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Interpretation of coupling impedance bench measurements 
 

 H. Hahn 
 
Coupling impedance values of accelerator components can be obtained from standard 
bench measurements based on the coaxial wire method.  The longitudinal impedance is 
obtained with one wire and the transverse impedance with a twin wire inserted into the 
“device under test”.  The coupling impedance follows from the interpretation of the 
scattering coefficients from a network analyzer.  In this report, models and formulae 
applicable to the interpretation of the data are collected and reviewed, with emphasize on 
lumped and distributed kicker magnets.  
 

I. INTRODUCTION 
 
The driving terms of instabilities in accelerators/storage rings always depend on the beam 
surroundings which are conveniently described by impedances.1,2  Establishing and 
maintaining a coupling impedance budget becomes an important part of designing a high 
current accelerator.  Theoretical estimates for typical accelerator components have been 
developed and are available in the standard literature.3,4,5  For critical devices, the 
estimates need to be confirmed by bench impedance measurements. The basic concept of 
bench measurements relies on simulating the beam by a wire for longitudinal or a twin 
wire Lecher line for transverse measurements.6  The measurements typically involve a 
measurement of the Device Under Test (DUT) and of a Reference structure with the 
difference or ratio of the data used to interpret the coupling impedance.  The question to 
what degree the bench impedance is a valid representation of the beam impedance 
requires a separate analysis and is beyond the scope of this paper.  Theoretical7,8 and 
experimental9 work indicates that a remarkable agreement between actual and measured 
impedance is achieved with sufficiently thin wires. 
      
 Coupling impedance bench measurements discussed here are performed with a 
network analyzer which provides the scattering coefficients, 21S and 11S , of the DUT and 
the reference.  The standard formulae used to interpret the measured data were all derived 
in the framework of transmission line theory.  The field configuration on an ideal 
transmission line is a TEM wave with purely transverse components.  The finite wall 
conductivity or a geometrical wall disturbance changes the field into a mode with a local 
axial component of the electric field responsible for the interaction with the beam. The 
assumption in the transmission line theory is, however, that the analysis can be performed 
with ideal walls and the real situation is handled by appropriately modifying the 
characteristic impedance and propagation constant.  At sufficient distance away from the 
device, the pure TEM mode is reestablished but with modified amplitude and phase of 
the scattering coefficients. For the purpose of coupling impedance measurements, it is 
necessary to employ devices with beam tubes attached as part of the unit.   Terminal 
effects, i.e. the local appearance of evanescent modes, at the junction of the device and 
the transmission line is part of the impedance,  but extraneous steps in the transmission 
line must be avoided.  End effects can to some degree be represented by added capacitive 
elements.10  It is also plausible that the relative contribution of end effects is smaller for 



long distributed impedances than for lumped impedances.  Obviously, the bench 
measurements are limited to the low frequency range where higher order modes do not 
propagate.  Notwithstanding its limitations, transmission line analysis represents the 
proper framework for the interpretation of coupling impedance bench measurements.       
The general aspects of impedance bench measurements are discussed in Caspers  
Accelerator Handbook article11 and need not be repeated here.  
      
 The R&D and design work for the construction of the Spallation Neutron Source 
(SNS) required detailed impedance studies of various components.12,13  The transverse 
impedance of the extraction kickers was judged to be critical to the performance of the 
accumulator ring and received special attention.14  The measured data is obtained as 
obtained from the network analyzer as a normalized ratio 21 21 21

DUT REF
NS S S= which is 

translated via a model to the DUTZ . In the longitudinal measurement with a single wire, 
this represents already the coupling impedance.  In the measurement with twin wires, 
spaced apart by∆ , the transverse coupling impedance follows from  

 2
DUTcZ Z

ω⊥ = ∆
                                                                                                      (1) 

     
 The interpretation of the measurements was hindered by some inconsistencies of 
the available publications and pointed to the need for a uniform treatment.  In this paper, 
the relevant models and the applicable interpretation are presented in general terms. The 
discussion starts with the lumped model for a longitudinal impedance and is extended to 
the transverse impedance model of a lumped kicker magnet.  Then the model for a 
distributed wall impedance is discussed in view of several  improved  formulae. Finally, 
the model of a transmission line kicker magnet is analyzed. 
 

