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1 Introduction

In small rings such as the SNS accumulator ring, where the ratio of length
to aperture of the magnets is relatively small, the magnetic field near the
ends of the magnets requires special attention. Unlike the field in the
region well inside the magnets, the field near the ends depends on the
position along the longitudinal axis of the magnet and has a component
parallel to the axis. Here one can not simply expand the field in terms of
two-dimensional normal and skew multipoles; a full three-dimensional
expansion is required. In this note we review the standard expansions in
rectangular and cylindrical coordinates carried out by Brown [1] and
Danby [2] respectively. The expansion in rectangular coordinates may be
more familiar to those who work with tracking codes such as
TRANSPORT or MAD, while the expansion in cylindrical coordinates
may be more familiar to those who design and measure magnets. Both
expansions are useful and it is instructive to write them down in one place
and to compare the expansion coefficients.

2 Expansion in Rectangular Coordinates

Inside the aperture of a magnet the curl of the static magnetic field, B, is
zero which implies that B can be expressed as the gradient of a scalar
potential, ¢. Thus

B =V, (1)



and since the divergence of B must also vanish we have
Vi =0. (2)

The desired expansion of the magnetic field follows from the expansion of ¢
about the longitudinal axis of the magnet. (The longitudinal axis coincides
with the center of the magnet aperture and lies in the horizontal midplane
of the magnet.) We shall employ the orthogonal set of unit vectors
(x,y,z), where z points along the longitudinal axis and x and y point
respectively along the horizontal and vertical directions transverse to the
axis. The orientation of the vectors is such that x x y = z. Coordinates x
and y specify the distances from the longitudinal axis along x and y
respectively. z specifies the distance along z measured from some reference
point on the axis. In terms of these vectors and coordinates we have

g0, 9 0P
B—qu—xaxwL 8 +z 0 (3)
and 2o P 0
2 _— _— _— =
Vep = 92 + 392 + 552 = 0. (4)

2.1 Solution of Laplace Equation

For each z along the axis of the magnet we can expand the potential ¢ as

follows:
P(z,y, 2 Z Z o

m=0 n=0

(5)

n! m'

where the coefficients C),,, are functions of z. Putting this expansion into
(4) we find the following recursion relation for the coefficients Cp,y,:

Cm+2,n = _Cm,n+2 - Cgm (6)

where the primes denote differentiation with respect to z. Putting (5) into
(3) we find that the components of B in the x, y, and z directions are
respectively
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This is the desired expansion of the magnetic field about the longitudinal
axis.

2.2 Multipole Coefficients

Differentiating the expansions for B, and B, with respect to # and
evaluating them at x =y = 0, we find

"B,
O =(G) _ + Cu=B0.02) (

and 7B
CO,n—i—l = ( (9£Enw>$y0, OOI = B:v(oaoa Z) (9)

These coefficients give the strengths of the normal and skew multipole
fields respectively. The longitudinal component of the field on the magnet
axis is given by the last of equations (7) with z =y = 0. Thus

B.(0,0,z) = Cqo (10)

and we see that the coefficient C), gives the strength of the solenoid field.
It follows from the recursion relation (6) that all of the coefficients in the
magnetic field expansion can be expressed in terms of the multipole and
longitudinal field coefficients and their derivatives with respect to z.

To simplify notation, let us define
By, =Cin, An=Cont1 (11)

for the normal and skew multipole coefficients. On the horizontal midplane
(i.e. for y = 0) we then have

o0 $n
o0 (I;n
By($707z) = nXZ:OBn oy
’ — / gt
B = A — 12
z(x,O,z) 000+n2::0 n(n_|_1)| ( )



Here we see that if the skew coefficients (A,,) are all zero, then on the
midplane we have B, =0 and B, = C{,. If, in addition, the solenoid
coefficient Cj is zero, then B, is the only nonzero field component on the
midplane (i.e. the field is perpendicular to the midplane). This is why the
B, are called “normal” coefficients. Similarly, if the B,, are all zero, then
on the midplane we have B, = 0 and B, is nonzero. This is why the A,
are called “skew” coefficients.

