

BNL-105593-2014-TECH

BNL/SNS Technical Note No. 024;BNL-105593-2014-IR

Tuneability of the NSNS Accumulator Ring

A. G. Ruggiero

February 1997

Collider Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

TUNABILITY OF THE NSNS ACCUMULATOR RING

BNL/NSNS TECHNICAL NOTE

NO. 024

A. G. Ruggiero

February 12, 1997

ALTERNATING GRADIENT SYNCHROTRON DEPARTMENT BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK 11973

Tunability of the NSNS Accumulator Ring*

Alessandro G. Ruggiero Brookhaven National Laboratory

January 31, 1997

Abstract

The lattice of the Accumullator Ring is described in reference [1]. It is a ring with threefold periodicity and internal symmetry. The choice of the size, shape and focussing is also discussed in the same reference. For convenience, we report in Table 1 a list of the major parameters and the plot of the lattice functions in Figure 1. The lattice is made of 18 FODO cells of which 6 do not include bending magnets. The reference working point requires only two families of quadrupoles, QF and QD. In this report we explore the capability of tuning of such lattice, and we make other considerations which are related.

The Tunability Range

The tuning of the lattice is essentially determined by two sets of quadrupoles QF and QD. Considering the small size of the ring and the relatively few bending magnets, there is also a considerable focussing action on the horizontal plane from the curvature in the magnets, which are sector shaped and thus do not introduce any effect on the vertical plane. We begin by neglecting the presence of the bending magnets and explore the tunability range of the lattice assuming that it is simply made of 18 regular FODO cells. The tunability range is displayed in Figure 2. To tune the ring one acts on the gradients G_F and G_D of the two sets of regular quadrupoles. In Figure 2 we adopt the focussing parameters $K_{F,D} = G_{F,D}$ / Bp, where Bp is the magnetic rigidity. The operating point is marked with a black circle. It is seen that the range of betatron tunes extends between 0 and 9. The upper limit corresponds to a phase advance of 180° per cell, which is well known to be the boundary of stability. Obviously, since bending magnets have been here ignored, the periodicty of the lattice is actually 18 and all the FODO cells behave identically.

Next we estimate the tunability range in the presence of the bending magnets. Again we varied the gradient G_F and G_D of the quadrupoles. The result is also shown in Figure 2. The range has a lesser extend when compared to the previous case, but the range of betatron tunes that it is possible to reach is still unchanged in the vertical plane, where $Q_V = 0$ to 9, but in the horizontal plane the horizontal range is limited $Q_H = 0$ to 7. Indeed the bending magnets have no focusing effect on the vertical plane but introduce a substancial contribution in the horizontal plane, where the focusing periodicty is now 3 and no more 18 as it is still in the vertical plane.

Within the range of tunability determined lastly, in the presence of bending magnets, the

^{*} Work performed under the auspices of the U.S. Department of Energy

behavior of the dispersion around the ring varies and deviates considerably from the requirements. In order to preserve the required behavior of the dispersion in the arcs, we explored the range of tunability of the ring by varying only those quadrupoles QF1 and QD1 in the long straights as shown in Figure 1. As expected, the tunability range is even narrower. Also in the vertical plane the periodicity is now down to 3. Moreover, four families of quadrupoles are now in place, of which two (QF and QD) stay unchanged and the other two (QF1 and QD1) vary. This creates within a period a large variation of the β function and thus a reduced range of stability. In terms of betatron tunes the values that it is possible to reach, without losing stability, is only between 3 and 4.5 for both planes. The tunability range for this mode of operation is also shown in Figure 2.

Table 1: NSNS Accumulator Ring

Kinetic Energy	1.0 GeV
Magnetic Rigidity	5.657 T m
Circumference	208.558 m
Periodicity	3 w/ mirror symmetry
Structure	18 FODO Cells
β_{max}	24.0 m
η_{max}	7.95 m
Betatron Tunes, H/V	3.82 / 3.78
Transition Energy, γ_T	3.422
Natural Chromaticity, H/V	-0.928 / -0.958
Dipole, Field	9.874 kG
Length	1.5 m
QF, gradient	0.209 kG/cm
QD, gradient	0.237 kG / cm
Quadrupole length	0.5 m

Location of Resonance Lines

In order to determine good locations of the operation tunes, we need to explore the tune diagram $(Q_H,\,Q_V)$, and scan the presence of resonance lines that may be caused by systematic (thick solid lines) and random (thin dashed lines) magnetic imperfections and misalignments. The tune diagrams are displayed in Figures 3 to 6. The reference operating point is noted with a black dot, and it corresponds to zero space charge. The region covered by the necktie corresponds to the

