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Simulation of Scraping on the AGS Beam Dump

C.J. Gardner

October 28, 2013

The AGS beam dump is described in reference [1]. Because there is no fast
dipole magnet to kick the beam into the dump, the dump is used as a
beam scraper into which circulating beam is moved over a period of many
turns around the machine. To get a better understanding of what happens
during scraping, a relatively simple model and computer code have been
developed to simulate the process. We report here on the simulation
results for protons at the nominal extraction kinetic energy of 22.874 GeV
and for gold ions (Au77+) at the nominal extraction kinetic energy of 8.86
GeV per nucleon.

In Sections 1 and 2 the optimum position and slope of the scraper are
determined. The circulating beam distribution at the start of scraping is
defined in Section 3. Particle tracking and energy loss in the scraper
material (copper) are discussed in Sections 4 and 5. Turn-by-turn
tracking and the determination of the maximum energy loss for which
particles emerging from the scraper will survive subsequent turns around
the machine are discussed in Sections 6 and 7. Tracking results for the
first hits of particles on the scraper are given in Section 8. The results for
the fraction of Au77+ ions lost in and downstream of the scraper are given
in Section 9. Tracking results for the second hits of protons on the scraper
are given in Section 10. Inelastic nuclear interactions of protons with the
scraper material are discussed in Section 11. The results for the fraction
of protons lost in and downstream of the scraper are given in Section 12.
The effect of multiple coulomb scattering is discussed in Section 13.

The main results of the report are those given in Sections 9 and 12.
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1 Scraper Position and Beam Envelope

We assume that the scraper is positioned in a drift section so that as the
circulating beam envelope is moved radially inward, the envelope touches
the upstream end of the scraper first. We use coordinate S to denote the
distance along the drift with S = 0 at the upstream end of the scraper. At
the downstream end S is equal to

L = 2.022348 meters. (1)

We take the horizontal (i.e. radial) position of the scraper aperture at
S = 0 to be

H0 = −54.1825 mm. (2)

The MAD model of the AGS shows that this then becomes a limiting
aperture of the machine.

Let α0, β0, and γ0 be the horizontal Courant-Snyder parameters of the
lattice at S = 0. Then, with the circulating beam envelope just touching
the scraper at S = 0, the position of the equilibrium orbit (at S = 0) is

d0 = H0 +
√

ǫβ0 (3)

where πǫ is the circulating beam emittance. The MAD model of the AGS
gives

β0 = 17.3224 meters. (4)

At a distance S along the drift, the position of the equilibrium orbit is

d = d0 + d′0S (5)

where d′0 is the angle of the orbit at S = 0. The lattice parameters at
distance S are

β = β0 − 2α0S + γ0S
2 (6)

α = α0 − γ0S (7)

γ = γ0 (8)

where
β0γ0 − α2

0 = 1. (9)

The radially inward position of the beam envelope at distance S is then

E = d −
√

ǫβ (10)
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and using (3) and (5) we have

E = H0 +
√

ǫβ0 + d′0S −
√

ǫβ. (11)

Here it is convenient to introduce parameter

A(S) =
1

S

(

β0 −
√

ββ0

)

(12)

where
ββ0 = (β0 − α0S)2 + S2. (13)

We then have
√

ǫβ0 −
√

ǫβ =
SA
β0

√

ǫβ0 (14)

and

E = H0 +

{

d′0 +
A
β0

√

ǫβ0

}

S. (15)

For S ≪ β0 we have

√

ββ0 = β0 − α0S +
S2

2β0

+
α0S

3

2β2
0

+
S4

8β3
0

(

4α2
0 − 1

)

+ · · · (16)

A(S) = α0 −
1

2

S

β0

− α0

2

S2

β2
0

− 1

8

(

4α2
0 − 1

) S3

β3
0

+ · · · (17)

and therefore
A(0) = α0. (18)

The MAD model of the AGS gives

α0 = 1.5268. (19)

A plot of A(S) for 0 ≤ S ≤ L is shown in Figure 1. The function is
monotonically decreasing with

A(L) = 1.4561. (20)

We assume that the equilibrium orbit angle at S = 0 depends linearly on
the orbit position. Thus we can write

d′0 = M0 −
k0

β0

d0 (21)
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where M0 and k0 are constants. The MAD model of the orbit bump [2] at
the scraper gives

k0 = 1.097. (22)

The constant M0 is an independent parameter that can be adjusted as
needed. Using (3) we then have

d′0 = M0 −
k0

β0

(

H0 +
√

ǫβ0

)

(23)

d′0 +
A
β0

√

ǫβ0 = M0 −
k0H0

β0

+

(A
β0

− k0

β0

)

√

ǫβ0 (24)

and the beam envelope (15) becomes

E = H0 +

{

M0 −
k0H0

β0

+

(A
β0

− k0

β0

)

√

ǫβ0

}

S. (25)

2 The Scraper Slope

We assume that the position of the scraper aperture at distance S along
the drift section is

H = H0 + MS (26)

where M is the slope of the scraper aperture with respect to the vacuum
chamber centerline.

