatron tune. The table II shows the behavior of the beta function for betatron tune change of 0.5 units.

ΔΡ/Ρ	Δv_x	Δv_y	$\beta_{x,max}$ (m)	$eta_{y,max}$ (m)	Xp _{max/min} (m)	ΔFQ %	ΔDQ %
0.0	0.0	0.0	19.2	19.2	4.1/0.	0.0	0.0
0.0	-0.5	0.0	21.9	17.8	4.1/0.	-18.1	-4.3
0.0	0.0	-0.5	17.8	21.9	4.1/0.	-4.3	-18.1
0.0	-0.5	-0.5	20.1	20.1	4.1/0.	-24.8	-24.8
0.5%	-0.03	-0.04	19.9	19.3	4.16/-0.1		
1.0%	-0.06	-0.07	20.5	19.5	4.23/-0.2		

Table II tunability and chromatic behavior

As can be seen in the table, half a unit change in the betatron tune results less than 5% change in betafunction while keeping the dispersion same. Because of none linear chromatic behavior, one expects slight change in betatron functions when lattice is looked at the view of off momentum particles. Even at 1% off momentum, which is maximum ever expected, the betatron function and the dispersion function behave reasonable at expected level.

STRUCTURE RESONANCES

The lattice has structure resonances at betatron tune of integer 5 and 6 which is expected from 4 fold symmetry. However, there is no structure resonances in fractional tune between 5 and 6 where as 3 fold symmetric lattice with tune of 3.8 has two 3rd order and 4th order structure resonances between tune of 3 and 4. Especially four of 4th order resonances are right on top of the working point. Although the resonances may not hurt the ring performances, we should not take chances with the performances of the lattice.

ACCUMULATOR RING MAGNETS

The list of proposed magnetic elements required for the accumulator ring is listed in the table III.

Table III NSNS Ring Magnet Parameters

	Dipole	20 Cm Quad	30 Cm Quad
Length*/Number	1.5 m/32	.5 m / 16 .47 m / 12 .394 m / 8 .317 m / 12	.5 m/4 .336 m/4
Field	.7406 T	4.124 T/m	4.124 T/m
Aperture(Vert.) (Hor. Good Field)	17 Cm 23 Cm	20 Cm Dia.	30 Cm Dia.
Vacc. Ch. Th.	1.5 Cm	0.5 Cm	0.5 Cm
Therm. Ins. Th.	0.5 Cm	0.5 Cm	0.5 Cm

*The lengths are in magnetic length.

Since the ring is DC, one need not to worry about transients or eddy current effects. Four different length in quadrupoles are chosen such that all the quadrupoles can be powered with single power supply and requires small trim supplies to supplement additional fine tuning. The poles of the quadrupoles with different length to be carefully shaped to eliminate multipole errors. Especially for 30 Cm quadrupole, where the length and pole diameter are comparable to each other, requires special attention.