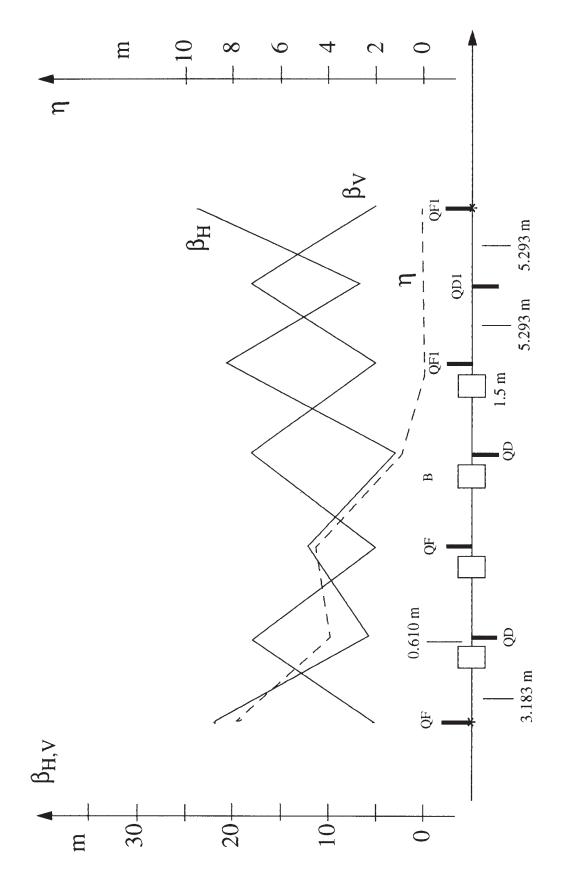


Figure 1. Half-Period Lattice Functions and Structure

range of betatron tunes that the beam is expected to occupy in the presence of space charge, with a maximum tune depression of 0.2.

It is seen that the range of betatron tunes occupied by the beam during storage, assuming the reference working tunes shown in Table 1, is crossed by one systematic second-order resonance $Q_H - Q_V = 0$, and by four fourth-order systematic resonances: $2Q_H - 2Q_V = 0$, $2Q_H + 2Q_V = 15$, $3Q_H + Q_V = 15$, and $Q_H + 3Q_V = 15$. There are also four third-order random resonances, of which two can be excited by regular sextupolar field errors, and the other two by skewed sextupole field errors. The linear coupling resonance can be caused by systematic and random skew quadrupole errors. The second-order coupling resonances can be caused by systematic and random regular octupole field errors, as well by the space-charge forces. These resonances do not cause beam losses, but a thermalization of the two transverse betatron emittances, since the following condition applies $\epsilon_H + \epsilon_V =$ constant. This condition can actually be beneficial since ultimately it will make easier beam "painting" during injection, by allowing energy transfer from one plane of oscillation to the other. Nevertheless, because of the proximity of the two values of betatron tunes, there may be operation difficulty especially when trying measuring their values. This effect is reduced by splitting the two betatron tunes enough apart. The resonance $2Q_H + 2Q_V = 15$ is

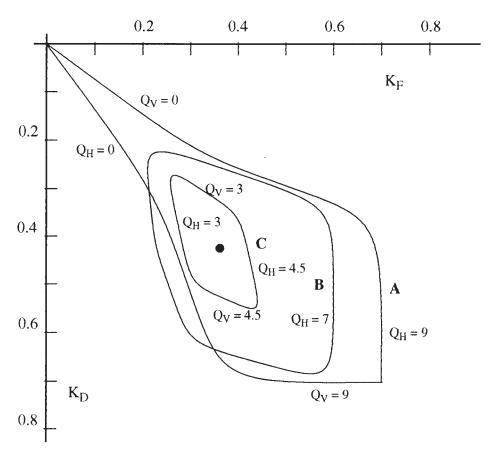


Figure 2. Tunability Range in the KF, KD plane (in m⁻²)

- A. 18 FODO Cells without bending magnets
- B. Bending magnets included
- C. Tuning only with QF1 and QD1 in the insertions

driven by the space-charge forces and may lead to beam losses, and should thus be avoided. Space-charge forces cannot drive the skew resonances $3Q_H + Q_V = 15$ and $Q_H + 3Q_V = 15$, which can be driven only by external skewed octupole field errors. It is not clear whether the other fourth order resonances $4Q_H = 15$ and $4Q_V = 15$, when they are driven by space-charge or by external forces, can have any adverse effect on the beam.

A Higher-Tune Lattice

To avoid the presence and crossing of the fourth order systematic resonances, it was judged more prudent to move the operating tunes away and toward larger values. The case of $Q_{\rm H} = 4.23$ and $Q_V = 4.27$ has therefore been considered. This case will also reduce the growth rate of potential transverse resistive-wall instability by a factor of two compared to the reference case. The new operating tunes are shown in Figure 6. It is seen that the beam tune-spread is not crossed by any systematic resonance up to and including fourth order, with the exclusion of the coupling resonance. Nevertheless some third and fourth resonances caused by random magnet field imperfections are in the proximity, but they are not expected to cause excessive disturbance, and should be easily controlled eventually by some external multiple field correctors. This also proves the tunability of the lattice of the Accumulator Ring as originally proposed in [1]. The location and size of the magnets are of course unchanged. The only changes apply to the gradients of the quadrupoles, shown in Table 2 together to new global lattice parameters. The envelope and dispersion functions are shown in Figure 7. It is seen that the dispersion is unchanged. Also the behavior of the vertical envelope function β_V is regular and unchanged. On the other end, the horizontal envelope function β_H is somewhat distorted, which is expected since a change of the betatron tunes has to be compansated by a change of the amplitude functions. The distorsion is nevertheless modest and does not have consequences to the magnet size or to the injection insertion.