2.3 Expansion of B to Fifth-order

Using (11) and the recursion relation (6) we find that the coefficients
required to expand the field to fifth order are

C20 = _Al — C(,)IO, 021 == _A2 - 6,7 022 = _A3 - Alll (]‘3)

Coz3 = —Ay — A, Co=—A5— A3 (14)
C3p = —By — B(I),, C31 = —B3 — Bi’, (15)
Csp = —By—Bj, Cs3=-Bs;—Bj (16)
Cio = —Coy — Oy = Az + 2A7 + Cyy (17)
Cy = —Cog — Cyy = Ay + 245 + A" (18)
Cip = —Coy — Cyp = A5 + 243 + AY" (19)
Cso = —C33 — C3y = By + 2B5 + By" (20)
Cs1 = —Cs3 — C3y = Bs + 2B3 + By (21)
Ceo = —Cyo — 0411,0 =—A5 — 3Ag — 3A/1Hl — 6’6’”. (22)

Using these coefficients in (7) and collecting terms of equal order we then
obtain the following expansions of B;, By, and B, in # and y. The
superscripts N and S designate the parts of the expansions containing
normal and skew coefficients respectively.



2.3.1 B, expansion (B, = BY + BY)

By

+ o+ o+ +

+ 4+ 4+ + + + +
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By(a
5(5x y — 10z2y> + 4°) /120
!

(

BY (3% — 52%y3) /60 + By /120
Ag
Az
Ao(a® — )2 — Afy?)2
As(z® — 3zy?) /6 — Alzy?/2
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!

z® — 10z3y? + 5zy*) /120
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(
Ayt = 322?12 4+ A"yt /24
(
S(zyt — 2%y?) /12 + A"y /24

2.3.2 B, expansion (B, = Bév +B5)

N
By

= By
+ Byrx
+ Bo(z® —y*)/2 — Byy®/2
+  Bs(z® — 3zy?)/6 — Bl2y?/2
4+ By(z' — 6x2y2 +y')/24
+ Bj(y' —32%y*) /12 + B{"y" /24
+ Bs(z® — 10x3y + 5xyt) /120
+ B (zy* — 23y*) /12 4+ B zy? /24
—Ary — Copy
Agzy — Ajzy
Az(y® — 32%y) /6

(24)
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AY(2y° — 32%y) /6 + C{y* /6
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y® — 10223 + 521y) /120
—  A3(3y° — 202%y3 + 5x1y) /120
+ A" (102%y3 — 3y°) /120 — Oy y° /120 (26)

(
(
AN (2xy® — 23y) /6 + AY" 23 /6
(
(

2.3.3 B, expansion (B, = BY + BY)

BY = By

+ Bizy

+ By(3zy —y*)/6 — By'y’/6

+ Biy(z’y —xy°)/6 — Bi'zy’/6

+  B(5z'y — 102%y> + 4%)/120

+ BY(y® —5z%y*)/60 + By /120 (27)
Bf = C(l)o

+ Az

+ Ay(2® —y?) /2 — Choy?/2

4+ Ab(z® — 3xy?) /6 — AY zy? /2

+ Ayt — 62y +yt) /24

+ AV(y" —32%y%) 12+ Gy /24

+ Az — 1023y? + 5xyt) /120

+ AV (zyt — 239?) /12 + AY" 2yt /24 (28)

Note that when the fields are independent of z, all of the A and B terms in
(23-28) involving derivatives with respect to z are zero and the field
expansion contains only “pure” multipole terms. If, in addition, the Cf,
term (responsible for solenoid fields) is zero, then B, is zero and the fields
are transverse to the axis of the magnet. This is the situation well inside a
non-solenoid magnet, away from the ends.