REFERENCES

1. A. G. Ruggiero, et al., BNL/NSNS Tech. Note No. 0001, 1996

				1									
		19-FEB-97		15:53:13	13								
		ность книго котнеральные окта болемо (100) 100 година.				THE STREET ST						= = = = = = = = = = = = = = = = = = =	
, **	24 C C C C C C C C C C C C C C C C C C C		4	14 ONT		TTOWNYT	5 NOT	WILIILINA			IO BEAM ENERGI	IDYC	
* * *	RZ	i				0 740565							
* * *	DLL) 11					_						
***	1.12	1											
* *	C.10	1 1			-								
•		t I			_		: 4						
E	275	11			c. 0	•	ĸ		GLL				
* * *	GF	ŧ		1	л. г.	3.884							
* * *	GD			1	-4.	-4.12351							
* * *	GFS	11		1	2.6	2.61351							
* * *	GDS	И		1	, 2.(2.61351							
* * *	g	11		1	0.45	15							
* * *	0	DRF		11	8								
* * *	8	DRF		1	/ 1.55	55							
* * *	Ч	DRF		1		2.6465							
* * *	BM	MAG		1	DLL	.1			BR		ΒZ		
* * *	BM2	MAG		1	DL2	~			BR		ΒZ		
* * *	QF	MAG		1	GL2	~	GF		BR				
* * *	g	MAG		1	GL2	~	GD		BR				
* * *	QFS	MAG		1		01	GFS		BR				
* * *	SQQ	MAG		1	_		GDS						
* * *	.HC	BML		1			BM2			G			
* * *	.RC	BML		1	_		BM2	BM2	0	QF			
* * *	v.	BML		1	_								
* * *	.EH1	BML		1			Ч	QDS					
* * *	. EH2	BML		11			Г	QFS					
* * *	.EC	BML		1	, EH1	H1 .EH2	2						
***	.AC	BML		1	QFT	L J	Ч	QDT	QDT	ц	Ъ	QFT	
* * *	.BC	BML		1	' QFT	L L	Ч	QDT	QDT	Г	Ч	QFT	
	ARC 1	BML		.AC	ů.	υ.	.BC						
* * *	ARC	BML		1	р. С	Ů.	U.	U.					
* * *	SUP	BML		1									
* *	TUNE	SUB	0	// 0									
• • • •	 QF	MAG	:					:	BR	:	•		· · · · ·
***	6	DAM				~	LU U		da				
		NINN				4	3		40				
	214	Laffarfasi	6										
		LUMBER .		~									

A PPENDIX A

	-4.123287471834						2.637465916711		
HE ARC	-4.12320					Х	2.6374		
Z OF THI	N			•	• • • • •	δUY	II		
<pre>// 0.25 // 0.25 // 0.2275 // 0.2275 // 0.2275 SECTION FOR THE DISPERSION FREE REGION OUTSIDE OF THE ARC // TUNE MP GF GD 1 1MUX MUY</pre>	OF GD					1QUX	OF GDS		
E REGI	1			•	BR BR	ч	÷		
GD FREI			LLS	•		GDS			
SPERSI(GF (07		STREIGHT SECTION CELLS	•	GFS - GDS	GFS (11		ЕС
: 175 175 175 175 175 175 175	BY FITTING 3.882896082407	64	r SECT	•		THM	BY FITTING 2.637465916711		ARC
0.25 0.25 0.2275 0.2275 FOR THE 1 TUNE MP	: FITI 88289	TUNE	REIGHT	•	GL2 GL2 .EC	TUI	C FITT 63746	TUT	. EC SUP
// ///////////////////////////////////	(ADE BY	11	THE STF)	~	AADE BY	//	4 //
ARC SE	N STUE		FIT THE	-	0		ENTS N =		
MUX = MUY = QUX = FIT FOR THE ARC FQ FITQ	PARAMETER REPLACEMENTS MADE BY FITING 1 OF GF = 3.88289608	CALL	ORTION	FIUS	MAG MAG MMM END	FITQ	PARAMETER REPLACEMENTS MADE BY FITTING 1 OF GFS = 2.63746591	CALL	BML CYC
MUX MUY QUX FIT FOI FQ	TER REPI 1 OF		THIS PORTION	TOT.	QFS QDS MH1	FQ2	ITER RE 1 O		SUP
4 4	PARAME	* *	*	K • K •	* * * * *	* *	PARAME	*	1 X X 1 X X 1 X X 1 X X