Table 2: Parameters for the Higher-Tune Lattice

QF gradient	0.216 kG / cm
QD gradient	0.260 kG/cm
QF1 gradient	0.248 kG/cm
QD1 gradient	0.271 kG/cm
Betatron Tunes, Q _H / Q _V	4.23 / 4.27
Transition Energy, γ_T	3.40314
Natural Chromaticity, H/V	-1.085 / -0.995

References

[1] A.G. Ruggiero, et al., "The NSNS Accumulator Ring", BNL/NSNS Technical Note No. 001, August 5, 1996, Brookhaven National Laboratory.

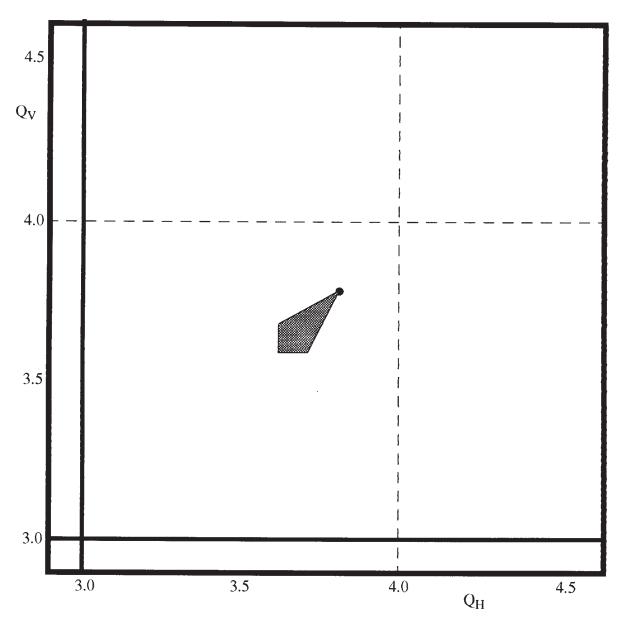


Figure 3. Tune Diagram with First-Order Resonances.

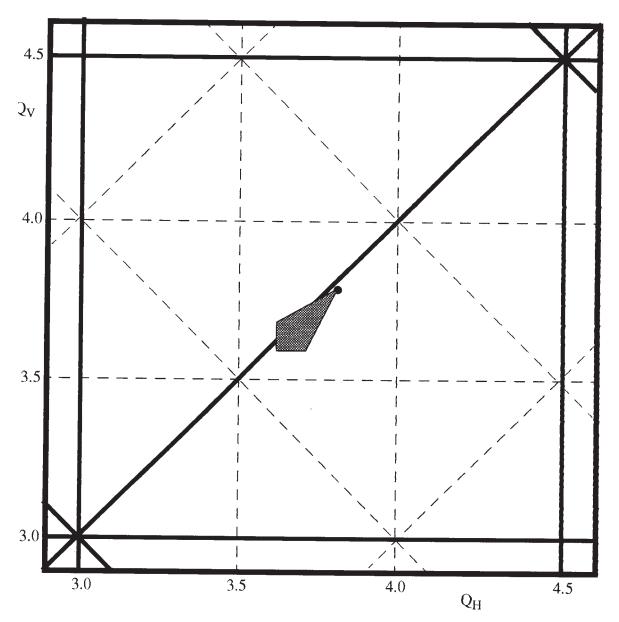


Figure 4. Tune Diagram with Second-Order Resonances.

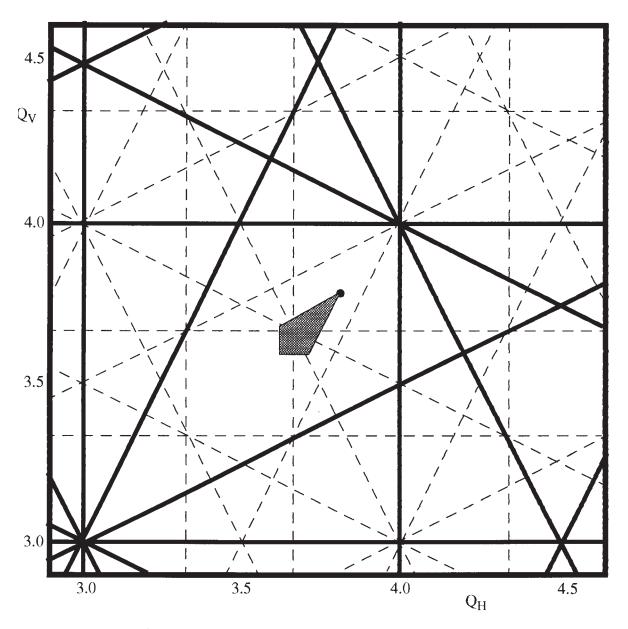


Figure 5. Tune Diagram with Third-Order Resonances.