3 Expansion in Cylindrical Coordinates

Let us now introduce cylindrical coordinates r and 8 such that
x=rcosf, y=rsin. (29)

The expansion (5) then becomes

¢(r,0,2) Z Z Cmn — cos " @sin™ 0 (30)

m=0n=0

which we may write in the form

(r,0,2) = Goo + Z Z {Fyyn sinm + Gy, cos mo . (31)
I=1m=0

The coefficients Fj,,, and G, are functions of z and are responsible
respectively for the normal and skew multipole fields (as we shall show).
The terms in (31) that are proportional to sinm# or cosmf are called
2m-pole terms because they arise from magnets with 2m poles.

Defining unit vectors

r=xcosf+ysinf, O = —xsinf+ ycosf (32)
we have 3(]5 18¢ 3(]5

and the components of B in the r, @, and z directions are respectively

aqb o0 o0

B, = Z Z I{ Fipn sinm® + Gy, cos mfyr! 1
8r =1 m=0
By = 199 i io: m{Fy,, cosmb — Gy, sinm@}yr! 1
r 00 = .50 " "
. 8¢ o o — ! . i I
B, = 3, = Coo +> > {F,sinmb + G}, cosmb}r'. (34)
Z I=1 m=0

The Laplace equation becomes

99 »Fp  Po _
V2¢_?E<ar>+ 4+ —— =0. (35)



3.1 Solution of Laplace Equation

Putting the expansion (31) into (35) we obtain

18(8(]5 2=

—_— ’,"—
ror \ Or 11 o0
1% & 2 : -2
e = SN —mP{Fpy sinmb + Gy, cos m}r
I=1 m=0
82¢ _ S "o n l
52 = G +> > {F), sinmb + G}, cosmb}r
z

=1 m=0
and, in order to satisfy (35) for all r, we must have

o.¢]
Z (1 — m?){Fiym sinmb 4+ Gy, cosmf} = 0,

m=0

o0
6,0 + Z (4 — m2){F2m sinmf + Gap, cosmb} = 0,

m=0

and, for [ > 1,

o0
Z {(l+2) - m2}{Fl+2,m sinmb + Gjyo,m cosmb}
m=0

o0
+ Y _{F},sinmb + G}, cosmf} = 0.
m=0

Then, in order to satisfy (39-41) for all #, we must have

Gio=0, G2=G3=Guu=G;5=...=0
Fio=F3=Fy=F;=...=0,
4Gy + Gy = 0,
G21 =0, Ga3 =G24 =Go5=Gop=...=0,
Fo1 =0, Foyy =Fo=Fy=Fs=...=0,
and, for [ > 1,
{(1+2)* —m*}Fiyom = —F,

8

) = Z Z 1*{F},, sinmf + Gy, cos mH}TZ*Z



and
{1 +2)2 = m2Giiom = —Gly (48)

These equations give the complete solution of the Laplace equation in
cylindrical coordinates.

3.2 Expansion Coefficients

On the horizontal midplane (y = 0) we have § = 0 and equations (34)
become

o o0
B,(r,0,z) = Z Z 1G !

=1 m=0
0 o0
By(r,0,2) = > Y mF,r!
=1 m=0
o0 0
B,(r,0,2) = Gu+Y. > Ginrt. (49)
=1 m=0

Noting that B, = B, and By = By on the midplane, and comparing
equations (49) with (12), we see that the normal and skew coefficients, B,
and A,, depend only on the coefficients Fj,, and Gy, respectively. We
therefore refer to the F' and G coefficients as normal and skew coefficients
respectively.

It follows from (42-46) and the recursion relations (47-48) that many of
the F' and G coefficients are zero. In fact, for m > I, we have Fj,, = 0 and
Gim = 0. The nonzero coefficients to order 10 are listed in Tables I and II.

