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1 Introduction

In small rings such as the SNS accumulator ring, where the ratio of length
to aperture of the magnets is relatively small, the magnetic �eld near the
ends of the magnets requires special attention. Unlike the �eld in the
region well inside the magnets, the �eld near the ends depends on the
position along the longitudinal axis of the magnet and has a component
parallel to the axis. Here one can not simply expand the �eld in terms of
two-dimensional normal and skew multipoles; a full three-dimensional
expansion is required. In this note we review the standard expansions in
rectangular and cylindrical coordinates carried out by Brown [1] and
Danby [2] respectively. The expansion in rectangular coordinates may be
more familiar to those who work with tracking codes such as
TRANSPORT or MAD, while the expansion in cylindrical coordinates
may be more familiar to those who design and measure magnets. Both
expansions are useful and it is instructive to write them down in one place
and to compare the expansion coe�cients.

2 Expansion in Rectangular Coordinates

Inside the aperture of a magnet the curl of the static magnetic �eld, B, is
zero which implies that B can be expressed as the gradient of a scalar
potential, �. Thus

B = r�; (1)
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and since the divergence of B must also vanish we have

r2� = 0: (2)

The desired expansion of the magnetic �eld follows from the expansion of �
about the longitudinal axis of the magnet. (The longitudinal axis coincides
with the center of the magnet aperture and lies in the horizontal midplane
of the magnet.) We shall employ the orthogonal set of unit vectors
(x;y; z), where z points along the longitudinal axis and x and y point
respectively along the horizontal and vertical directions transverse to the
axis. The orientation of the vectors is such that x� y = z. Coordinates x
and y specify the distances from the longitudinal axis along x and y

respectively. z speci�es the distance along z measured from some reference
point on the axis. In terms of these vectors and coordinates we have

B = r� = x
@�

@x
+ y

@�

@y
+ z

@�

@z
(3)

and

r2� =
@2�

@x2
+
@2�

@y2
+
@2�

@z2
= 0: (4)

2.1 Solution of Laplace Equation

For each z along the axis of the magnet we can expand the potential � as
follows:

�(x; y; z) =
1X

m=0

1X
n=0

Cmn
xn

n!

ym

m!
(5)

where the coe�cients Cmn are functions of z. Putting this expansion into
(4) we �nd the following recursion relation for the coe�cients Cmn:

Cm+2;n = �Cm;n+2 � C 00mn (6)

where the primes denote di�erentiation with respect to z. Putting (5) into
(3) we �nd that the components of B in the x, y, and z directions are
respectively

Bx(x; y; z) =
@�

@x
=

1X
m=0

1X
n=0

Cm;n+1
xn

n!

ym

m!

By(x; y; z) =
@�

@y
=

1X
m=0

1X
n=0

Cm+1;n
xn

n!

ym

m!
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Bz(x; y; z) =
@�

@z
=

1X
m=0

1X
n=0

C 0m;n

xn

n!

ym

m!
: (7)

This is the desired expansion of the magnetic �eld about the longitudinal
axis.

2.2 Multipole Coe�cients

Di�erentiating the expansions for By and Bx with respect to x and
evaluating them at x = y = 0, we �nd

C1n =

�
@nBy

@xn

�
x=y=0

; C10 = By(0; 0; z) (8)

and

C0;n+1 =

�
@nBx

@xn

�
x=y=0

; C01 = Bx(0; 0; z): (9)

These coe�cients give the strengths of the normal and skew multipole
�elds respectively. The longitudinal component of the �eld on the magnet
axis is given by the last of equations (7) with x = y = 0. Thus

Bz(0; 0; z) = C 000 (10)

and we see that the coe�cient C 000 gives the strength of the solenoid �eld.
It follows from the recursion relation (6) that all of the coe�cients in the
magnetic �eld expansion can be expressed in terms of the multipole and
longitudinal �eld coe�cients and their derivatives with respect to z.

To simplify notation, let us de�ne

Bn = C1n; An = C0;n+1 (11)

for the normal and skew multipole coe�cients. On the horizontal midplane
(i.e. for y = 0) we then have

Bx(x; 0; z) =
1X
n=0

An
xn

n!

By(x; 0; z) =
1X
n=0

Bn
xn

n!