We want to choose the slope so that for any S > 0 we have

H < E. (27)

This ensures that as the circulating beam envelope is moved inward, the
envelope always touches the upstream end of the scraper first. Thus we
want

H0 + MS < H0 +

{

d′0 +
A
β0

√

ǫβ0

}

S (28)

which gives

M < d′0 +
A
β0

√

ǫβ0. (29)

Using (24) this becomes

M < M0 −
k0H0

β0

+

(A
β0

− k0

β0

)

√

ǫβ0. (30)
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Figure 1 and equation (22) show that

A(S) − k0 > 0 (31)

and it follows that (30) will be satisfied for all
√

ǫβ0 > 0 if we take

M = M0 −
k0H0

β0

. (32)

We can then write the envelope (25) as

E = H0 +

{

M +

(A
β0

− k0

β0

)

√

ǫβ0

}

S (33)

and using (26) we have

E = H +

{(A
β0

− k0

β0

)

√

ǫβ0

}

S. (34)

Note that if the scraper slope M is given, we can adjust the orbit angle
parameter M0 so that (32) is satisfied. This means that rather than
having to adjust the scraper slope, one can simply adjust the
orbit angle M0. This would be a useful feature to have in the
AGS where at present one does not have independent control of
orbit position and angle at the scraper. We assume here that the
orbit angle and scraper slope have been adjusted so that

M0 = 0 (35)

in (21) and (32). This gives

d′0 = −k0

β0

d0 (36)

M = −k0H0

β0

(37)

and

H = H0 −
k0H0

β0

S. (38)

Figure 2 shows a plot of E(S) and H(S) for 0 ≤ S ≤ L and ǫ = 1.0 mm
milliradians. Here we see that the beam envelope touches the scraper
aperture at the upstream end and is inside the aperture at all points
downstream. Putting S = L in (34) and using (4), (20) and (22) gives the
maximum separation

E(L) − H(L) = 0.0419
√

ǫβ0 (39)

between envelope and aperture. Figure 3 shows the separation
E(S) − H(S) for the case in which ǫ = 1.0 mm milliradians.
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3 Beam Distribution at Start of Scraping

At the start of scraping, the border of the beam distribution at the
upstream end of the scraper is the ellipse

γ0(Z0 − d0)
2 + 2α0(Z0 − d0)(Z

′
0 − d′0) + β0(Z

′
0 − d′0)

2 = ǫ (40)

which is centered on the equilibrium orbit and matched to the machine
lattice. Here Z0 and Z ′

0 are the position and angle of a beam particle and
d0 and d′0 are the position and angle of the equilibrium orbit. We assume
that the beam particles are uniformly distributed over the area of the
ellipse. Figure 4 shows the distribution for ǫ = 1.0 mm milliradians. The
ellipse is uniformly covered with 20055 particles. The red line marks the
scraper aperture H0 and the blue line marks the scraper slope given by
(37). The circulating beam moves into the scraper as the ellipse center
(d0, d

′
0) moves along the brown line given by (36).

4 Particle Tracking in the Scraper Drift

Consider a circulating beam particle launched with position Z0 and angle
Z ′

0 at the upstream end of the scraper. If the particle does not hit the
scraper then its position Z at a distance S along the scraper drift is

Z = Z0 + Z ′
0S (41)

and its angle is

Z ′ =
dZ

dS
= Z0. (42)

We shall assume that these equations hold even if the particle hits and
passes through the scraper. This means that we are neglecting the changes
in angle due to multiple coulomb scattering. The effects of including the
angle changes will be discussed in Section 13. We will use the term
“track” to refer to the trajectory a particle would follow in the
scraper assuming no interaction with the scraper material.

If Z ′
0 6= M then the particle trajectory (41) will intersect the line

H = H0 + MS (43)

at a distance

Se =
Z0 − H0

M− Z ′
0

(44)
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along the drift. There are then four cases to consider. Each of these
corresponds to one of the quadrants defined by the red and blue lines in
Figure 4.

1. For Z0 ≤ H0 and Z ′
0 > M we have

Z0 − H0 ≤ 0, M− Z ′
0 < 0, 0 ≤ Se. (45)

It follows that for S > Se we have

(M− Z ′
0)S < (M− Z ′

0)Se (46)

(M− Z ′
0)S < Z0 − H0 (47)

H0 + MS < Z0 + Z ′
0S (48)

and the particle is outside the scraper.