Table I: Nonzero Fj,,, Coeflicients

Fiy
Fy
F31 | Fs3
Fio | Fu

Fio2 | Fio4 | Fioe | Fiog | Fio10




Table II: Nonzero G}, Coefficients

G
G2 | G2
G31 | G33

Gy | Gy | Gy
Gs1 | Gsz3 | Gss
Geo | Ge2 | Ges | Ges
Gn | Gz | Grs | Grr
Ggo | Gs2 | Ggsa | Ggg | Gsg
Go1 | Go3 | Gos | Gogr | Gog
G100 | Gio2 | Gioa | Giog | Giog | Gio,io

Putting numbers for [ and m into the recursion relations (47-48), we obtain

1 1 1
F31 = —3 1, Frsi= _ﬂFélla Fn = —EF5”1 (50)
1 17 1 17} 1 "
Fyo = —EFQQa Fgo = —3—2F42, Fgo = —@F& (51)
]_ 17 ]- 17} ]- "
F53 = 1_6F337 Fr3 _EFE’?” Fo3 = EFR (52)
1 _, L
Fea _%FM, 84 = _EFM (53)
Fys iFé,E) Fos iF7"5 (54)
24 ’ 96
P — — g (55)
86 55 " 66"

Thus we see that the nonzero coefficients Fj,, may all be expressed in
terms of derivatives (with respect to z) of the coefficients Fl,,,. The
corresponding equations for the G coefficients are the same except for the
additional equations

]‘ "

1 1
Gao = —7Ghp,  Gio=—1:Gh, Goo=—3:Gl, (56)
oo Lo oo Lo (57)
80 64 60> 10,0 100 80*

10



3.3 Expansion of B to Fifth-order

Using the nonzero coefficients in (34) and collecting terms, we obtain the
expansions of B, By, and B, to 5th order in . The superscripts N and S
designate the parts of the expansions containing F' (Normal) and G (Skew)
coefficients respectively.

3.3.1 B, expansion (B, = BY + B?)
BY = (Fi1 +3F3r? +5F5 ") sin6

2Fyor + 4Fyor3 + 6Fgor°) sin 20

3F337° + 5F53r") sin 36

4Fy4r® 4 6 Fgyr°) sin 46

5F55rt sin 56

6 Fsqr” sin 66 (58)

~—~ A~~~

B = 2Gyr +4Gar® + 6Geor®

(G11 + 3G 1% + 5G517“4) cos 0

(2G99or + 4G o7 + 6G627"5) cos 260

(3G'3372 + 5G53r?) cos 30

(4G 4473 + 6Gg4r°) cos 40

5G 557+ cos 50

6G667° cos 60 (59)

3.3.2 By expansion (By = B} + B})

Fi1 + Fy1r® + Fsyr*) cos 0

2Fyor + 2Fyor® + 2Fg21°) cos 20

3Fy312 + 3F53r4) cos 360

4F 13 + 4F54r5) cos 460

5F55r4 cos bl

6F667"5 cos 60 (60)

B) =

(
(
(
(

+ o+ o+ + o+

11



B@g = —(Gy1 + Gsr? + G’51r4) sin 6
—  (2G99r 4 2G 401 + 2Ggor®) sin 20
—  (3G33r% + 3G53rt) sin 30
—  (4Gyur® + 4Geur°) sin 40
— 5Gs5r*sin bl
—  6Geer° sin 60 (61)

3.3.3 B, expansion (B, = BY + BY)

Sy
=
I

> (Fyr + Fyr® + Fiir°) sin@
(Fior? 4+ Fjort) sin 20
(Fiqr® + Fiar®) sin 36
Fj,r* sin46

Fler® sin 50 (62)

+ o+ 4+ o+

&
nn
I

z 00 + Ghor” + Glor

(Ghyr + Ghyr + GEy7°) cos 6

(Ghor? + Glyr*) cos 20

(Glqr® 4+ GLyr°) cos 30

Gyt cos 40

GLsr° cos 50 (63)