Bz(x; 0; z) = C 000 +
1X
n=0

A0n
xn+1

(n+ 1)!
: (12)
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Here we see that if the skew coe�cients (An) are all zero, then on the
midplane we have Bx = 0 and Bz = C 000. If, in addition, the solenoid
coe�cient C 000 is zero, then By is the only nonzero �eld component on the
midplane (i.e. the �eld is perpendicular to the midplane). This is why the
Bn are called \normal" coe�cients. Similarly, if the Bn are all zero, then
on the midplane we have By = 0 and Bx is nonzero. This is why the An

are called \skew" coe�cients.

2.3 Expansion of B to Fifth-order

Using (11) and the recursion relation (6) we �nd that the coe�cients
required to expand the �eld to �fth order are

C20 = �A1 � C 0000; C21 = �A2 �A000 ; C22 = �A3 �A001 (13)

C23 = �A4 �A002; C24 = �A5 �A003 (14)

C30 = �B2 �B00

0 ; C31 = �B3 �B00

1 ; (15)

C32 = �B4 �B00

2 ; C33 = �B5 �B00

3 (16)

C40 = �C22 �C 0020 = A3 + 2A001 + C 000000 (17)

C41 = �C23 � C 0021 = A4 + 2A002 +A00000 (18)

C42 = �C24 � C 0022 = A5 + 2A003 +A00001 (19)

C50 = �C32 � C 0030 = B4 + 2B00

2 +B0000

0 (20)

C51 = �C33 � C 0031 = B5 + 2B00

3 +B0000

1 (21)

C60 = �C42 � C 0040 = �A5 � 3A003 � 3A00001 � C 00000000 : (22)

Using these coe�cients in (7) and collecting terms of equal order we then
obtain the following expansions of Bx, By, and Bz in x and y. The
superscripts N and S designate the parts of the expansions containing
normal and skew coe�cients respectively.
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2.3.1 Bx expansion (Bx = BN
x +BS

x )

BN
x = B1y

+ B2xy

+ B3(3x
2y � y3)=6 �B00

1y
3=6

+ B4(x
3y � xy3)=6�B00

2xy
3=6

+ B5(5x
4y � 10x2y3 + y5)=120

+ B00

3 (y
5 � 5x2y3)=60 +B0000

1 y5=120 (23)

BS
x = A0

+ A1x

+ A2(x
2 � y2)=2�A000y

2=2

+ A3(x
3 � 3xy2)=6 �A001xy

2=2

+ A4(x
4 � 6x2y2 + y4)=24

+ A002(y
4 � 3x2y2)=12 +A00000 y4=24

+ A5(x
5 � 10x3y2 + 5xy4)=120

+ A003(xy
4 � x3y2)=12 +A00001 xy4=24 (24)

2.3.2 By expansion (By = BN
y +BS

y )

BN
y = B0

+ B1x

+ B2(x
2 � y2)=2�B00

0y
2=2

+ B3(x
3 � 3xy2)=6�B00

1xy
2=2

+ B4(x
4 � 6x2y2 + y4)=24

+ B00

2 (y
4 � 3x2y2)=12 +B0000

0 y4=24

+ B5(x
5 � 10x3y2 + 5xy4)=120

+ B00

3 (xy
4 � x3y2)=12 +B0000

1 xy4=24 (25)

BS
y = �A1y � C 0000y

� A2xy �A000xy

+ A3(y
3 � 3x2y)=6
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+ A001(2y
3 � 3x2y)=6 + C 000000 y

3=6

+ A4(xy
3 � x3y)=6

+ A002(2xy
3 � x3y)=6 +A00000 xy3=6

� A5(y
5 � 10x2y3 + 5x4y)=120

� A003(3y
5 � 20x2y3 + 5x4y)=120

+ A00001 (10x2y3 � 3y5)=120 �C 00000000 y5=120 (26)

2.3.3 Bz expansion (Bz = BN
z +BS

z )

BN
z = B0

0y

+ B0

1xy

+ B0

2(3x
2y � y3)=6 �B000

0 y
3=6

+ B0

3(x
3y � xy3)=6�B000

1 xy
3=6

+ B0

4(5x
4y � 10x2y3 + y5)=120

+ B000

2 (y
5 � 5x2y3)=60 +B00000

0 y5=120 (27)