II. LUMPED IMPEDANCE 
 
The scattering coefficients due to a single, lumped wall impedance, WZ , are well known and for 
convenience repeated here,  
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Although in principle either coefficient gives correct results, the forward scattering 
coefficient is applicable to more general configurations and is generally preferred. The 
effect of the attached beam tubes is eliminated by normalizing the data with impedance, 

21
DUTS , to that of a reference tube of equal length, 21

REFS .  The wall impedance is given by 
the HP-formula15 
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It is here assumed that the characteristic impedance, CR , of the wire/beam tube is fully 
matched to the network analyzer impedance, 0R .  Matching can be achieved by an ideal 
transformer or, with some loss in signal strength, by resistive matching.  
 



Resistive Matching 
Resistive matching is achieved on the input side with a parallel resistor, PR , and a series resistor, 

inR , with 

 ( )0 0P C CR R R R R= − ,   ( )0 0in C P PR R R R R R= − + ,                                             (4) 

and a series resistor on the output side, 0out CR R R= − .  
 
Effect of Mismatch 
Matching is typically imperfect and the finite length of the beam tubes leads to errors at higher 
frequencies. Formal expressions for the forward scattering coefficient associated with a 
series impedance, Z , between unmatched coaxial beam tubes are derived here from 
elementary circuit theory without the explicit use of  hybrid matrices. The notation used 
is exhibited in Fig. 1. 

 
Fig.1. Circuit model for wire impedance measurements 

 
The forward scattering coefficient is defined as 
 21 32S v u=                                                                                                                   (5) 
and is obtained by sequential elimination of the currents and voltages as follows,16 
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The complete expression for the scattering coefficient is obtained via the MAXIMA 
program but is too large for presentation here. The Taylor expansion for low 
frequencies, /k cω= , follows as 
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The coefficient ratio for the interpretation of the measurements yields the formula 
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which can be used to interpret the measurements. In practice, it gives only an estimate of 
the error due to a mismatch.  Here 0R represents the nominal instrument impedance (after 
matching) and CR  the actual line impedance. Note that toward zero frequency the error 



vanishes and consequently the nominal 0R , rather than the actual CR  which is less 
accurate, should be used in the HP formula. 
 

III. LUMPED KICKER MAGNET 
 
Nassibian & Sacherer Model17 
The interpretation of wire measurements on a kicker magnet differs if the unit is designed 
as transmission or lumped magnet. The lumped magnet is at “low” frequencies 
characterized by a position-independent bus bar current. In spite of its finite length, the 
lumped magnet can thus be analyzed with the help of a transformer model as developed 
in the seminal paper by Nassibian & Sacherer (NS).   The illustrative example assumes a 
perfect magnet with , ,h w , representing length, height, and width respectively.  The 
kicker has an inductance 0 /KL h wµ= and is terminated with the power supply 
impedance, gZ .  The expression for the coupling impedance seen by the beam is  
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with h the aperture in kick direction.   In addition to the impedance coupled to the kicker 
termination, the beam sees an uncoupled  impedance from image currents on the bus bar 
and the ferrite core.  The uncoupled impedance is essentially inductive and the resistive 
part can be neglected.   An estimate for the uncoupled inductance, IL , is obtained from 
the simple model of a dipole current between metal plates spaced apart by the width, w , 

corresponding to 14 026
jZ Z
w
π

⊥ ≈ .                                                                               (11) 

 
Lumped kicker bench measurement 
The transverse coupling impedance is obtained from a twin wire bench measurement in 
which the magnet is coupled to the twin wire transmission line by the mutual 
inductance, M .  The line has a nominal wire spacing,∆ , a characteristic impedance of 

CR , and is assumed fully matched to the network analyzer impedance.  The line has in 
free space the inductance, /C CL R c=  and a negligible radiation resistance at the “low” 
frequencies of interest here, i.e. when the line is short compared with a wavelength. The 
wire measurements are interpreted with regard to a model represented by the equivalent 
circuit in Fig. 2. This model incorporates the impedance contributions from the 
uncoupled and coupled impedances, as well as that attributed to the leakage 
flux, 2(1 ) KLκ− . 
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FIG. 2. Lumped kicker magnet circuit model 

