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Abstract

The goal of the proposed National Spallation Neutron Source is to provide a short pulse proton
beam of about 0.5 second with average beam power of 1-2 MW. To achieve such a purpose, a pro-
ton storage ring operated at 60 Hz with 1-2 x 1014 protons per pulse at 1 GeV is required. Care has
been exercised to ascertain that the space charge effect at injection and coherent instabilities
through the accumulation cycle are acceptable and that the final intensity can actually be
achieved. Other issues addressed in this investigation are the performance upgrade potential to 2
MW and engineering requirements on system components.

1. Introduction

The proton storage ring is one of the major systems in the design of the National Spallation Neu-
tral Source (NSNS) [1]. The function of the storage ring is to take the 1.0 GeV proton beam from
the Linac and convert the long Linac beam of about 1 ms into a 0.5 second beam in about one
thousand turns. The final beam has 1 x 10 proton per pulse, resulting in 1 MW average beam
power at 60 Hz repetition rate. Provision has been reserved for a future upgrade to 2 MW by dou-
bling the storage beam to 2 x 10 proton per pulse. The lattice of the storage ring is a simple
FODO lattice with three-fold symmetry and the dispersion function is reduced to zero at straight
sections by the missing magnet scheme. The total circumference of the ring is 208.6 m and the
transition energy is 3.42, higher than the operating energy of 1 GeV to avoid the difficult instabil-
ity problem that are expected above transition. The cell structure, beta-function, and dispersion
function are shown in Figure 1 and the salient design parameters are shown in Table 1.

In section 2, the estimated impedance from the storage ring components will be given. In section
3, the single bunch instabilities will be investigated and the incoherent space charge effect will be
studied in section 4.

2. Wall Impedance Budget

The frequency range and the magnitude of the wall-coupling impedance in a storage ring is deter-
mined essentially by the dimensions of the vacuum chamber and by the energy of the beam
through the relativistic factor v, the ratio of the total beam energy to the rest energy. A major fea-
ture of a low-energy storage ring is the low value of y and therefore of the impedance frequency
range of interest. In fact the cut-off harmonic number above which the beam does not interact



effectively with the wall components is given roughly by n. ~ yR/b, where R is the average ring
radius and b is the average vacuum chamber size. Using parameters shown in Table 1 it is seen
that n, ~ 277, which is a very narrow frequency range (of only 0.5 GHz) when compared to that
of high-energy storage rings (SSC, LHC, RHIC, Tevatron,...). Another major feature when com-
pared to electron beams at ultra-relativistic velocities [2], is the complete screening of the beam
from interacting with the free space and therefore the inhibition of radiation. In fact the cut-off for
synchrotron radiation i8 ngq ~ 1.5 v, considerably lower than the vacuum chamber cut-off n..
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Figure 1. Half period of the NSNS accumulator ring lattice
2.1 Longitudinal coupling impedance.
A third and very important feature of a low-energy storage ring, with consequences on its stability
against coherent perturbation, is the magnitude of the space-charge forces. It is customary [3] to
express the beam-wall interaction by the Z/n impedance because it enters in some stability condi-

tions. The space-charge contribution, that is the electromagnetic field stored in the region between
the beam and the vacuum chamber, is then [4]

Zin = i Zy (1+2Inb/a)/2BY (1)

where Z = 377 ohm and a is the average beam radius. For the example given in Table 1, the
space-charge contribution is 114 i ohm.

The expression above is estimated assuming a straight pipe. Actually, the vacuum chamber is
bent, and its curvature may resonate at modes which can be excited by the beam [5]. The excita-
tion condition is roughly given by the lowest harmonic number n, satistying

B(1+WR) = 1 + 0.80862n, > (2)

It is seen that one of the advantages of the low-energy storage ring is the absence of the vacuum



Table 1: General Parameters of the NSNS Project

Average Power 1.0 MW 2.0 MW
Kinetic Energy 1.0 GeVv

Circumference 208.56 m

Bending Field 0.9874 T

Number of Protons 1.04 x 1014 2.08 x 104
Betatron Tunes, H/V 3.82/3.78

Transition Energy, yy 3.422

Full Betatron Emittance

60 T mm mrad

120 ® mm mrad

chamber resonating modes, because of the relative low value of the beam velocity B, and of the
relative large ratio of pipe size b to the ring radius R.