BS
z = C 000

+ A00x

+ A01(x
2 � y2)=2� C 00000y

2=2

+ A02(x
3 � 3xy2)=6 �A0000 xy

2=2

+ A03(x
4 � 6x2y2 + y4)=24

+ A0001 (y
4 � 3x2y2)=12 + C 0000000 y

4=24

+ A04(x
5 � 10x3y2 + 5xy4)=120

+ A0002 (xy
4 � x3y2)=12 +A000000 xy4=24 (28)

Note that when the �elds are independent of z, all of the A and B terms in
(23{28) involving derivatives with respect to z are zero and the �eld
expansion contains only \pure" multipole terms. If, in addition, the C 000
term (responsible for solenoid �elds) is zero, then Bz is zero and the �elds
are transverse to the axis of the magnet. This is the situation well inside a
non-solenoid magnet, away from the ends.
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3 Expansion in Cylindrical Coordinates

Let us now introduce cylindrical coordinates r and � such that

x = r cos �; y = r sin �: (29)

The expansion (5) then becomes

�(r; �; z) =
1X

m=0

1X
n=0

Cmn
rn

n!

rm

m!
cosn � sinm � (30)

which we may write in the form

�(r; �; z) = G00 +
1X
l=1

1X
m=0

fFlm sinm� +Glm cosm�grl: (31)

The coe�cients Flm and Glm are functions of z and are responsible
respectively for the normal and skew multipole �elds (as we shall show).
The terms in (31) that are proportional to sinm� or cosm� are called
2m-pole terms because they arise from magnets with 2m poles.

De�ning unit vectors

r = x cos � + y sin �; � = �x sin � + y cos � (32)

we have

B = r� = r
@�

@r
+�

1

r

@�

@�
+ z

@�

@z
; (33)

and the components of B in the r, �, and z directions are respectively

Br =
@�

@r
=

1X
l=1

1X
m=0

lfFlm sinm� +Glm cosm�grl�1

B� =
1

r

@�

@�
=

1X
l=1

1X
m=0

mfFlm cosm� �Glm sinm�grl�1

Bz =
@�

@z
= G000 +

1X
l=1

1X
m=0

fF 0lm sinm� +G0lm cosm�grl: (34)

The Laplace equation becomes

r2� =
1

r

@

@r

�
r
@�

@r

�
+

1

r2
@2�

@�2
+
@2�

@z2
= 0: (35)

7



3.1 Solution of Laplace Equation

Putting the expansion (31) into (35) we obtain

1

r

@

@r

�
r
@�

@r

�
=

1X
l=1

1X
m=0

l2fFlm sinm� +Glm cosm�grl�2 (36)

1

r2
@2�

@�2
=

1X
l=1

1X
m=0

�m2fFlm sinm� +Glm cosm�grl�2 (37)

@2�

@z2
= G0000 +

1X
l=1

1X
m=0

fF 00lm sinm� +G00lm cosm�grl (38)

and, in order to satisfy (35) for all r, we must have

1X
m=0

(1�m2)fF1m sinm� +G1m cosm�g = 0; (39)

G0000 +
1X

m=0

(4�m2)fF2m sinm� +G2m cosm�g = 0; (40)

and, for l � 1,

1X
m=0

f(l + 2)�m2gfFl+2;m sinm� +Gl+2;m cosm�g

+
1X

m=0

fF 00lm sinm� +G00lm cosm�g = 0: (41)

Then, in order to satisfy (39{41) for all �, we must have

G10 = 0; G12 = G13 = G14 = G15 = : : : = 0 (42)

F12 = F13 = F14 = F15 = : : : = 0; (43)

4G20 +G0000 = 0; (44)

G21 = 0; G23 = G24 = G25 = G26 = : : : = 0; (45)

F21 = 0; F23 = F24 = F25 = F26 = : : : = 0; (46)

and, for l � 1,
f(l + 2)2 �m2gFl+2;m = �F 00lm (47)
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and
f(l + 2)2 �m2gGl+2;m = �G00lm: (48)

These equations give the complete solution of the Laplace equation in
cylindrical coordinates.

3.2 Expansion Coe�cients

On the horizontal midplane (y = 0) we have � = 0 and equations (34)
become

Br(r; 0; z) =
1X
l=1

1X
m=0

lGlmr
l�1

B�(r; 0; z) =
1X
l=1

1X
m=0

mFlmr
l�1

Bz(r; 0; z) = G000 +
1X
l=1

1X
m=0

G0lmr
l: (49)

Noting that Br = Bx and B� = By on the midplane, and comparing
equations (49) with (12), we see that the normal and skew coe�cients, Bn

and An, depend only on the coe�cients Flm and Glm respectively. We
therefore refer to the F and G coe�cients as normal and skew coe�cients
respectively.