+ o+ + 4+ +

4 Comparison of Coefficients

Let us now compare the coefficients in the rectangular and cylindrical
coordinate expansions. To do this we first note that

[-m

rl cosmf = TT{(:E +iay)™ + (x —iy)"}, (64)
I—m
rlsinmb = T{(:p +iy)™ — (z —iy)™}. (65)
Thus we have
rcos =z, rsinf=y (66)

12



r? =22 +y? r?cos20 =22 —y?, rZsin20 = 2zy (67)
r3cosf = 2% +x2y?, 13 cos30 = x> — 3y’ (68)
rsinf = 2%y + ¢, r’sin36 = 32’y —y? (69)

rt = 242022yt rtcos20 = zt—yt,  rteos4d =zt —622y2+y* (70)

rtsin20 = 223y + 2zy3,  risindd = 4y — dzy? (71)

rScosO = 2° + 223y% + 2y?, r’cos30 = 2° — 223y? — 3zy? (72)

5 cos 50 = z° — 10z3y? + bzy? (73)

rdsinf = zly + 222y + 45, r°sin30 = 3xty + 22%° — 48 (74)
rosin50 = bzty — 1022y + ° (75)

r8 = 2% +3z%? +32%y + 45, r0cos60 = 2° — 152"y% + 1522y —4® (76)
r%cos 20 = 8 +$4y2 - $2y4 - yB, 7% cos 40 = z° — 5:1:4y2 316 (77)
r8sin 60 = 62°y — 2023y> + 62y° (78)

r0sin 20 = 225y + 423y + 2zy°,  rOsin4f = 4(2Py — zy°). (79)

Using these expressions in (31) and equating terms order-by-order in the
rectangular and cylindrical expansions of the potential, we find

Coo = Goo, Corxz+ Croy = Gz + Fiiy (80)
CHIy = F22 (2:13y) (81)

1 1
5002272 + 50203/2 = GQU(IL‘2 + y2) + G22(£E2 — y2) (82)

1 1
5O’y + < Choy” = P (2% +y°) + Fr(32%y — y°) (83)

13



1 1
5021!133/2 + 6C03:1:3 = G’31(:1:3 + :L“y2) + G’33($3 — 3$y2) (84)
1
6(013$3y + C31$y3) = F42(2:1:3y + 2:1:y3) + F44(4:1:3y — 4:1:y3) (85)
1
ﬂ(C04IL‘4 + 6Co0z%y? + C’40y4) = G40(:1:4 + 2222 + y4)

+ G42(:1:4 — y4)
+ G44(:1:4 —62%y% + y4) (86)

1
m(SC’M:LAy + 1003922 y> + C50y5) = F51(:1:4y + 2223 + y5)
4+ Fs3(3zty + 202y — o5)
+  Fys(5zty — 102243 + 4°) (87)
1
m(C()E,IL‘E) + 100232733/2 + 5C’41:1:y4) = G51 (275 + 2$3y2 + $y4)
+  Gsz(z® — 22392 — 3zyt)
+  Gss(z® — 1023y? + 5zyt) (88)

1
%(6C15$5y + 20033:1:3y3 + 6051]7:(/5) =
Feo(220y + 423y 4 2295)  +
F64(4:1:5y — 4:1cy5) +
Fes(62°y — 2023y® + 621°). (89)
Thus we have
Coo = Goo, Bo=Cio=Fn, Ay=Con=Gn (90)

By = Cy1 =2Fy, Ay =Co =2(Gyp+ Ga2), Cy =2(Ga —Ga2) (91)

14



By = Cio = 2(F31 + 3F33), C30 = 6(F51 — F33) (92)

Ay = Cp3 = 6(G31 + G33), Co1 = 2(G31 — 3G33) (93)

B3 =C3 = 6(2F42 + 4F44), Cs31 = 6(2F42 — 4F44) (94)