Similarly, for 0 < S < Se we have

(M− Z ′
0)Se < (M− Z ′

0)S (49)

Z0 − H0 < (M− Z ′
0)S (50)

Z0 + Z ′
0S < H0 + MS (51)

and the particle is inside the scraper. If Se < L then the length of
the track in the scraper is

LT = Se

√

1 + Z ′ 2
0 . (52)

The depth of the track is defined to be

DT = (Z0 − H0)/2. (53)

If Se ≥ L then the length of the track is

LT = L
√

1 + Z ′ 2
0 (54)

and the depth is

DT = (Z0 − H0 + ZL − HL) /2 (55)

where
ZL = Z0 + Z ′

0L (56)

and
HL = H0 + ML. (57)
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2. For Z0 ≤ H0 and Z ′
0 < M we have

Z0 − H0 ≤ 0, 0 < M− Z ′
0, Se ≤ 0. (58)

It follows that for 0 < S we have

Z0 + Z ′
0S < H0 + MS (59)

and the particle is inside the scraper. The length and depth of the
track in the scraper are then given by (54) and (55).

3. For Z0 ≥ H0 and Z ′
0 < M we have

Z0 − H0 ≥ 0, M− Z ′
0 > 0, Se ≥ 0. (60)

It follows that for 0 < S < Se we have

(M− Z ′
0)S < (M− Z ′

0)Se (61)

(M− Z ′
0)S < Z0 − H0 (62)

H0 + MS < Z0 + Z ′
0S (63)

and the particle is outside the scraper.

Similarly, for Se < S < L we have

(M− Z ′
0)Se < (M− Z ′

0)S (64)

Z0 − H0 < (M− Z ′
0)S (65)

Z0 + Z ′
0S < H0 + MS (66)

and the particle is inside the scraper. The length of the track in the
scraper is then

LT = (L − Se)
√

1 + Z ′ 2
0 (67)

and the depth is
DT = (ZL − HL) /2. (68)

4. For Z0 ≥ H0 and Z ′
0 > M we have

Z0 − H0 ≥ 0, M− Z ′
0 < 0, Se ≤ 0. (69)

It follows that for 0 < S we have

Z0 + Z ′
0S > H0 + MS (70)

and the particle is outside the scraper.
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5 Energy Loss in the Scraper

The rates of energy loss (also called stopping power) for charged particles
passing through various materials are given in [3]. Here the total stopping
power is defined to be the sum of the “collision stopping power” and the
“nuclear stopping power”. The collision stopping power is the “average
rate of energy loss per unit path length, due to coulomb collisions that
result in the ionization and excitation of atoms”. The nuclear stopping
power is the “average rate of energy loss per unit path length due to the
transfer of energy to recoiling atoms in elastic collisions”. Particles lose
energy according to these stopping powers until they either come to rest in
the material or undergo an inelastic nuclear interaction. The path length
required for the particle to come to rest (with no inelastic nuclear
interactions) is called the range.

The rate of energy loss for particles that travel through the scraper
material (copper) is

−dE

dx
= −q2 dEp

dx
(71)

where q is the particle charge (in units of proton charge) and −dEp/dx is
the rate of energy loss of a proton traveling through the material with the
same velocity as the particle. The parameter x is the distance traveled
times the density of the material.

For polarized protons at extraction in AGS, the kinetic energy is

Wp = 22.874 GeV (72)

and the rate of energy loss in copper is approximately [3]

−dEp

dx
= 1.6 MeV cm2/g. (73)

Multiplying by the density of copper,

ρ = 8.96 g/cm3, (74)

gives the rate of energy loss in units of MeV/cm. Thus

−ρ
dEp

dx
= 14.3 MeV/cm (75)

and the change in energy along a track of length LT is approximately

∆E = LT

{

ρ
dEp

dx

}

. (76)
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Taking LT equal to the length L of the scraper gives

∆E = −2.9 GeV. (77)

The range of the proton in copper is approximately

Rp = Wp

{

−ρ
dEp

dx

}−1

= 15.96 m (78)

which is nearly 8 times the length of the scraper.

For Au77+ ions at extraction in AGS, the kinetic energy is

W = 1745.42 GeV (79)

which is 8.86 GeV per nucleon. The kinetic energy of a proton moving
with the same velocity as the ion is 8.93 GeV. The rate of energy loss of
the proton is then [3]

−dEp

dx
= 1.534 MeV cm2/g (80)

and, with q = 79, equation (71) gives

−dE

dx
= 9573.7 MeV cm2/g. (81)

Multiplying by the density of copper gives a loss rate of

−ρ
dE

dx
= 85.8 GeV/cm. (82)

The range of the Au79+ ion in copper is then approximately

R = W

{

−ρ
dE

dx

}−1

= 20.3 cm. (83)

This is some two orders of magnitude less than the range (78) of polarized
protons at AGS extraction.