It follows from (42{46) and the recursion relations (47{48) that many of
the F and G coe�cients are zero. In fact, for m > l, we have Flm = 0 and
Glm = 0. The nonzero coe�cients to order 10 are listed in Tables I and II.

Table I: Nonzero Flm Coe�cients

F11
F22
F31 F33
F42 F44
F51 F53 F55
F62 F64 F66
F71 F73 F75 F77
F82 F84 F86 F88
F91 F93 F95 F97 F99
F10;2 F10;4 F10;6 F10;8 F10;10
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Table II: Nonzero Glm Coe�cients

G11

G20 G22

G31 G33

G40 G42 G44

G51 G53 G55

G60 G62 G64 G66

G71 G73 G75 G77

G80 G82 G84 G86 G88

G91 G93 G95 G97 G99

G10;0 G10;2 G10;4 G10;6 G10;8 G10;10

Putting numbers for l and m into the recursion relations (47{48), we obtain

F31 = �
1

8
F 0011; F51 = �

1

24
F 0031; F71 = �

1

48
F 0051 (50)

F42 = �
1

12
F 0022; F62 = �

1

32
F 0042; F82 = �

1

60
F 0062 (51)

F53 = �
1

16
F 0033; F73 = �

1

40
F 0053; F93 = �

1

72
F 0073 (52)

F64 = �
1

20
F 0044; F84 = �

1

48
F 0064 (53)

F75 = �
1

24
F 0055; F95 = �

1

56
F 0075 (54)

F86 = �
1

28
F 0066: (55)

Thus we see that the nonzero coe�cients Flm may all be expressed in
terms of derivatives (with respect to z) of the coe�cients Fmm. The
corresponding equations for the G coe�cients are the same except for the
additional equations

G20 = �
1

4
G0000; G40 = �

1

16
G0020; G60 = �

1

36
G0040; (56)

G80 = �
1

64
G0060; G10;0 = �

1

100
G0080: (57)
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3.3 Expansion of B to Fifth-order

Using the nonzero coe�cients in (34) and collecting terms, we obtain the
expansions of Br, B�, and Bz to 5th order in r. The superscripts N and S
designate the parts of the expansions containing F (Normal) and G (Skew)
coe�cients respectively.

3.3.1 Br expansion (Br = BN
r +BS

r )

BN
r = (F11 + 3F31r

2 + 5F51r
4) sin �

+ (2F22r + 4F42r
3 + 6F62r

5) sin 2�

+ (3F33r
2 + 5F53r

4) sin 3�

+ (4F44r
3 + 6F64r

5) sin 4�

+ 5F55r
4 sin 5�

+ 6F66r
5 sin 6� (58)

BS
r = 2G20r + 4G40r

3 + 6G60r
5

+ (G11 + 3G31r
2 + 5G51r

4) cos �

+ (2G22r + 4G42r
3 + 6G62r

5) cos 2�

+ (3G33r
2 + 5G53r

4) cos 3�

+ (4G44r
3 + 6G64r

5) cos 4�

+ 5G55r
4 cos 5�

+ 6G66r
5 cos 6� (59)

3.3.2 B� expansion (B� = BN
� +BS

� )

BN
� = (F11 + F31r

2 + F51r
4) cos �

+ (2F22r + 2F42r
3 + 2F62r

5) cos 2�

+ (3F33r
2 + 3F53r

4) cos 3�

+ (4F44r
3 + 4F64r

5) cos 4�

+ 5F55r
4 cos 5�

+ 6F66r
5 cos 6� (60)
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BS
� = �(G11 +G31r

2 +G51r
4) sin �

� (2G22r + 2G42r
3 + 2G62r

5) sin 2�

� (3G33r
2 + 3G53r

4) sin 3�

� (4G44r
3 + 4G64r

5) sin 4�

� 5G55r
4 sin 5�

� 6G66r
5 sin 6� (61)

3.3.3 Bz expansion (Bz = BN
z +BS

z )