 
  
The coupling coefficient κ and transformer ratio n are given by 
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From the standard electrical engineering description of a transformer follows the forward 
scattering coefficient directly as  
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The scattering coefficient of the reference line in the beam tube is in the low frequency 
approximation 
 ( ) 12 2REF

C C WS R R j Lω −= +                                                                                 (14) 
Interpretation of the wire measurement via the lumped HP formula yields 
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and the transverse coupling impedance (in kick direction) becomes 
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As expected, the wire measurement yields the theoretical Nassibian & Sacherer 
impedance estimate plus the uncoupled image impedance. 
 
Reference Calibration 
The above interpretation of the measurements implies the calibration of the twin line to 
obtain 21

REFS in a beam tube with a diameter equal to the aperture of the magnet. The 
calibration can also be done in free space, which is simpler in the case of rigid lines. 



However, the line inductance (and correspondingly the characteristic impedance) is 
reduced by  
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∆ ∆ ≈  
 

                                                                                                  (17) 

The results from measurements based  on the tube as reference will differ from that  on 
air by the reactive transverse impedance per unit length,18 

 02

2PTZ j Z
wπ⊥ = −                                                                                                  (18) 

as long as radiation from the line in air and wall losses of he tube are negligible.  It is to 
be noted that the instability driving resistive part does not change with the reference taken 
as tube or air.  
 Kicker magnets with access to the bus bar offer the possibility to short it, gZ = 0, 
and use the shorted magnet as reference, leading to the expression for the coupled 
impedance14 
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with the resistive part identical to the NS value.  Using the shorted magnet as reference 
simplifies and shortens the time between measurements and effectively eliminates 
instrument drift.  
 
Frequency effect 
The current induced voltage in the magnet is K Cu j Miω≈ if the magnet length is short 
compared to the wavelength on the transmission line, but at higher frequencies one 
finds17   

 { }K Cu j MG iω=  with sin½
½

kG
k

=                                                                   (20) 

leading to the measured impedance of the kicker magnet, 
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and a corresponding correction of the measured transverse impedance.  
 

IV. DISTRIBUTED IMPEDANCE 
 
The transmission line analysis of a distributed impedance of length, , can be based on 
the Faltens et al.6 model in which the total impedance of the device, Z , is represented by 
a uniformly distributed wall impedance, /Z .  The bench wire measurements are 
interpreted by comparing the wave propagation through the device with that in a 
“perfect” reference tube.  In this model, propagation in the device is described by the 
changed characteristic impedance and propagation constants, 

 1W C C
C

ZZ Z Z j
Z

η= = −
Θ

,  and  1W
C

Zk k k j
Z

η= = −
Θ

                               (22) 



where /k cωΘ = = and CZ  are the electric length and the characteristic impedance of 
the reference tube.  In this model, the coupling impedance is fully described by the 
changed propagation constant Wk or through the single complex valueη . The expression 
for the coupling impedance can now be formally written as is 19 

 2 2 2( ) /C WZ j Z k k k= Θ − ,                                                                                     (23) 
or alternatively by 
 ( )1 ( 1)CZ j Z η η= Θ + −                                                                                       (24) 
Representing the amplitude of the forward and reflected wave by A and B respectively, 
one can apply field matching (i.e. voltage and current matching in the transmission line) 
which leads to the conditions,20 
 at the input port of the wall impedance 
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With the scattering coefficients defined as 
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one finds after simple manipulations 
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These equations are exact within the limitations of the model and either of them could be 
used to extract numerically the value of η  for use in Eq. (24).  This task is simplified by 
combining the values of forward and reflected scattering coefficients to form the relation   
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Together with Eq. (24), this expression provides an exact value for the impedance but, 
due to its complexity, is of limited value for the routine interpretation of measurements.  
 