Space-Charge Tune-Shift | 0.2
RF peak Voltage (h =1) | 13kV 26 kV
Revolution Frequency 1.258 MHz
Filling Time 1.0 ms
Synchrotron Period 1.7 ms 1.2 ms
Bunching Factor 0.324
Bunch Area 7eV-s 10 eV-s
Full Momentum Spread 1.2 % 1.7 %
Average Pipe Radius 12 cm

The next contribution is the resistivity of the wall [6]

Zln = (1-i) (Zypy R/2b%n )12 (3)

where the wall resistivity p,, = 73 uQ x cm for Stainless Steel. At the lowest harmonic n=1, we
have Z/n = (1-i) 0.56 ohm. At the same time the skin depth is 0.38 mm. Thus a vacuum chamber
thickness of 2 mm or more is adequate for screening the beam from interacting with other compo-
nents outside the vacuum chamber, especially in the case when there are no fast-varying fields
sources.

Next we have contributions which are caused by discontinuities of the vacuum chamber. We give
below the expression of the contribution to Z/n for some of them.



Bellows:

Let M be the total number of bellows, m be the number of convolutions per bellow, h the height
and w the width of each convolution, then the contribution to Z/n in the low frequency range is [7]

Zin = -iZy (MmW /21 R ) In (1 + h/b) 4
Each convolution resembles a cavity resonating at frequencies fy=(1+2k)c/4h (k=0,1,

2,...) [8.9]. Fortunately the lowest resonating mode is well above the vacuum-chamber cut-off so
that the beam is not expected to be capable to excite these modes significantly.

Strip Lines:

They can be beam position monitors or clearing electrodes. We shall assume M strip lines each
made of m=2 plates of width w. The characteristic impedance is Z,, and the termination is
matched exactly to this. The general expression of the contribution to Z/n is [10]

Z/n = —4iZO(Mm/n)(W/an)zexp(—imd/c)sin((0(1/2c) (5)

where d is the length of a plate, and ® = n B¢/R. Strip lines do resonate at the harmonic number
n = ¢/2d, which is at about the vacuum chamber cut-off.

Vacuum Chamber Steps:

These are the transitions from a rectangular vacuum chamber in the dipole magnets to straight
cylindrical pipes in the remaining sections of the ring. Steps are assumed to be far apart, more
than the pipe diameter so that are not coupled together to form a resonating cavity. The contribu-
tion to the coupling impedance is, with M the number of transitions, [11]

Zn = 2M(1-im)Zy(S-1)*b/2m*R (6)
forn < ny, =27R/2b(S-1),and forn >n,

Zin = Zy M(S-1)/2mn (7

where S is the ratio of the inner dimension to the outer dimension of the step.

Vacuum Pump Ports:

These are circular openings of diameter d. The impedance is caused by the diffraction of the elec-
tromagnetic wave through them. The impedance for M ports is [12]

Zin = 2MZy0? [0 + i(8/m) (n’ny, + n,>/3)1/3 1 R*b? (8)

where n,, = 2nR/d and o = nd*/ 16



Kicker Magnets:

The contribution to Z/n from a kicker is essentially given by the amount of inductance involved.
There is a resistive contribution also due to the resistivity of the coils and to the losses in the fer-
rite. A simple formula is

Zh = -2mipfy Vi/Bd w €)

where f, is the revolution frequency, V the excitation voltage, T the kicker rise time, B the field, d
the length, w the width, and i the relative permeability of the ferrite.