A3 = Cos = 24(Gao + Gaz + Gua), Cao =24(Gao — Gao + Gaa)  (95)
Cao = 4(2G49 — 6G44) (96)

By = Ci4 = 24(F51 + 3F53 4+ 5F55),  Cso = 120(F5; — Fs3 + F55)  (97)

C3p = 12(2F51 + 2F53 — 10F55) (98)
Cy1 = 24(G51 —3G53 + 5G55), Ay =Cps = 120(G51 + Gs3 + G55) (99)
Cos = 12(2G51 — 2G53 — 10G'55) (100)

Bs=Ci5 = 120(2F62 +4Fg4 —|—6F66), Cs1 = 120(2F62—4F64 —|—6F66) (101)

Cs3 = 36(4Fgy — 20Fy). (102)

These equations show that the multipole coefficients, B,, = C, and

Ap = Cppt1, generally contain, in addition to the coefficients F;, 1 5,11 and
Grn+1,n+1 respectively, coefficients F, 1., and Gpq1,m with m <n + 1.
Since the coefficients with m < n 4+ 1 may all be expressed in terms of
derivatives (with respect to z) of the coefficients F,,,, and G, we see
that when the fields are independent of z, we have

B,=Cy, = (’I’L + 1)' Fn—l—l,n-l—l (103)

and
An = CU,n+1 == (n + ].)' Gn+1’n+1. (104:)

Thus, since the F, 1 41 and Gj41,,41 coefficients arise from magnets with
2(n + 1) poles, the coefficients B,, and A,, are called 2(n + 1)-pole
coefficients.

15



Equations (90-102) must, of course, be consistent with the recursion
relation (6). As a check of our algebra, we note that

Ca0 + Coa = 4G = —Gy = —Cy (105)
Cho + Cyo = 8Fy = —F!" = —C!" 106
107

108

(106)
Co1 + Co3 = 8G31 = — '1’12— 01 (107)

Ci3 + C31 = 24Fy = —2Fy, = —CY) (108)

Cyo + Cog = 32G 49 — 24G 42 = —2GY, + 2G4y = —C (109)

Cos + Coz = 32G4p + 24G 42 = —2GY) — 2G5, = —Cy, (110)

Ciq + C3p = 48F5 + 96F53 = —2F§’1 —6F3 = —C7, (111)

Cso + C3z = 144F5; — 96 Fs53 = —6F3) + 6Fj; = —C%, (112)

Cu1 + Co3 = 48G51 — 96G53 = —26:;,’1 + 6GY; = —C3; (113)

Cos + Caz = 144G51 + 96G53 = —6GY, — 6GY5 = —C(s (114)
Cs1 + C33 = 384 Fgy — 480Fgy = —12F), + 24F), = —C¥; (115)
Cis + Cs3 = 384 Fgp + 480Fsy = —12F), — 24F), = —C1,. (116)

5 Magnet with Dipole Symmetry

We define a magnet with dipole symmetry to have a magnetic potential
such that

(ﬁ((II, —y,z) = _¢(xayaz)v ¢(T,—0,Z) = —¢(T,0,Z) (117)

and
¢(—5L',y,2) = ¢(xayvz)a ¢(’f’,7’(’ - 0,2’) = ¢(T,0,Z). (118)

It then follows from (31) that the skew coefficients Gy, and all normal

coefficients except Fj1, Fi3, Fi5, Fi7, ..., etc. are zero. Thus we have
o(r,0,2) Z Z{Fl ok+15in(2k + 1)01rL, (119)
=1 k=0

16



Equations (58-63) then become, to 5th order in r,

B, = (Fy +3F3r?+5F5r%)sing
+ (3F33’I"2 + 5F53’f'4) sin 30
+ B5Fs5rtsinbl

By = (Fi1+ Fir? + F517“4) cos 6
+  (3F337? 4+ 3F53r?) cos 30
+ B5Fssrtcosho

(F{,r + Fjyr3 + Flyr®)sin@
(Figr® + Flar®)sin 30
Fl.r®sin 50

5
[

where

Lo L _i "