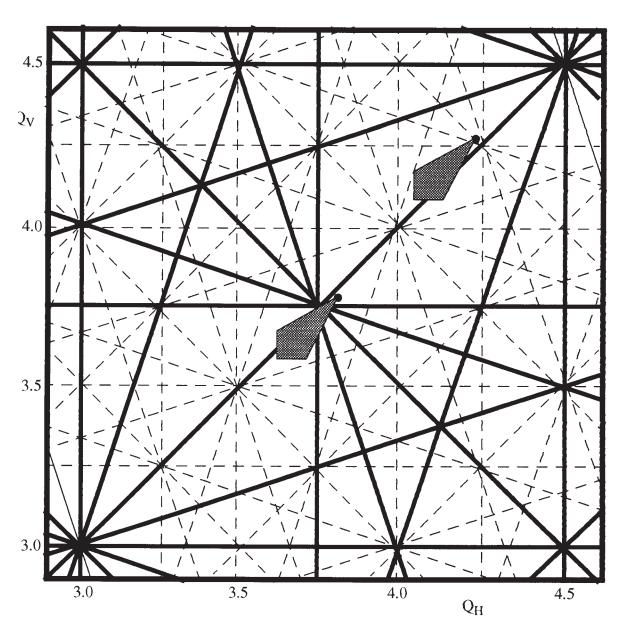


Figure 6. Tune Diagram with Fourth-Order Resonances.

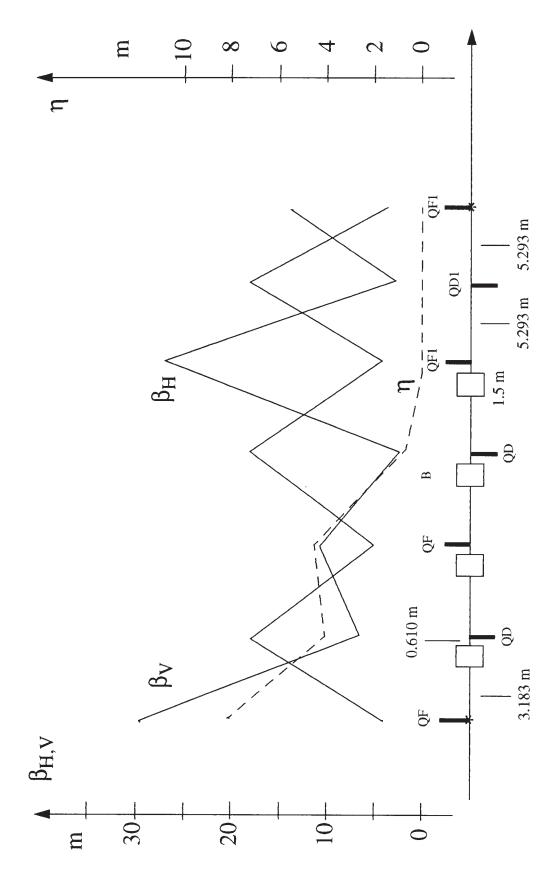


Figure 7. Half-Period Lattice Functions and Structure (Large Tunes)