BETATRON FUNCTIONS	ACTIONS OF	ļ	ļ								r * *	
2024	(m) c		NUY	(M)	BETAY (M)	XEQ (M)	(м) бях	ZEQ (M)	ALPHAX	ALPHAY	DXEQ	DYEQ
0	0.0000	0.00000	0.0000	19.18841	4.07042	0.00000	0.00000	0.0000	0.00000	0.0000	0.00000	0.00000
1 QFS	0.2500	0.00209	0.00967	18.63795	4.20568	0.00000	0.0000	0.0000	2.18039	-0.54628	0.00000.0	0.00000
2 L	2.8965	0.03438	0.07937	9.25947	9.25950	0.00000	0.00000	0.0000	1.36334	-1.36334	0.00000	0.00000
З Г	5.5430	0.10408	0.11166	4.20567	18.63802	0.00000	0.00000	0.0000	0.54628	-2.18040	0.00000	0.00000
4 QDS	5.7930	0.11375	0.11375	4.07042	19.18848	0.0000	0.0000	0.0000	0.0000	0.00000	0.0000	0.00000
s QDS	6.0430	0.12342	0.11584	4.20568	18.63802	0.0000	0.00000	0.0000	-0.54629	2.18040	0.0000	0.00000
6 Г	8.6895	0.19312	0.14813	9.25953	9.25950	0.00000	0.00000	0.0000	-1.36335	1.36334	0.00000	0.00000
7 L	11.3360	0.22541	0.21783	18.63808	4.20568	0.00000	0.00000	0.0000	-2.18041	0.54628	0.00000	0.00000
8 QFS	11.5860	0.22750	0.22750	19.18854	4.07042	0.00000	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000
9 QF	11.8360	0.22960	0.23713	18.38035	4.26311	0.0000	0.0000	0.0000	3.18640	-0.78174	0.0000	0.00000
10 00	13.3860	0.24788	0.28104	9.96035	7.59447	0.00000	0,00000	0.0000	2.24586	-1.36752	0.0000	00000
11 BM2	14.1360	0.26232	0.29485	6.85770		0.03679	0.00000	0.0012	1.87771	-1.65097	0.09802	0.00000
12 BM2	14.8860	0.28417	0.30559	4.36335	12.54737	0.14679	0.00000	0.0096	1.43740	-1.93441	0.19509	0.00000
13 0	15.3360	0.30335	0.31092	3.21198	14.36487	0.23458	0.00000	0.0096	1.12119	-2.10447	0.19509	0.00000
14 QD	15.5860	0.31667	0.31364	2.82735	14.76425	0.28909	0.00000	0.0096	0.44066	0.53130	0.24262	0.0000
15 QD	15.8360	0.33104	0.31640	2.75782	13.84956	0.35681	0,0000	0.0096	-0.15835	3.07173	0.30124	000000
	17.3860	0.40687	0.34328		6.13746	0.82373	0.00000	0 0096	-0 73449	1 90382	0 30124	00000 0
	18.1360	0.43217	0.36842	5.40500	3.70557	1.08211	0.00000	0.1026	-0.94447	1.33870	0.38724	0.00000
18 BM2	18.8860	0.45165	0.41152	6.95697	2.12136	1.40365	0.00000	0.2242	-1.11817	0.77358	0.46950	0.00000
19 0	19.3360	0.46124	0.45107	8.02883	1.57772	1.61493	0.0000	0.2242	-1.26372	0.43451	0.46950	0.00000
20 06	19 5860	0 46607	0 47750	00505 B	1 47062	1 69695		C7CC 0	0 10312		18425 O	
	19.8360	0.47094	0.50393	7.92863		1.70645	0,00000	0.2242	1.45252	-0.43451	-0.10867	0,00000
	21.3860	0.51336	0.59990		4.73496	1.53800	0.00000	0.2242	0.84457	-1.60242	-0.10867	0.00000
	22.1360	0.54501	0.61990	3.28735	7.56243	1.48601	0.00000	0.3721	0.59183	-2.16754	-0.02987	0.00000
24 BM2	22.8860	0.58620	0.63286	2.60402	11.23758	1.49327	0.0000	0.5179	0.31635	-2.73266	0.04923	0.00000
25 0	23.3360	0.61498	0.63860	2.40485	13.84956	1.51543	00000	0.5179	0.12625	-3.07173	0.04923	0,00000
26 QD	23.5860	0.63143	0.64136	2.47781	14.76425	1.56247	0.0000	0.5179	-0.42253	-0.53130	0.32857	0.0000
27 QD	23.8360	0.64657	0.64408	2.84032	14.36487	1.68096	0.00000	0.5179	-1.04946	2.10447	0.62294	0.00000
28 00	25.3860	0.69972	0.66615	7.87111	8.74896	2.64652	0.00000	0.5179	-2.19621	1.51869	0.62294	0.00000
29 BM2	26.1360	0.71227	0.68179	11.48350	6.68350	3.13701	0.00000	0.8014	-2.60483	1.23525	0.68400	0.00000
30 BM2	26.8860	0.72117	0.70240	15.63547	5.04321	3.67087	0.00000	1.1352	-2.91334	0.95181	0.73848	0.00000
31 0	27.3360	0.72540	0.71787	18,38036	4.26311	4.00318	0.00000	1.1352	-3.18640	0.78174	0.73848	0.00000
32 QF	27.5860	0.72750	0.72750	19.18854	4.07042	4.10093	0.00000	1.1352	0.00000	0.00000	0.04072	0.0000
33 QF	27.8360	0.72960	0.73713	18.38036	4.26311	4.02340	0.00000	1.1352	3.18640	-0.78174	-0.65878	0.00000
34 00	29.3860	0.74788	0.78104	9.96035	7.59447	3.00230	0.00000	1.1352	2.24586	-1.36752	-0.65878	0.0000