6 Turn-by-Turn Tracking

Particles that miss the scraper or those that pass through it and continue
around the machine are tracked turn-by-turn. We assume as before that
the angle Z ′ is unchanged by passage through the scraper. After one turn,
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a particle launched with position Z0 and angle Z ′
0 at the upstream end of

the scraper will have position and angle given by [4]

Z = MZ0 +
∆p

p
(D0 − MD0) +

(

1 − ∆p

p

)

(d0 − Md0) (84)

or equivalently

Z − ∆p

p
D0 −

(

1 − ∆p

p

)

d0 = M

{

Z0 −
∆p

p
D0 −

(

1 − ∆p

p

)

d0

}

(85)

where

Z =

(

Z
Z ′

)

, Z0 =

(

Z0

Z ′
0

)

(86)

D0 =

(

D0

D′
0

)

, d0 =

(

d0

d′0

)

(87)

and

M =

(

M11 M12

M21 M22

)

. (88)

Here D0 and D′
0 are the periodic dispersion functions at the upstream end

of the scraper. The MAD model of the AGS gives

D0 = 2.3427 meters, D′
0 = −0.1588. (89)

The elements of the one-turn matrix M are

M11 = cos µ + α0 sin µ, M12 = β0 sin µ (90)

M21 = −γ0 sin µ, M22 = cos µ − α0 sin µ (91)

where
µ = 2πQ (92)

and Q is the horizontal tune of the machine.

The parameter ∆p/p is taken to be

∆p

p
=

1

β2
R

∆E

E
− ∆q

q
(93)

where βR is the particle speed divided by the speed of light and ∆E/E
and ∆q/q are respectively the fractional changes in the particle’s energy
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and charge upon passing through the scraper. We assume that any particle
emerging from the scraper will have ∆q/q ≥ 0. Thus we always have

∆p

p
≤ 0. (94)

If the particle emerges from the scraper with ∆p/p less negative than a
certain amount, the particle will survive its trip around the machine and
return to the scraper.

7 Maximum ∆p/p for Turn-by-Turn Survival

As shown in the Appendix, an estimate of the maximum (most negative)
∆p/p for which the particle always survives and returns to the scraper is

(

∆p

p

)

M

=
HM

DM +
√EβM

(95)

where
Eβ0 = (D0 − d0)

2 +
{

α0(D0 − d0) + β0

(

D′
0 − d′0

)}2
. (96)

Here HM < 0 is a radially inward limiting aperture downstream of the
scraper and βM and DM are the corresponding beta function and periodic
dispersion. Substituting the values of the lattice parameters at the
upstream end of the scraper into (96) gives

√

Eβ0 = 2.5384 m. (97)

This is used to calculate

√

EβM =
√

βM/β0

√

Eβ0 (98)

for use in (95).

Substituting (∆p/p)M for ∆p/p in (93) gives the maximum (most
negative) fractional energy change

(

∆E

E

)

M

= β2
R

{(

∆p

p

)

M

+
∆q

q

}

. (99)

The path length (in the scraper material) required to achieve this change is
approximately

LM = E

{

ρ
dE

dx

}−1 (∆E

E

)

M

. (100)
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We assume that particles emerging from the scraper having
traveled along a path length greater than LM will have ∆p/p too
large for a subsequent return to the scraper.

Limiting apertures may occur where the lattice parameter β and the
periodic dispersion D both reach maximums. At these locations one has

HM = −76.2 mm, DM = 3 m, βM = 22 m (101)

which gives
√

EβM = 2.8607 m (102)

and
HM

DM +
√
EβM

= −0.0130. (103)

A limiting aperture may also occur at the injection kicker in the A5
straight section. Here

HM = −64.3 mm, DM = 2.70 m, βM = 23.2 m (104)

and putting in the numbers one obtains

√

EβM = 2.9376 m (105)

and
HM

DM +
√EβM

= −0.0114. (106)

Thus we take
(

∆p

p

)

M

= −0.0114. (107)

For protons with kinetic energy Wp = 22.874 GeV this gives, by
substitution into (99) and (100),

LM = 18.9 cm. (108)

Protons that emerge from the scraper having traveled along a
path length greater than LM will have ∆p/p too large for a
subsequent return to the scraper. These particles will be lost on
an aperture downstream of the scraper. Protons that emerge
having traveled along a path length less than LM eventually will
hit the scraper again and could travel at most an additional
distance L in the scraper before emerging again and finally being
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lost on an aperture downstream. Since the range (78) is larger
than LM + L, it follows that protons will not stop in the scraper
unless there is some mechanism other than stopping power to
stop them. In Sections 11 and 12 it is shown that inelastic
interactions of protons with copper nuclei in the scraper provide
the necessary mechanism.

For Au77+ ions that lose 2 electrons in the scraper we have

∆q

q
=

79 − 77

77
= 0.025974 (109)

and it follows from (93) and (107) that for any ∆E < 0 we have

∆p

p
< − 2

77
<

(

∆p

p

)

M

. (110)

Thus any fully stripped ions (Au79+) that emerge from the
scraper will be lost on an aperture downstream of the scraper.