* * * * * * * * * X X X	RFQ NF KE	223	402.5	ري د :																			
	1 11	: `	6.0	0.93826																			
*** PER	*	7	3.0	_																			
	W 13	: `	D . 4																				
*** BI	11	. `	0.75	'n																			
	11	11	3.3	3.3356																			
* * *	н		299	299.7925	rv.																		
	n n	` `	0.25	υ -																			
* *	, y		470.	<u>.</u>																			
	DPT *	11	17.4	4																			
* *		7	0.0	_ '																			
	710 710	` `	2.5				`																
		` '	ROT.		A L	7 T		, . C	4														
*** BT			1.0	RCL			1/X	· •	SORT														
ID **	_U	` `	RCL					RCL	10 L	*													
*** NCL		//	RCL	QN '	0.5																		
*		//	RCL		*		SYM		+	*													
·* CL	CALC	//	RCL		RC RCL			2.0	_														
		//	RCL		RCI	5	2.0	*	1														
10 **	CALC	//	RCL		RCI		2.0	*	1	RCL 1	- TO												
-+ 	CALC	//	RCL	1	1	-+	ή * · · · · · · · · · · · · · · · · · ·	RCL	9 GM	+++	-7												
** BR		//	RCL				*																
*** RHO	O CALC	//	1.0		MXS 7		RCL	BL	*	RCL N	* QN												
* *			RCL			PI	\ '				•												
* ANG	G CALC	``	360.				RCL,	PER	_														
* ANR		` `	חלק			+ t	A MC	*															
*** SA(G CALC	: `	, ,	2 Z	ANR			Z Z	RHO	*	* 100												
*** BZ	BZ CALC	: `	RCL				\		2	1	•												
[O] ***		. `	E C I				\ 1	RCT.	FOTD														
* *	PRNT	: ``	XE E	RE	PER	SYM	QN	3	2														
RIABLE	1 OF TYPE 5	TS QI)	 DRAGE	-	1	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	} } !	i (1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	}	; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1	1
KE 1.	000000000	cec.	RE 0.938260000	0000		PER 3.(ER 3.0000000000	0000		SYM 1.000	1.0000000000			z	ND 4	ND 4.000	D 4.000000000	00					
: : : : : : *	PRNT	//	GM	BT	Δ	BR	RHO	1	! ! !	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1) (() 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		
VARIABLE GM	1 OF TYPE 5	(LQ STC	STORAGE)			<u>.</u>			; ; ;	BR		1 1	1		RH	RHO			1	ł 	1	1	
2	.00200000		0.8/502/42/	/ 7 5 /	1		1.696030660	000		7.05.	0/86/2/99/0				ν.	5.725	5.729577951	<u>ا</u> ر					
*	PRNT	//	15	70	EL	70	B	 	† 	i { } }	1	1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! !		1 1 1	1	! ! ! ! !	1	! ! !	
VARIABLE	1 OF TYPE 5	(LQ STC	STORAGE)		; ; ;	:	1	 	 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	 				1	1	!	! ! !	1	1	
3 50	5.793273371	0.5	0.250000000	0000		J. 5.	5.293273371	371		OL 3.183	3.183273371			m,	JE O	3L 0.750	o.750000000	00					
*	PRNT	//	i	CIRC BC	BZ	NCL	! ! ! ! !	1	 	 	t 	1 1	} ! !	: ; ; ;	} } } 	; ; ;		1 1 1				! ! ! !	
RIABLE	1 OF TYPE 5	(LQ STC	STORAGE)		!	 	1		; ; ;		t f t t	1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 		1	i 1 1 1 1	1	1	1	1	
208.5	CIRC 208.557841350	BC 3.3	3.335600000	0000		BZ 0.	3Z 0.987381604	604		NCL 18.000	NCL 18.000000000												
1 1 1																							

* *		PRNT	//	ANG SAG	FOIL LONS	SNG								
VARIABLE ANG	1 5000	OF TYPE 5	3	STORAGE) SAG 19.523063440	P. C.	FOIL 0.00000000	0000	LONS 5.093273371	33.71)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
t 1			-2	3	+	-55-	-9+		+					
* * * * * * * *	010010	DRF DRF DRF DRF BRF		OL LL DL LONS FOIL										
* * * * * * * * * * * * * * * * * * * *	GF GD GF1 GD1		: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.381379 460338 0.437669 479015										
* * * * * *	B QF QD QF1 QD1	MAG MAG MAG MAG		77 77 77 77 77 77 77 77 77 77 77 77 77	GF GD GF1 GD1	B	B2							
1	1	+ 1	-3+	3+	+	-55-	-9+		+					
* * * * * * * * * * * * * * * * * * * *	.cr .cr .cer .ARC	BML BML BML BML BML		OF D QD D QP1 D QP1 L QP1 L CT .C	B B B B B B B B B B B B B B B B B B B	00004	00 00 00 00 00 00 00 00 00 00 00 00 00							
* *	RING	CYC	+	. PER	+7)) !	191111111111111111111111111111111111111	-/+	+					
POS	1	S (M)	NUX	NUY	BETAX(M)	(W	BETAY(M)	XEQ (M)	YEQ(M)	ZEQ (M)	ALPHAX	ALPHAY	DXEQ	DYEQ
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0	QF1 L QD1 QD1	0.000 0.250 5.543 5.793 6.043	0.00000 0.00291 0.12235 0.13124	0.00000 0.00977 0.11427 0.11642	13.79890 13.42936 4.48578 4.52148	890 936 578 148 235	4.03046 4.15737 18.08838 18.60978	0.00075 0.00073 0.00031 0.00029	0.00000.0	00000.0	0.00000 1.46467 0.22495 -0.36915	0.00000 -0.51225 -2.11958 0.05484	0.00000 -0.00008 -0.00008 -0.00005	0.0000000000000000000000000000000000000
98765 1000	L QF1 D B	11.337 11.587 11.837 12.447 13.197	0.21597 0.21741 0.21884 0.22262 0.22805	0.23019 0.24108 0.25198 0.27600	27.14877 28.01073 27.35881 24.06557 19.97899	77 73 81 57 99	3.73274 3.61259 3.72681 4.41799 5.60115	0.00022 0.00022 0.00020 0.00017 0.04914	0.0000000000000000000000000000000000000	0.0000 0.0000 0.0000 0.0000	-3.20243 -0.21392 2.79779 2.60096 2.81665	0.47914 0.00582 -0.46686 -0.66622	-0.00001 -0.00004 -0.00006 -0.00006	000000000000000000000000000000000000000
10 B 11 O 12 QD 13 QD 14 D		13.947 17.130 17.380 17.630 18.240	0.23477 0.30564 0.31782 0.33103	0.31899 0.36448 0.36666 0.36884 0.37462	15.71182 3.47659 3.10271 2.96020 3.00247		7.15197 17.82610 18.41579 17.96277 15.70149	0.19531 1.01899 1.09869 1.21007 1.52291	0.0000000000000000000000000000000000000	0.0171 0.0171 0.0171 0.0171	2.84038 1.00322 0.50661 0.06888	-1.15643 -2.19676 -0.13932 1.93400	0.25875 0.25875 0.38032 0.51285	0.0000000000000000000000000000000000000
15 B 16 B 17 O 18 QF	. <u>.</u>	18.990 19.740 22.923 23.173 23.423	0.40174 0.43474 0.51881 0.52263	0.38292 0.39285 0.46444 0.47275	3.34604 3.94356 10.11548 10.61599 10.62927		13.19040 10.97620 4.88251 4.74360 4.85921	1.94244 2.42677 4.60860 4.72445	000000	0.2432 0.5285 0.5285 0.5285 0.5285	-0.31731 -0.47483 -1.46403 -0.52204 0.46932	1.57510 1.37717 0.53711 0.02294	0.60430 0.68540 0.68540 0.23959	0.00000