	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
, * ø, ; ; ;	-0.59611	-1.93441 -0.52770	-0.52770	0.53130 -0.19606	3.07173 0.12661	0.12661	0.19875	0.26897	0.26897	0.00000 -0.14364
	-I.65097 -0.596II	-1.93441	-2.10447 -0.52770	0.53130	3.07173	1.90382	1.33870	0.77358	0.43451	0.00000
	1///8.1	1.43740	1.12119	0.44066	-0.15835	-0.73449	-0.94447	-1.11817	-1.26372	0.10312
	1.40b5	1.6339	1.6339	1.6339	1.6339	1.6339	1.8328	2.0463	2.0463	2.0463
	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	4.134.24	2.10957	1.87211	1.78198	1.77333	1.96958	2.09168	2.26722	2.38826	2.40398
	4.83834	12.54737	14.36487	14.76425	13.84956	6.13746	3.70557	2.12136	1.57772	1.47062
	0//02.0	4.36334	3.21198	2.82734	2.75782	4.14172	5.40500	6.95697	8.02882	8.32320
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.13400	0.80559	0.81092	0.81364	0.81640	0.84328	0.86842	0.91152	0.95107	0.97750
	0.10434	0.78417	0.80335	0.81667	0.83104	0.90687	0.93217	0.95165	0.96124	0.96607
0761 06	0007.00	30.8860	31.3360	31.5860	31.8360	33.3860	34.1360	34.8860	35.3360	35.5860
2 CMG CMG	714G CC	36 BM2	37 0	38 QD	39 QD	40 00	41 BM2	42 BM2	43 0	44 QF