For Au77+ ions that do not lose (or gain) electrons in the scraper we have
∆q/q = 0 and equations (99), (100), and (107) give

LM = 0.25 cm. (111)

Because this is so small, most of the Au77+ ions that emerge
from the scraper after hitting it once will have ∆p/p too large for
a subsequent return to the scraper. These ions will be lost on an
aperture downstream of the scraper. However, in Sections 8 and
9 it will be shown that on the first hit a significant fraction of the
Au77+ ions have track lengths greater than the range (83).
These ions will be stopped in the scraper.

8 Particle Tracks on First Hit on Scraper

As the circulating beam is moved radially inward at the scraper, particles
in the distribution of Figure 4 hit the scraper on various turns around the
machine. The rate at which the orbit is moved inward at the upstream end
of the scraper is taken to be 1 mm/ms. For protons with a kinetic energy
of 22.874 GeV and for Au77+ ions with a kinetic energy of 8.86 GeV per
nucleon, this amounts to 0.0027 mm per turn. Each of the 20055 particles
in the distribution will hit the scraper at least once. After a hit, any
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particle that continues around the machine will eventually hit the scraper
again if it is not lost on some other aperture. We assume again that the
angle Z ′ is unchanged by the passage of a particle through the scraper.

Each time a given particle hits the scraper the track length LT and depth
DT (as calculated in Section 4) are recorded along with the number of the
turn on which the hit occurs. Figure 5 shows a scatter plot of LT and
turn number for each particle’s first hit on the scraper. Here the machine
tune Q = 8.71. Figure 6 shows the corresponding plot of DT and turn
number. Figures 7 and 8 are the same plots for the case in which
Q = 8.75. The average LT and DT obtained for these and several other
tunes are listed in Table 1. Here we see that for fractional tunes 2/3, 3/4
and 4/5, the track lengths and depths are considerably less.

Table 1: First-hit parameters obtained for various tunes.

Q < LT > < DT > F1(LM ) F1(R)
(mm) (mm) (H+) (Au77+)

8.6667 137 −0.00196 0.1475 0.1373

8.71 413 −0.0145 0.7125 0.6919
8.72 518 −0.0146 0.7691 0.7527
8.73 518 −0.0148 0.7596 0.7428
8.74 446 −0.0148 0.7298 0.7125

8.75 199 −0.00266 0.2272 0.2126

8.76 511 −0.0139 0.7463 0.7271
8.77 494 −0.0120 0.7144 0.6973
8.78 589 −0.0147 0.7700 0.7545
8.79 425 −0.0126 0.6996 0.6785

8.80 272 −0.00337 0.3236 0.3035

We define the function F1(X) to be the fraction of first-hit particles for
which track length

LT ≥ X. (112)

Taking X = LM , where LM is given by (108), gives the fraction F1(LM ) of
first-hit protons with track lengths for which ∆p/p is too large to allow a
second hit on the scraper. If these particles emerge from the scraper after
the first hit, they will be lost on an aperture downstream of the scraper.
Table 1 lists the values of F1(LM ) for various tunes. We again see that
the numbers are considerably less for fractional tunes 2/3, 3/4 and 4/5.
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Taking X = R, where R is given by (83), gives the fraction F1(R) of
first-hit Au77+ ions with track lengths greater than the range of the ions
in copper. These ions are stopped in the scraper. Table 1 lists the values
of F1(R) for various tunes. We again see that the numbers are
considerably less for fractional tunes 2/3, 3/4 and 4/5.

9 Fraction of Au77+ Ions Lost in and

downstream of the Scraper

The values of F1(R) listed in Table 1 show that (except for fractional
tunes 2/3, 3/4 and 4/5) the fraction of Au77+ ions stopped in the scraper
on the first hit ranges from 0.68 to 0.75. Most of the ions that do not stop
will emerge from the scraper with charge q = 79 and most will have
traveled at least 0.25 cm in the scraper material. According to (110) and
(111), they will have ∆p/p too large to return to the scraper for a second
hit. The fraction of first-hit ions lost downstream of the scraper then
ranges from 0.25 to 0.32.

If the rate at which the orbit is moved inward at the upstream end of the
scraper is increased from 1 to 2 mm/ms, then the maximum fraction of
Au77+ ions stopped in the scraper increases from 0.75 to 0.84. If the rate
is decreased from 1 to 0.5 mm/ms, then the maximum fraction stopped
decreases from 0.75 to 0.63.

10 Proton Tracks on Second Hit on Scraper

The fraction of first-hit protons that may go on to hit the scraper a second
time is 1 − F1(LM ). These are the particles for which ∆p/p is small
enough to allow a second hit. The track lengths and depths (as calculated
in Section 4) for the second-hit particles are recorded as before along with
the number of the turn on which the hit occurs. For each particle the sum
ΣLT of the first and second-hit track lengths is calculated. A scatter plot
of ΣLT and turn number is shown in Figure 9 for the case in which
machine tune Q = 8.71. The corresponding plot of DT and turn number is
shown in Figure 10.