1
F3 = —§F1"1a F5 = 5t = @Fn, T

Putting the Fj,, coefficients that are zero into (90-102) we find that
B, = B3 =B; =0.
The field expansion to 5th order in rectangular coordinates is then

B, = DBaxy
+ Bu(e’y —xy’)/6 — Bywy®/6

B, = By
+ Ba(a® —y?) /2~ Byy’/2
4+ By(z* — 62%y% +y*) /24
b OB - 30D/ 12 + By 2

B, = B(l)y
+ By(3z°y —y?)/6 — By'y’/6
+  B(5z'y — 102%y> + 4°)/120
+ BY(y° —52%y*) /60 + By /120
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(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)



where

By = Cp = F1, (128)
1
By =Cio = 2(F31 + 3F33) =2 <3F33 — §F1”1> , (129)
| — 3
By =Ci4 = 24(F51 4+ 3F53 + 5F55) =24 @ 11 — E 33 T 5F%55 ) . (130)

6 Magnet with Quadrupole Symmetry

We define a magnet with quadrupole symmetry to have a magnetic
potential such that

¢($7 —y,z) = _¢($7yaz)a ¢(T7 —H,z) = —¢(T,0,Z), (131)

(ﬁ(-iE,y,Z) = —¢($,ya2’), ¢(’f‘,71’ - 0,2) = _¢(Ta9az)a (132)
and
¢(yaxa Z) = ¢(5ana2’)a ¢(T, 7r/2 - 9,2’) = ¢(T, 0, Z) (133)

It then follows from (31) that the skew coefficients, Gy, and all normal

coefficients except Fio, Fig, Fj 10, Fj14, - .., etc. are zero. Thus we have
(o olNe o]
$(r,0,2) = > {Flaps2sin(4k + 2)0}r! (134)
[=1k=0

and to 6th order in r

B, = (2Fyr +4Fpr® 4+ 6Fsr°) sin 26
4+ 6Fs6r” sin 66 (135)
By = (2Fyr + 2F;0r3 + 2Fsr°) cos 20
+  6Fs6r° cos 60 (136)
B, = (Fir®+ Fior')sin20
+  Flgr®sin66 (137)
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where

1
Fyo = F F F s 1
ST A VR T Vi (138)
Putting the zero and nonzero Fj,, coefficients into (90-102) we find that
By=By;=B;=0 (139)
and
By = C1 =2Fy, B3=Ci3=12F; = —Fyp, (140)
1
Bs = C15 = 120(2Fg3 + 6Fg) = 120 <6F66 + 19—2F2”2”> : (141)
The field expansion to 5th order in rectangular coordinates is then
Bx = Bly
+ Bs(3s”y —y’)/6 — By*/6
+ B5(5:Jc4y — 10x2y +4°)/120
+ By —55%*) /60 + By /120 (142)
By = BlfL‘
+  Bs(z® — 3xy%) /6 — Blxy?/2
+ Bs(z® - 10:1:3y + 5zyt) /120
+ BY(zy' —2%y?) /12 + B"zy* /24 (143)
B, = {:ch
+ Bi(zPy —2y) /6 — B"xy? /6 (144)
Note that
— —By/2, (145)

so this coefficient is due to the second derivative of the quadrupole
coefficient.

7 Magnet with Solenoid Symmetry

For a magnet with pure solenoid symmetry, the potential is independent of
0 and we therefore have

o(r,0,z) ZGQZ()’F (146)

19



This shows the physical significance of the coefficients G'g; 9. The field
components in this case are

By =0, B,=2Gyr+ 4G40’f‘3 + 6G60’f'5 + - (147)
where ) ) )
Goo = —ZGgo, Go =—1¢ 50, Goo = T 10- (149)
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