Wang & Zhang Formula21 
An alternate formula for the interpretation of the wire measurements was derived by 
Wang & Zhang by introducing a corrected S-parameter, Wjk

CS e−≡ , obtained from 
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Inserting the above expressions for the scattering coefficients in Eqs. (28) and (29) 
confirms Eq. (30). The propagation constants logW Ck j S=  and 21log REFkl j S=  are 
combined with Eq. (23) to yield the expression   
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This expression is exact but also of limited practical use.  
 
Walling et al. Log-formula22 
Taking the ratio of scattering coefficients provided by the network analyzer, and  treating 
the wall impedance as a perturbation of the reference tube, i.e. CZ Z  leads to 
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Approximating Eq. (24) by 
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leads to the well known  log-formula for distributed impedances by Walling et al., 
 21
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2 ln
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Improved log-formulae by Vaccaro19 and Jensen23 
Under the assumption that the reflection coefficient is small, 11 0S ≈ , Vaccaro makes the 
approximation that ( )21 expDUT

WS jk≈ − . Using Eq. (23), rather than (24), an improved 
expression for the measured impedance can be obtained,19 
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An identical equation, although written in a more convenient form by means of 
21 exp( )REFS j= − Θ , was recently presented by Jensen,23 
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The improved impedance expressions require the knowledge of the electrical length of 
the device under test and its accuracy decreases for shorter devices. In contrast, the 
simple log-formula is generally applicable including lumped components, provided that 
no strong resonance is present and the perturbation treatment is justified.  The lumped 
impedance formula is applicable to single resonances and has the advantage that the 
scattering coefficient ratio is directly converted into an impedance by the network 
analyzer. 
 

V. TRAVELING WAVE KICKER 
 
One of the more important distributed impedance is represented by traveling wave kicker 
magnets and the interpretation of bench measurements is typically done with the log-



formula. The above concept of treating the lumped kicker magnet as a transformer can be 
generalized and applied to traveling wave kickers.24  The kicker properties are 
characterized by its characteristic impedance, KZ , propagation constant, Kk , and 
electrical length, KkΘ = .   The kicker and the Lecher line are treated as transmission 
lines, coupled via the mutual inductance, M , for which the differential equations are well 
known.   The general solution becomes unwieldy and several simplifications can be 
adopted without reducing the value of the results.  The major part of the impedance is due 
to the coupled flux between the beam and the external terminations at either end of the 
bus-bar, so that the contribution of the uncoupled flux can be neglected. In order to let the 
Lecher line represent the “stiff” ultra-relativistic beam, its current is considered externally 
imposed and thus unchanged by the current in the bus bar.  The impedance seen by the 
beam is then obtained by the voltage generated by the bus-bar current via the mutual 
inductance.  One finds, with the time dependence j te ω  suppressed, the following set of 
differential equations in the position dependent variables, Ki  , Ku , Bi , Bu  representing the 
kicker current and voltage, and the beam current and voltage respectively 
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where Kk k L C′ ′= , KZ L C′ ′= , and /k cω= . L′  and C′  are the kicker inductance 
and capacity per unit length and / /h M L′ ′∆ = .  Assuming an ultra-relativistic beam 
current, jks

Bi Ie−= , associated with the dipole strength I∆ , one finds the impedance 
measured in the bench measurement 
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This value yields the transverse coupling impedance according to 

 2
DUTcZ Z

ω⊥ = ∆
                                                                                                    (41) 

The solution of the above differential equations are found by imposing the boundary 
conditions established by the kicker input and output terminations, iR  and oR , 
 (0) (0)K i Ku R i= , ( ) ( )K o Ku R i= −                                                                      (42) 
The general expression for the coupling impedance is somewhat lengthy, but reduces in 
typical kickers where Kk k  to a manageable size.  Furthermore, in the low frequency 
range of interest, one can take Bi I≈ .  The case of input and output terminated with the 
characteristic impedance follows in this approximation as 

 [ ]2 (1 cos ) ( sin )K
cZ Z j
hω⊥ = − Θ + Θ− Θ                                                             (43) 

which differs from Nassibian’s expression24 



 [ ]2 (1 cos ) ( sin )NS
K

cZ Z j
wω⊥ = − Θ + Θ− Θ                                                           (44) 

only in its dependence on geometry. (Note that the corresponding handbook formula 
contains typographical errors).25 
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