Figures 11 and 12 are the same plots for the case in which Q = 8.75. The
average ΣLT and DT obtained for these and several other tunes are listed
in Table 2. Here we again see that for fractional tunes 2/3, 3/4 and 4/5,
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the track lengths and depths are less.

Comparing the Table 2 numbers with those in Table 1, we see that the
second-hit track depths are much larger than the first-hit depths. This is
due to the ∆p/p acquired on the first hit and the nonzero dispersion in the
scraper straight.

Table 2: Second-hit parameters obtained for various tunes.

Q < ΣLT > < DT > F2(LM )
(mm) (mm) (H+)

8.6667 1829 −8.97 0.8921

8.71 2054 −16.1 0.9969
8.72 2054 −15.2 0.9963
8.73 2042 −14.1 0.9934
8.74 2053 −14.1 0.9967

8.75 1938 −9.02 0.9419

8.76 2056 −13.0 0.9957
8.77 2045 −11.9 0.9888
8.78 2043 −11.0 0.9918
8.79 2059 −10.9 0.9973

8.80 1982 −8.04 0.9637

We define the function F2(X) to be the fraction of second-hit particles for
which

ΣLT ≥ X. (113)

Taking X = LM , where LM is given by (108), gives the fraction of
second-hit protons with track lengths for which ∆p/p is too large to allow
a third hit on the scraper. If these particles emerge from the scraper after
the second hit, they will be lost on an aperture downstream of the scraper.
Table 2 lists the values of F2(LM ) for various tunes. These values are all
very close to 1 except for fractional tunes 2/3, 3/4 and 4/5.
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11 Inelastic Nuclear Interactions

For high-energy protons in a given material, the mean free path for
inelastic nuclear interactions is given by the empirical formula [5]

λ =
1

ρ
40.0A0.3 (114)

where A is the atomic weight of the material and ρ is the density in units
of g/cm3. The units of λ are cm. For copper we have A = 63 and

λ = 15.47 cm. (115)

The fraction of protons that have an inelastic nuclear interaction upon
traveling a distance X in the material is

f(X) = 1 − exp(−X/λ). (116)

Taking X = LM , where LM is given by (108), gives fraction

f(LM ) = 0.7052. (117)

12 Fraction of Protons Lost in and downstream

of the Scraper

The fraction of first-hit protons that undergo an inelastic nuclear
interaction in the scraper is then at least

F1 = f(LM )F1(LM ) (118)

where F1(X) is defined in Section 8. We consider these particles to be lost
in the scraper. The fraction of first-hit protons that are lost downstream of
the scraper is then at most

L1 = {1 − f(LM)}F1(LM ). (119)

Similarly, the fraction of second-hit protons that undergo an inelastic
nuclear interaction in the scraper is at least

F2 = f(LM )F2(LM ) (120)
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and the fraction that are lost downstream of the scraper is at most

L2 = {1 − f(LM )}F2(LM ) (121)

where F2(X) is defined in Section 10.

Continuing in this way, the fraction of nth-hit protons that undergo an
inelastic nuclear interaction in the scraper is at least

Fn = f(LM )Fn(LM ) (122)

and the fraction that are lost downstream of the scraper is at most

Ln = {1 − f(LM)}Fn(LM ). (123)

The total fraction of first, second, and third-hit protons that undergo an
inelastic nuclear interaction is then at least

F = F1 + (1 − F1)F2 + (1 − F1)(1 − F2)F3 (124)

and the total fraction of protons lost downstream of the scraper is at most

L = L1 + (1 − F1)L2 + (1 − F1)(1 − F2)L3. (125)

Using (118–123) we have

F = f {F1 + (1 − F1)F2 + (1 − F1)(1 − F2)F3} (126)

and
L = (1 − f) {F1 + (1 − F1)F2 + (1 − F1)(1 − F2)F3} . (127)

Except for fractional tunes 2/3, 3/4, and 4/5 we see from the numbers
listed in Table 2 that F2(LM ) is very close to 1. Thus we have simply

F = f(LM) (128)

and
L = 1 − f(LM ) (129)

where f(LM ) is given by (117). The fraction of protons that undergo an
inelastic nuclear interaction is then at least

F = 0.7052 (130)
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and the fraction that are lost downstream of the scraper is at most

L = 0.2948. (131)

These lower and upper bounds are independent of the rate at
which the circulating beam is moved into the scraper. However,
if there were a fast dipole magnet to kick the circulating beam
into the dump all at once then the fraction of protons that would
undergo an inelastic nuclear interaction would be given by (116)
with X = L. This gives a fraction very close to 100%.