RFE Cavities:

An 1f cavity can always be approximated with an equivalent RLC parallel circuit and be described
by the resonating frequency, the figure of merit Q and the shunt impedance Rg. In the example
cited above the rf system is tuned to the revolution frequency. The impedance at the resonating
frequency can be compensated with the feedback system operating at the same frequency. Care in
the design choice is to be taken to make sure that the contribution of the rf system to the neighbor-
ing harmonics is not too excessive. In our example the contribution would be capacitive, and thus
adds to the space-charge contribution.

Figure 2 gives a plot of the expected longitudinal coupling impedance for the example of the
NSNS storage ring.
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Figure 2. The longitudinal coupling impedance Z/n (in ohm) versus the harmonic number n
2.2 Transverse Coupling Impedance

There are four major contributions [13] to the transverse coupling impedance. Like in the longitu-
dinal case, also here the space charge contribution dominates in a low-energy storage ring.



Space Charge:
Zr = iRZy (a? - b2)/p%y (10)

Wall Resistivity:

Zr = (1-i)R[2RZgp, /B (n-v)]2/3 (1)

Deflection Mode:

By virtue of the deflection theorem [13], the longitudinal coupling impedance estimate can be
translated into an equivalent transverse coupling impedance

Zr =2R Z/ Bb*>(n-v) (12)

Finally there are transverse (as well longitudinal) parasitic modes due to several resonating struc-
ture, which are difficult to estimate, but that can be calculated with codes like MAFIA or mea-
sured with the beam itself.

Figure 3 gives the estimate of the transverse coupling impedance for the low-energy NSNS stor-
age ring example. The large variation in correspondence of the low values of harmonic number is
caused by the contribution of the resistive wall and of the deflection modes in proximity of the
betatron tune.
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Figure 3. The transverse coupling impedance Zt (in kohm/m) versus the harmonic number n



3. Individual Bunch Instabilities

It is customary to divide these in the longitudinal, transverse and head-tail effects. We shall exam-
ine each of them below for the example of the NSNS storage ring described above. We like to
point out that our case corresponds again to a low-energy storage ring operating well below the
transition energy. Therefore results that are typical to high energy storage rings do not necessarily
apply here.

3.1 Longitudinal Instabilities

There is a single long bunch. Coasting beam theory [6,14] is first applied by estimating the com-
plex factor

U'-iv' = -i2el, B*(Zn)/nin | E (AE/E)pwim’ (13)
where Ip is the bunch peak current and 1 = yT'2 - y'2

The so-called Keil-Schnell criterion seems to apply rather well for cases of accelerators and stor-
age rings well above the transition energy when the dependence of the beam stability on the actual
beam distribution function is not important. This is not the case well below the transition energy
when it is more important to compare the actual dynamical value against the stability diagram for
a give realistic distribution function.

Figure 4. (U’, V') stability diagram for cos-distribution



For our case, taking the space charge contribution and an inductive wall contribution of -i 20 ohm
as well as a resistive contribution of 3 ohm gives U’= 1.1 and V’ = 0.02 which corresponds to a
full momentum spread Ap/p = 1.7 %. Figure 4 shows the stability diagram in the (U’, V') - space
for a cos-distribution [14]. The working point is marked with a large black circle. It corresponds
to a total bunch area of 10 eV-s. With this value the motion is stable. It is seen that there is plenty
of safety margin for increasing, if required, the resistive contribution. Also, it is possible to
include more wall components, as long they are of inductive nature so that they can subtract from
the large space-charge contribution.