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0.00000	0.00000 0.00000 0.00000 0.00000	0.0000.0		000			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	Ę	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
28.14.03 (24.73) (24.7		.73693 .73693 .76028 .77062	000000.		(((\$ f f t t t	1.00*SIGM		11 11	5.033	12	17	12	12	1 20	11	17	11.	1.11	-	100	100	, 0.
1.1 1.2	-0.64459 -0.83585 -1.02710 -1.83887 -0.14300	2.10858 1.91363 1.67394 1.43425 0.41693	0.00000	4.	0 0 1		= 17	1	1	XPRT	5.8362 10.4918 10.4918	10.8680	13.9591	12.3146	12.3146	17.0740	15.3020	15.4647	16.2840	16.9789	10.4/84 8.5859	8.2192	3 6	? = ;	
21.031 0.53574 0.49991 10.09944 5.55072 4.59864 0.00000 0.2268 22.179 0.54729 0.55291 6.5129 0.55291 6.5129 0.52591 0.00000 1.5944 22.179 0.54729 0.52391 6.5129 0.52591 6.5129 0.52591 0.00000 1.5944 22.179 0.55292 0.54129 0.52521 6.5129 0.52591 0.00000 1.5944 22.179 0.55292 0.54129 0.52521 1.55292 14.5272 0.00000 1.5944 22.179 0.55292 0.52920 1.15623 14.5272 14.52729 0.00000 1.5944 22.179 0.55292 0.52520 1.15623 14.5272 14.52729 0.00000 1.5944 22.179 0.55292 0.7026 0.7052 0.7052 14.5272 0.00000 0.20000 0.20000 1.5944 22.179 0.55292 0.7026 0.7052 0.7052 14.5272 0.00000 0.20000		-1.50183 -1.78998 -1.87823 -1.83849 -2.80205	0.00000	NUX/(DP/P)	7			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		YTOT	43.5238 44.2037 92.2038	93.5232	11.8854	11.8521	15.5682 51.3083	57.9778	3.0345	91.8831	78.7368	71.8249	17.2175	7.7894	51.0768	51.5417	39.8626
24.033 0.53574 0.49981 10.09941 5.55072 4.59864 0.000 24.7793 0.4797 0.5929 9.19943 0.666144 4.4489 0.000 28.716 0.53326 0.57941 6.51859 17.18145 3.8339 0.000 29.216 0.64567 0.59913 14.6569 11.58664 4.94919 0.000 30.576 0.65808 0.59913 14.6869 11.58664 4.94918 0.000 30.576 0.65808 0.59913 14.6869 11.58664 4.94918 0.000 30.576 0.65808 0.59913 14.6869 11.58664 4.94918 0.000 30.576 0.67893 0.61040 14.47017 3.57299 8.1466 0.000 EPC	0.5285 1.1205 1.6944 1.6944		3.0014	,	& C		1.000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17.4000	YCO	i		0000.	00000	00000.				0000.	0000.	0000	0000.	0000	0000.	
24.033 0.531574 0.49981 10.09941 5.55072 4.59864 4.49863 2.5.5.13 0.53158 0.53194 9.5943 6.66164 4.49863 0.55189 0.55189 9.5943 6.65186 4.43289 0.55189 0.55189 9.5943 6.65186 4.32291 0.55189 0.55189 0.55189 9.5943 6.65189 17.09941 3.35959 9.55189 9.751845 3.3339 9.5 1.55189 9.751845 3.3339 9.5 1.55189 9.751845 3.3339 9.5 1.55189 9.75184 9.5	0.00000	0.0000000000000000000000000000000000000	0.00000	4.4	e			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 11 11	ΥP	0.000.0	0.0000	0.0000	000000	0000.0	0.0000	000000	0.0000	0.000.0	0.0000	0.000	0.0000	0,000,0	0000.0	
24.033 0.53574 0.49981 10.09941 5.550 25.533 0.54037 0.53549 9.39943 6.661 22.533 0.54036 0.53521 6.23541 8.53944 0.52533 0.54036 0.53541 6.21859 17.1811 22.535 0.65808 0.55941 6.21859 17.1811 22.526 0.65808 0.55913 1.66660 11.8966 33.526 0.66977 0.59920 11.66660 11.8966 33.526 0.66977 0.59920 11.66660 11.8966 33.526 0.66977 0.59920 11.66660 11.8966 33.526 0.66977 0.59920 11.66660 11.8966 33.526 0.66977 0.59920 11.66600 11.8966 33.526 0.66977 0.59920 11.66600 11.8966 33.526 0.66977 0.59920 11.66600 11.8966 33.527 0.69920 0.7116 0.0000 0.750 0.70560 0.70160 0.70060 0.71871 0.0000 0.700 0.7000 0.70160 0.70160 0.0000 0.0000 1.40314, 0.0000000 0.500 0.7000 0.7018 0.0000 0.7018 0.0000 14.0986 0.0000 0.7018 0.0000 0.7018 0.0000 14.0986 0.0000 0.7018 0.0000 0.0000 0.0000 11.3969 11.366 11.3969 0.0039 0.0000 14.3993 11.366 11.3969 0.0039 0.0000 16.3963 11.3166 0.59934 0.0039 0.0000 16.3963 11.3166 