13 Multiple Coulomb Scattering

So far we have assumed that the angle Z ′ does not change as a particle
passes through the scraper material. Here we consider a refinement in
which a simple random walk simulates changes in the angle due to multiple
coulomb scattering. In this case a series of steps

Si+1 = Si + ∆S (132)

in the coordinate S are taken with the particle position and angle at Si+1

given by
Zi+1 = Zi + Z ′

i ∆S (133)

and
Z ′

i+1 = Z ′
i ± φ. (134)

Here ∆S is the step size, Zi and Z ′
i are the position and angle at Si, and φ

is a fixed angular kick. For each step the sign of φ is chosen randomly with
50% probability of getting a given sign. Steps are taken until the particle
exits the scraper. Let SX be the S coordinate at the exit point and let ZX

and Z ′
X be the position and angle of the particle there. Then, in the

turn-by-turn equations of Section 6, Z0 and Z ′
0 must be replaced with ZI

and Z ′
X , respectively, where

ZI = ZX − SXZ ′
X . (135)

Taking
∆S = 1.0 mm (136)

and
φ = 25 microradians (137)
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Table 3: First-hit parameters obtained with scattering simulation.

Q < LT > < DT > F1(LM ) F1(R)
(mm) (mm) (H+) (Au77+)

8.6667 253 −0.0318 0.1962 0.1865

8.71 753 −0.1187 0.6347 0.6101
8.72 781 −0.1234 0.6643 0.6415
8.73 795 −0.1249 0.6640 0.6400
8.74 759 −0.1204 0.6436 0.6252

8.75 347 −0.0455 0.2820 0.2673

8.76 774 −0.1219 0.6480 0.6277
8.77 758 −0.1195 0.6221 0.5960
8.78 815 −0.1274 0.6741 0.6501
8.79 746 −0.1171 0.6139 0.5915

8.80 447 −0.0607 0.3680 0.3514

we obtain the numbers listed in Table 3 for various tunes. Comparing
with the numbers listed in Table 1 we see that the fraction F1(R) of
Au77+ ions that stop in the scraper is reduced from a maximum of 0.75 to
0.65. This gives an indication of the effect of multiple coulomb scattering.

14 Appendix

Let

Z =

(

Z
Z ′

)

, Z0 =

(

Z0

Z ′
0

)

(138)

D =

(

D
D′

)

, D0 =

(

D0

D′
0

)

(139)

d =

(

d
d′

)

, d0 =

(

d0

d′0

)

(140)

and

E =

(

β −α
−α γ

)

, E0 =

(

β0 −α0

−α0 γ0

)

(141)
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where the parameters with subscript 0 are as defined previously and the
parameters with no subscript are the corresponding parameters at some
location downstream of the scraper.

Then
E = NE0N

† (142)

and [4]

Z = NZ0 +
∆p

p
(D − ND0) +

(

1 − ∆p

p

)

(d − Nd0) (143)

or equivalently

Z − ∆p

p
D−

(

1 − ∆p

p

)

d = N

{

Z0 −
∆p

p
D0 −

(

1 − ∆p

p

)

d0

}

(144)

where N is the transfer matrix from the upstream end of the scraper to the
downstream location. (Here a dagger denotes the transpose of a vector or
matrix.)

Defining

X = Z − d − ∆p

p
(D− d) (145)

and

X0 = Z0 − d0 −
∆p

p
(D0 − d0) (146)

we have
X = NX0 (147)

and therefore
X†E−1X = X†

0N
†E−1NX0. (148)

Taking the inverse of (142) gives

E−1 =
(

N†
)−1

E−1
0 N−1 (149)

and (148) becomes

X†E−1X = X†
0E

−1
0 X0 (150)

where

X†
0E

−1
0 X0 = (Z0 − d0)

† E−1
0 (Z0 − d0)

− ∆p

p
(Z0 − d0)

† E−1
0 (D0 − d0)

− ∆p

p
(D0 − d0)

† E−1
0 (Z0 − d0)

+

(

∆p

p

)2

(D0 − d0)
† E−1

0 (D0 − d0) . (151)
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The right and left hand sides of (150) are ellipses that are matched to the
machine lattice at the upstream end of the scraper and at the downstream
location respectively.

Let

E = X†
0E

−1
0 X0

(

∆p

p

)−2

. (152)

Then

X†E−1X =

(

∆p

p

)2

E (153)

and doing the matrix multiplication one finds that

X2 +
(

αX + βX ′
)2

=

(

∆p

p

)2

Eβ (154)

where

X = Z − d − ∆p

p
(D − d) (155)

X ′ = Z ′ − d′ − ∆p

p

(

D′ − d′
)

. (156)

It follows that

X2 ≤
(

∆p

p

)2

Eβ (157)

and for
∆p

p
< 0 (158)

we have
∆p

p

√

Eβ ≤ Z − d − ∆p

p
(D − d) ≤ −∆p

p

√

Eβ. (159)

We assume that at the downstream location, the orbit distortion due to
dipole perturbations is zero. Thus

d = 0 (160)

and
∆p

p

(

D +
√

Eβ
)