	S (M)	XUN	NUY	BETAX (M)	BETAY (M)	XEQ (M)	YEQ (M)	Zeq	(M) ALPHAX	х алрнау	DXEQ	DYEQ
45 QF	35.8360	0.97094	1.00393	7.92863	1.57772	2.31695	0.00000	0 2.0463	3 1.45252	2	-0.	0.00000
46 00	37.3860	1.01336	1.09990	4.36813	4.73496	1.46429	0.00000	0 2.0463	3 0.84457	7 -1.60242	-0.55010	0.00000
47 BM2	38.1360	1.04501	1.11990	3.28736	7.56243	1.08211	0.0000	0 2.1708	8 0.59183	3 -2.16754	-0.46822	0.00000
48 BM2	38.8860	1.08620	1.13286	2.60402	11.23758	0.76309	0.00000	0 2.2609	9 0.31635	5 -2.73266	-0.38184	0.00000
49 O	39.3360	1.11498	1.13860	2.40485	13.84956	0.59126	0.00000	0 2.2609	9 0.12625	5 -3.07173		0.00000
50 QD	39.5860	1.13143	1.14136	2.47781	14.76425	0.50859	0.00000	0 2.2609	9 -0.42253	3 -0.53130	-0.28202	0.00000
51 QD	39.8360	1.14657	1.14408	2.84032	14.36487	0.44918	0.00000					
52 00	41.3860	1.19972	1.16615	7.87112	8.74896	0.14679	0.00000					
53 BM2	42.1360	1.21227	1.18179	11.48351	6.68350	0.03679	0.00000					
54 BM2	42.8860	1.22117	1.20240	15.63548	5.04321	0.00000	0.0000	0 2.2705	5 -2.91334	4 0.95181		0.0000
55 0	43.3360	1.22540	1.21787	18.38036	4.26311	0.0000	0.00000	0 2.2705	5 -3.18640	0 0.78174	0.00000	0.00000
56 QF	43.5860	1.22750	1.22750	19.18855	4.07042	0.00000	0.00000	0 2.2705	5 0.00000	0 0.00000	0.00000	0.00000
57 QFS	43.8360	1.22959	1.23717	18.63809	4.20568	0.00000	0.0000	0 2.2705	5 2.18041	1 -0.54628	0.00000	0.00000
58 L	46.4825	1.26188	1.30687	9.25953	9.25950	0.00000	0.00000	0 2.2705	5 1.36335		0.00000	0.00000
59 L	49.1290	1.33158	1.33916	4.20568	18.63802	0.0000	0.00000	0 2.2705	5 0.54629	9 -2.18040	0.00000	0.00000
60 QDS	49.3790	1.34125	1.34125	4.07042	19.18848	0.0000	0.00000	0 2.2705	5 0.00000	0 0.00000	0.00000	0.00000
61 QDS	49.6290	1.35092	1.34334	4.20568	18.63802	0.00000	0.00000	0 2.2705	5 -0.54628	8 2.18040	0.00000	0.00000
62 L	52.2755	1.42062	1.37563	9.25948	9.25950	0.00000	0.00000	0 2.2705	5 -1.36334	4 1.36334	0.00000	0.0000
63 L	54.9220	1.45291	1.44533	18.63795	4.20568	0.00000	0.00000	0 2.2705	5 -2.18039	9 0.54628	0.00000	0.00000
64 QFS	55.1720	1.45500	1.45500	19.18841	4.07042	0.00000	0.0000	0 2.2705	5 0.00000	0 0.0000	0.0000	0.0000
CIRCUMFERENCE	11	220.6880 M		THETX = 6.	6.28318515 RAD	XUN	= 5.8	5.82000	(a/ad)/xnna	11	-6.53402	
R	RADIUS = 35	35.1236 M	F	THETY = 0.0	0.00000000 RAD	NUY =	Ŋ	.82000 1	DNUY/ (DP/P)) = -7.28028	1028	
(DS/S) / (DP/P) =	<pre>DP/P) = 0.0411530</pre>	11530	-	TGAM= (4.5	4.92946, 0.00	0.00000)						
MAXIMA	BETX (56) =	19.18855	BETY (4) = 19.	19.18848	XEQ (3:	32) = ''	4.10093	YEQ (64)	И	0.00000
MINIMA	BETX (25) =	2.40485	BETY (44) = 1.	1.47062	XEQ (5	54) = (0.00000	YEQ(64)	1 1 11 1	0.00000
* *	FIN 0	// 0 0	// CORE USE	SUMMARY			MAXIMUM		USED		UNUSED	
			STORE	(ELEMENT STC	STORAGE)		48000	(LMAX)	1536 80	36 80	46464 1920	
			JINT		GNOTITNT 3			(MHA)	Ø	5	N74T	