0.59934 0.0039 0.0000 16.3963 11.3166 0.59934 0.0039 0.0000 16.3963 11.3166 0.59934 0.0039 0.0000 16.3963 11.3166 0.59934 0.0039 0.0000 16.3963 11.3166 0.5998 0.0039 0.0000 16.3963 11.3166 0.5998 0.0039 0.0000 16.3963 11.3166 0.5998 0.0039 0.0000 16.3963 11.3166 0.5998 0.0039 0.0000 16.3963 11.3166 0.5998 0.0039 0.0000 16.3963 11.3166 0.5998 0.0039 0.0000 16.3963 11.3166 0.5998 0.0039 0.0000 16.3963 11.3166 0.5998 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.5988 0.0039 0.0000 16.3963 11.3116 0.0000 0.0000 0.0000 16.3963 11.3116 0.0000 0.0000 0.0000 0.0000 0	4.59864 4.44983 4.32291 3.83391 3.85060	3.97835 4.42788 4.99013 5.56504 8.01814	.1146	NUX	7		0		00000	YB		93.5232	41.8854	41.8521	45.5682	57.9778	93.0345	91.8831	78.7368	71.8249		۲.	51.0768 55.9526		o.
24.033 0.53574 0.49981 10.09949 25.533 0.54797 0.51949 9.39941 28.776 0.63962 0.53169 6.51562 28.566 0.63962 0.53169 6.51562 29.966 0.63962 0.53169 6.5916 29.216 0.64567 0.58397 6.8916 30.576 0.66977 0.59291 1.66663 31.326 0.66979 0.59013 6.8996 31.326 0.66979 0.59013 1.79896 EEPL 69.519 1.41000 1.42333 13.79896 EEPL 70.00000 0.863459 7 72AM=(BETX(30) = 29.94840 BETY(BETX(13) = 29.9620 BETY(BETX(13) = 29.9620 BETY(BETX(13) = 29.00000 EBTY BETX(13) = 29.00000 EBTX BETX(13) = 29.00000 EBTX BETX(13) = 29.00000 EBTX BETX(13) = 29.00000 EBTX BETX(13) = 29.00000 EBTX BETX(13) = 29.00000 EBTX BETX(13) = 29.00000 EBTX BETX(13) = 29.00000 EBTX BETX(13) = 29.00000 EBTX BETX(13) = 29.00000 EBTX BETX(13) = 29.00000 EBTX BETX(13) = 29.000000 EBTX BETX(13) = 29.000000 EBTX BETX(13) = 29.000000 EBTX BETX(13) = 29.0000000 EBTX BETX(13) = 29.000000000000000000000000000000000000	11 W W [- [-	17.04118 14.58764 11.89696 9.56581 3.67299	3.56958	AN AN O	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				11 11	XTOT	.5325 .4468 .9164	.0988	7390	.3959	.3523	.0006	.7053	.8324	.1054	.3033	. 3847	.4592	.5904	.324	.86
24.033 0.53574 0.49981 24.783 0.54128 0.53581 28.716 0.63326 0.53612 28.716 0.63326 0.53812 28.716 0.64567 0.58137 30.576 0.66977 0.59920 31.326 0.66977 0.59920 31.326 0.66977 0.59920 31.326 0.68937 0.50063 EFL 69.519 1.41000 1.42333 FERENCE = 208.5578 M TADIUS = 33.1930 M TADIUS = 33.1930 M TADIUS = 470.00 ENT BVAL // ENT BVAL	10.09941 9.39943 8.53144 6.21859 6.35621	6.89161 8.89962 11.66660 14.47017 29.24227	$\sigma \sim$	" " "	BETY (EP	1.		XCO	0000	0.0000 46	0.0000 112	0.0000 113	0.0000 106	0.0000 86				-	108	108		9 0	œ
EFE NOTE BETX (30) = 29.216 0.6395 (28.716 0.6335 (28.716 0.6336 (29.826 0.6396 (29.826 0.6396 (29.826 0.6396 (29.826 0.6580 (29.826 0.6580 (29.826 0.6580 (29.826 0.6580 (29.826 0.6580 (29.826 0.6991 (29.826 0	0.49981 0.51949 0.53581 0.57941	0.58397 0.59013 0.59920 0.61040	.4233		29.94840 2.96020 		_			XP	0.0130 0.0128 0.0053	00	00	00	00	3			33.7984	42.2258	82.2054	82.2657	80.U104 77.4270	75.2186	001/.99
FERENCE = RADIUS = 1	3574 4797 6128 3326 3962	4567 5808 6977 7893 0366	.70500	578 M 30 M	3) =	//	ZED E	3 //	(D) XP*XE	XB	1000	46.0988	112.9598	113.3959	106.3523	85.9334	38.1874	37.3001	39.6565			· ·			
EER	4.03 4.78 5.53 8.71 8.96	9.21 9.82 0.57 1.32 4.51	9.51	= (0.	BETX	BVAL	ES UNNORMA = 470.0000	CYAE	OPES (MM.MRA: ES (MM-MRA: QRT(XB*XB	Ø	0.0000 0.2500 5.5433	5.7933 6.0433	1.3365	1.8365	2.4465 3.1965	3.9465	7.3798	7.6298	8.9898	9.7398	3.1731	3.4231	4.7831	5.5331	8.7164
23 25 25 25 25 25 25 25 25 25 25 25 25 25	22 22 22 22 22 22 22 22 22 22 22 22 22	25 QD 26 D 27 B 28 B	0 QF 1 RE	iπ ~	MAXIMA	*	EMITTANC EPSX	(; ; ; *	BEAM ENVEL EMITTANC XTOT = S	Pos	QF1 L	201 201	L OF1	ČF1	ВС	0 B	2 QD	3 QD 4 D	5 B	4 B	8 OF	9 QF	1 C	2 B	0