≤ Z ≤ ∆p

p

(

D −
√

Eβ
)

. (161)

Let
HI < 0, HO > 0 (162)
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be the radial inside and outside apertures at the downstream location.
Then circulating beam particles will not hit the aperture if

HI < Z < HO. (163)

If ∆p/p is such that

HI ≤ ∆p

p

(

D +
√

Eβ
)

(164)

and
∆p

p

(

D −
√

Eβ
)

≤ HO (165)

then (163) will be satisfied. Since

0 < D +
√

Eβ (166)

we may write (164) as
HI

D +
√Eβ

≤ ∆p

p
. (167)

Up to this point no approximations have been made. Let us now assume
that Z0 is sufficiently close to d0 to allow setting

Z0 = d0 (168)

in (151). We then have

X†
0E

−1
0 X0 =

(

∆p

p

)2

(D0 − d0)
† E−1

0 (D0 − d0) (169)

E = (D0 − d0)
† E−1

0 (D0 − d0) (170)

and
Eβ0 = (D0 − d0)

2 +
{

α0(D0 − d0) + β0

(

D′
0 − d′0

)}2
. (171)

Using

Eβ =
β

β0

Eβ0 (172)

in (167) then gives the sought-after estimate of the lower bound on ∆p/p.
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Figure 1: Plot of A(S) =
(

β0 −
√

ββ0

)

/S for 0 ≤ S ≤ L. Here ββ0 =
(β0 − α0S)2 + S2 where α0, β0 are the lattice parameters at the upstream
end of the scraper. The function A(S) is monotonically decreasing with
A(0) = α0 and A(L) = 1.4561. Note also that A(S) − k0 > 0, where k0 is
given by (22).
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Figure 2: Plot of circulating beam envelope E(S) (upper curve in red) and
scraper aperture H(S) (lower curve in black) for 0 ≤ S ≤ L. Here E(S) and
H(S) are given by (34) and (38), respectively, and we have taken circulating
beam emittance πǫ = 1.0π mm milliradians. The beam envelope touches
the scraper aperture at the upstream end and is inside the aperture at all
points downstream.
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Figure 3: Plot of the separation E(S)−H(S) between envelope and aperture
for the case in which ǫ = 1.0 mm milliradians. The beam envelope touches
the scraper aperture at the upstream end and is inside the aperture at all
points downstream.
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Figure 4: Beam distribution at the upstream end of the scraper at the
start of scraping. The border of the distribution is the ellipse (40) which is
centered on the equilibrium orbit and matched to the machine lattice. Here
we have taken ǫ = 1.0 mm milliradians. The ellipse is uniformly covered
with 20055 particles. The red line marks the scraper aperture H0 and the
blue line marks the scraper slope given by (37). The circulating beam moves
into the scraper as the ellipse center moves along the brown line given by
(36). The red and blue lines divide the plot into quadrants which correspond
to the four cases discussed in Section 4.
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Figure 5: Scatter plot of track length LT and turn number for each particle’s
first hit on the scraper. Here the machine tune Q = 8.71. The average LT

is 413 mm.

30



0 500 1000 1500
Turn

-0.05

-0.04

-0.03

-0.02

-0.01

0

D
_T

 (
m

m
)

Figure 6: Scatter plot of track depth DT and turn number for each particle’s
first hit on the scraper. The machine tune Q = 8.71. The average DT is
−0.0145 mm.
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Figure 7: Scatter plot of track length LT and turn number for each particle’s
first hit on the scraper. Here the machine tune Q = 8.75. The average LT

is 199 mm. Comparing with Figure 5 we see that the track lengths for this
tune are considerably less.
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Figure 8: Scatter plot of track depth DT and turn number for each particle’s
first hit on the scraper. The machine tune Q = 8.75. The average DT is
−0.00266 mm. Comparing with Figure 6 we see that the track depths for
this tune are considerably less.
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Figure 9: Scatter plot of track length ΣLT and turn number for each parti-
cle’s second hit on the scraper. The machine tune Q = 8.71. The average
ΣLT is 2054 mm.
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Figure 10: Scatter plot of track depth DT and turn number for each particle’s
second hit on the scraper. The machine tune Q = 8.71. The average DT is
−16.1 mm. The second-hit track depths are much larger than the first-hit
depths. This is due to the ∆p/p acquired on the first hit and the nonzero
dispersion in the scraper straight.
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Figure 11: Scatter plot of track length ΣLT and turn number for each
particle’s second hit on the scraper. Here the machine tune Q = 8.75. The
average ΣLT for this tune is 1938 mm. This is somewhat less than the value
obtained from Figure 9 for tune Q = 8.71.
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Figure 12: Scatter plot of track depth DT and turn number for each particle’s
second hit on the scraper. The machine tune Q = 8.75. The average DT for
this tune is −9.02 mm. This is somewhat less than the value obtained from
Figure 10 for tune Q = 8.71.
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