BN
z = (F 011r + F 031r

3 + F 051r
5) sin �

+ (F 022r
2 + F 042r

4) sin 2�

+ (F 033r
3 + F 053r

5) sin 3�

+ F 044r
4 sin 4�

+ F 055r
5 sin 5� (62)

BS
z = G000 +G020r

2 +G040r
4

+ (G011r +G031r
3 +G051r

5) cos �

+ (G022r
2 +G042r

4) cos 2�

+ (G033r
3 +G053r

5) cos 3�

+ G044r
4 cos 4�

+ G055r
5 cos 5� (63)

4 Comparison of Coe�cients

Let us now compare the coe�cients in the rectangular and cylindrical
coordinate expansions. To do this we �rst note that

rl cosm� =
rl�m

2
f(x+ iy)m + (x� iy)mg; (64)

rl sinm� =
rl�m

2i
f(x+ iy)m � (x� iy)mg: (65)

Thus we have
r cos � = x; r sin � = y (66)
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r2 = x2 + y2; r2 cos 2� = x2 � y2; r2 sin 2� = 2xy (67)

r3 cos � = x3 + xy2; r3 cos 3� = x3 � 3xy2 (68)

r3 sin � = x2y + y3; r3 sin 3� = 3x2y � y3 (69)

r4 = x4+2x2y2+y4; r4 cos 2� = x4�y4; r4 cos 4� = x4�6x2y2+y4 (70)

r4 sin 2� = 2x3y + 2xy3; r4 sin 4� = 4x3y � 4xy3 (71)

r5 cos � = x5 + 2x3y2 + xy4; r5 cos 3� = x5 � 2x3y2 � 3xy4 (72)

r5 cos 5� = x5 � 10x3y2 + 5xy4 (73)

r5 sin � = x4y + 2x2y3 + y5; r5 sin 3� = 3x4y + 2x2y3 � y5 (74)

r5 sin 5� = 5x4y � 10x2y3 + y5 (75)

r6 = x6+3x4y2+3x2y4+ y6; r6 cos 6� = x6� 15x4y2+15x2y4� y6 (76)

r6 cos 2� = x6+x4y2�x2y4�y6; r6 cos 4� = x6�5x4y2�5x2y4+y6 (77)

r6 sin 6� = 6x5y � 20x3y3 + 6xy5 (78)

r6 sin 2� = 2x5y + 4x3y3 + 2xy5; r6 sin 4� = 4(x5y � xy5): (79)

Using these expressions in (31) and equating terms order-by-order in the
rectangular and cylindrical expansions of the potential, we �nd

C00 = G00; C01x+ C10y = G11x+ F11y (80)

C11xy = F22(2xy) (81)

1

2
C02x

2 +
1

2
C20y

2 = G20(x
2 + y2) +G22(x

2 � y2) (82)

1

2
C12x

2y +
1

6
C30y

3 = F31(x
2y + y3) + F33(3x

2y � y3) (83)
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1

2
C21xy

2 +
1

6
C03x

3 = G31(x
3 + xy2) +G33(x

3 � 3xy2) (84)

1

6
(C13x

3y + C31xy
3) = F42(2x

3y + 2xy3) + F44(4x
3y � 4xy3) (85)

1

24
(C04x

4 + 6C22x
2y2 + C40y

4) = G40(x
4 + 2x2y2 + y4)

+ G42(x
4 � y4)

+ G44(x
4 � 6x2y2 + y4) (86)

1

120
(5C14x

4y + 10C32x
2y3 + C50y

5) = F51(x
4y + 2x2y3 + y5)

+ F53(3x
4y + 2x2y3 � y5)

+ F55(5x
4y � 10x2y3 + y5) (87)

1

120
(C05x

5 + 10C23x
3y2 + 5C41xy

4) = G51(x
5 + 2x3y2 + xy4)

+ G53(x
5 � 2x3y2 � 3xy4)

+ G55(x
5 � 10x3y2 + 5xy4) (88)

1

720
(6C15x

5y + 20C33x
3y3 + 6C51xy

5) =

F62(2x
5y + 4x3y3 + 2xy5) +

F64(4x
5y � 4xy5) +

F66(6x
5y � 20x3y3 + 6xy5): (89)

Thus we have

C00 = G00; B0 = C10 = F11; A0 = C01 = G11 (90)

B1 = C11 = 2F22; A1 = C02 = 2(G20 +G22); C20 = 2(G20 �G22) (91)
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B2 = C12 = 2(F31 + 3F33); C30 = 6(F31 � F33) (92)