5.2188 12.2558 12.2558 12.2558 12.2558 11.4747	
11.4546 19.6580 19.6580 18.9052 17.9461 3.9615 5.8362	
90.9752 89.4950 82.8021 74.7768 67.0517 41.5488 40.9598	UNUSED 1910 4926 997 4567 4926 28837
	USED 90 74 74 33 433 74 1163
	TUM TIMAX) TIMAX) TIMAX) HHMAX) FRMAX) TIMAX)
90.9752 89.4950 82.8021 74.7768 67.0517 41.5488 40.9598 43.5238	MAXIMUM 2000 (INPMAX) 5000 (IFLMAX) 5000 (ISPMAX) 5000 (ISPMAX) 30000 (ISPMAX)
0.0000 86.4667 0.0000 89.6154 0.0000 100.5921 0.0000 114.1160 0.0000 127.1903 0.0000 184.4228 0.0000 80.5325	// CORE USE SUMMARY INFR (ELEMENT DEFINITIONS) 2000(INPMAX) FLIB (F.P. DATA AND STORAGE) 5000(IFLMAX) ILIB (INTEGER DATA) 1000 (IRMX) CHLIB (CHARACTER DATA) 5000(ICHNAX) SFLIB (P.P. CHARACTER DATA) 5000(ICHNAX) SFLIB (P.P. CHARACTER DATA) 30000 (IOPMAX) S ARE SET IN COMMON FILES BINFF.CCC, BSTORE.CCC, CSTORE.CCC
67.0005 69.2233 77.0451 86.8283 96.8317 139.5156 141.1950	// CORE USE SUMMARY INFE (ELEMENT PLIB (F.P. DA' FLIB (CHARACTEE SFLIB (F.P. CHARACTEE SFLIB (F.P. CHARACTEE SFLIB (F.P. CHARACTEI SFLIB SFLIB (F.P. CHARACTEI SFLIB S
54 6573 56.9127 64.6747 74.0493 82.4681 117.2342 118 6413 80.5325	// COI
28.9664 29.2164 29.8264 30.5764 31.3264 34.7596 69.5193	NIN INSION
24 QD 25 QD 26 D 27 B 27 B 28 B 29 O 30 QF 31 REFL	*** E

BIL TO SERVICE AND AGR.