A2 = C03 = 6(G31 +G33); C21 = 2(G31 � 3G33) (93)

B3 = C13 = 6(2F42 + 4F44); C31 = 6(2F42 � 4F44) (94)

A3 = C04 = 24(G40 +G42 +G44); C40 = 24(G40 �G42 +G44) (95)

C22 = 4(2G40 � 6G44) (96)

B4 = C14 = 24(F51 + 3F53 + 5F55); C50 = 120(F51 � F53 + F55) (97)

C32 = 12(2F51 + 2F53 � 10F55) (98)

C41 = 24(G51 � 3G53 + 5G55); A4 = C05 = 120(G51 +G53 +G55) (99)

C23 = 12(2G51 � 2G53 � 10G55) (100)

B5 = C15 = 120(2F62+4F64+6F66); C51 = 120(2F62�4F64+6F66) (101)

C33 = 36(4F62 � 20F66): (102)

These equations show that the multipole coe�cients, Bn = C1n and
An = C0;n+1, generally contain, in addition to the coe�cients Fn+1;n+1 and
Gn+1;n+1 respectively, coe�cients Fn+1;m and Gn+1;m with m < n+ 1.
Since the coe�cients with m < n+ 1 may all be expressed in terms of
derivatives (with respect to z) of the coe�cients Fmm and Gmm, we see
that when the �elds are independent of z, we have

Bn = C1n = (n+ 1)!Fn+1;n+1 (103)

and
An = C0;n+1 = (n+ 1)!Gn+1;n+1: (104)

Thus, since the Fn+1;n+1 and Gn+1;n+1 coe�cients arise from magnets with
2(n+ 1) poles, the coe�cients Bn and An are called 2(n+ 1)-pole
coe�cients.
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Equations (90{102) must, of course, be consistent with the recursion
relation (6). As a check of our algebra, we note that

C20 + C02 = 4G20 = �G0000 = �C 0000 (105)

C12 + C30 = 8F31 = �F 0011 = �C 0010 (106)

C21 + C03 = 8G31 = �G0011 = �C 0001 (107)

C13 + C31 = 24F42 = �2F 0022 = �C 0011 (108)

C40 + C22 = 32G40 � 24G42 = �2G0020 + 2G0022 = �C 0020 (109)

C04 + C22 = 32G40 + 24G42 = �2G0020 � 2G0022 = �C 0002 (110)

C14 + C32 = 48F51 + 96F53 = �2F 0031 � 6F 0033 = �C 0012 (111)

C50 + C32 = 144F51 � 96F53 = �6F 0031 + 6F 0033 = �C 0030 (112)

C41 + C23 = 48G51 � 96G53 = �2G0031 + 6G0033 = �C 0021 (113)

C05 + C23 = 144G51 + 96G53 = �6G0031 � 6G0033 = �C 0003 (114)

C51 + C33 = 384F62 � 480F64 = �12F 0042 + 24F 0044 = �C 0031 (115)

C15 + C33 = 384F62 + 480F64 = �12F 0042 � 24F 0044 = �C 0013: (116)

5 Magnet with Dipole Symmetry

We de�ne a magnet with dipole symmetry to have a magnetic potential
such that

�(x;�y; z) = ��(x; y; z); �(r;��; z) = ��(r; �; z) (117)

and
�(�x; y; z) = �(x; y; z); �(r; � � �; z) = �(r; �; z): (118)

It then follows from (31) that the skew coe�cients Glm and all normal
coe�cients except Fl1, Fl3, Fl5, Fl7, . . . , etc. are zero. Thus we have

�(r; �; z) =
1X
l=1

1X
k=0

fFl;2k+1 sin(2k + 1)�grl: (119)
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Equations (58{63) then become, to 5th order in r,

Br = (F11 + 3F31r
2 + 5F51r

4) sin �

+ (3F33r
2 + 5F53r

4) sin 3�

+ 5F55r
4 sin 5� (120)

B� = (F11 + F31r
2 + F51r

4) cos �

+ (3F33r
2 + 3F53r

4) cos 3�

+ 5F55r
4 cos 5� (121)

Bz = (F 011r + F 031r
3 + F 051r

5) sin �

+ (F 033r
3 + F 053r

5) sin 3�

+ F 055r
5 sin 5� (122)

where

F31 = �
1

8
F 0011; F51 = �

1

24
F 0031 =

1

192
F 000011 ; F53 = �

1

16
F 0033: (123)

Putting the Flm coe�cients that are zero into (90{102) we �nd that

B1 = B3 = B5 = 0: (124)

The �eld expansion to 5th order in rectangular coordinates is then

Bx = B2xy

+ B4(x
3y � xy3)=6 �B00

2xy
3=6 (125)

By = B0

+ B2(x
2 � y2)=2�B00

0y
2=2

+ B4(x
4 � 6x2y2 + y4)=24

+ B00

2 (y
4 � 3x2y2)=12 +B0000

0 y4=24 (126)

Bz = B0

0y

+ B0

2(3x
2y � y3)=6 �B000

0 y
3=6

+ B0

4(5x
4y � 10x2y3 + y5)=120

+ B000

2 (y
5 � 5x2y3)=60 +B00000

0 y5=120 (127)
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where
B0 = C10 = F11; (128)

B2 = C12 = 2(F31 + 3F33) = 2

�
3F33 �

1

8
F 0011

�
; (129)

B4 = C14 = 24(F51 +3F53 +5F55) = 24

�
1

192
F 000011 �

3

16
F 0033 + 5F55

�
: (130)

6 Magnet with Quadrupole Symmetry

We de�ne a magnet with quadrupole symmetry to have a magnetic
potential such that

�(x;�y; z) = ��(x; y; z); �(r;��; z) = ��(r; �; z); (131)

�(�x; y; z) = ��(x; y; z); �(r; � � �; z) = ��(r; �; z); (132)

and
�(y; x; z) = �(x; y; z); �(r; �=2 � �; z) = �(r; �; z): (133)

It then follows from (31) that the skew coe�cients, Glm, and all normal
coe�cients except Fl2, Fl6, Fl;10, Fl;14, . . . , etc. are zero. Thus we have

�(r; �; z) =
1X
l=1

1X
k=0

fFl;4k+2 sin(4k + 2)�grl (134)

and to 6th order in r

Br = (2F22r + 4F42r
3 + 6F62r

5) sin 2�

+ 6F66r
5 sin 6� (135)

B� = (2F22r + 2F42r
3 + 2F62r

5) cos 2�

+ 6F66r
5 cos 6� (136)

Bz = (F 022r
2 + F 042r

4) sin 2�

+ F 066r
6 sin 6� (137)
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where

F42 = �
1

12
F 0022; F62 = �

1

32
F 0042 =

1

384
F 000022 : (138)

Putting the zero and nonzero Flm coe�cients into (90{102) we �nd that

B0 = B2 = B4 = 0 (139)

and
B1 = C11 = 2F22; B3 = C13 = 12F42 = �F 0022; (140)

B5 = C15 = 120(2F62 + 6F66) = 120

�
6F66 +

1

192
F 000022

�
: (141)

The �eld expansion to 5th order in rectangular coordinates is then

Bx = B1y

+ B3(3x
2y � y3)=6 �B00

1y
3=6

+ B5(5x
4y � 10x2y3 + y5)=120

+ B00

3 (y
5 � 5x2y3)=60 +B0000

1 y5=120 (142)

By = B1x

+ B3(x
3 � 3xy2)=6�B00

1xy
2=2

+ B5(x
5 � 10x3y2 + 5xy4)=120

+ B00

3 (xy
4 � x3y2)=12 +B0000

1 xy4=24 (143)

Bz = B0

1xy

+ B0

3(x
3y � xy3)=6�B000

1 xy
3=6 (144)

Note that
B3 = �B00

1=2; (145)

so this coe�cient is due to the second derivative of the quadrupole
coe�cient.

7 Magnet with Solenoid Symmetry

For a magnet with pure solenoid symmetry, the potential is independent of
� and we therefore have

�(r; �; z) =
1X
l=0

G2l;0 r
2l: (146)
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This shows the physical signi�cance of the coe�cients G2l;0. The �eld
components in this case are

B� = 0; Br = 2G20r + 4G40r
3 + 6G60r

5 + � � � ; (147)

Bz = G000 +G020r
2 +G040r

4 + � � � (148)

where

G20 = �
1

4
G0000; G40 = �

1

16
G0020; G60 = �

1

36
G0040: (149)
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