Even when the U’, V’ parameters fall outside the coasting beam stability area, there are two other
conditions that are to be satisfied in order for the motion to be unstable. One is the so-called Here-
ward condition [15], that is the ratio of the instability growth rate to the synchrotron frequency
should be less than unit. In our case this is 0.084 which clearly shows very little consequences
from the synchrotron motion, and thus the beam continues to be stable. The other condition deals
with the fact that the coasting beam theory was developed assuming only one mode at the time,
that is that neighboring coherent modes are completely decoupled from each other. This is satis-
fied only if the real frequency shitt is sufficiently small compared to the revolution frequency.
Unfortunately the impedance imaginary part is very large, mostly because of the space-charge
contribution due to the low energy of the beam. The real frequency shift is 3.5 times the revolution
tfrequency so that several coherent modes are involved at the same time [16]. We do not have yet
an understanding of this effect and whether there is a consequence to the beam stability.

3.2 Transverse Instability

Also in this case the method is the same. We first apply a coasting beam theory [17,18] stability
condition given by

1 Zp1 < EgrvBy[im-vin+&1(App) + 8v]/elyR = Zyeyy (14)

where E; is the proton rest energy, & the accelerator chromaticity, and dv the betatron tune spread
from non linear elements like octupole magnets. We estimate also the growth rate of a potential
instability in the limit of no Landau damping [13],

vl = T, Re(Zr)/evyZ (15)

The growth time is plotted in Figure 5 versus the harmonic number. For n < 100, it is less than 0.2
ms which is considerably shorter than the synchrotron period of 1.2 ms, denoting thus the possi-
bility of fast coasting beam-like instabilities.

The difference IZl - Zye,p, is plotted in Figure 6 versus the harmonic number n. In absence of
external betatron tune spread, dv = 0, the difference is negative for n < 100, denoting instability
for these modes. For the motion to be stable at all modes one requires dv = 0.11. It is to be noted
that the tune spread from the incoherent space-charge forces does not have a stabilizing effect on
coherent oscillations.
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Figure 5. Growth time (ms) of transverse coherent instability in absence of Landau damping

versus the harmonic number n

Figure 6. 1Z1l - Zyeam in kohm/m versus the harmonic number n

3.3 Head-Tail Effect

-tail instabilities [19], for which the sta-

This type of instability is caused by the transverse betatron

The only other concern left is the possibility of slow head

bility criterion (14) does not apply.

motion coupled to the synchrotron motion. It may occur only when the growth rate is comparable



or lower than the synchrotron frequency. The parameter of relevance is the accumulated betatron
phase shift

Il

X 2l v fy1 /n (16)
where 1; is the bunch length in time units. For the case of uncorrected chromaticity this quantity
is positive and large (we are constantly below transition energy and § < 0), ranging around 60. The
head-tail mode numbers m which are stable, also in the absence of Landau damping, can be esti-
mated from the condition m < X/ 2m, which gives m < 10. Thus the head-tail instability is unlikely
Lo appear in the accumulator ring. Moreover, as we have seen, a significant large tune spread will
be provided with octupole magnets to stabilize the beam against fast transverse coherent oscilla-
tions, and this spread will stabilize the beam also against slow transverse oscillations caused by a
head-tail type of instability.

4. Incoherent Space-Charge Effects

The space charge effects are particular important in NSNS, owing to the relatively low injection
energy, and also the allowed low level of the beam loss. The maximum incoherent tune spread is
estimated by,

Av = Nr,/2B;B’yle (17)

where N is the total number of particles, I, = 1.535x 10718 m, and € is the full un-normalized
beam emittance which can be taken as 5 times the rms emittance. The bunching factor B, is
defined as the ratio of the average beam current over the peak current. To avoid arbitrary cuts and
discontinuity of the distribution at the tail, we have adopted a square-cosine type of distribution
with 17 the total bunch length. The bunching factor for such a distribution can be easily estimated,

By = 0.51f, = 032 (18)

We note that in the NSNS there is only one single bunch. The resulting tune spread for the NSNS
is 0.2. In practice this value is expected to be lowered by the flattening effect of the longitudinal
space charge forces. Moreover, a tune spread of about half the space charge depression is needed
to be created with octupoles to stabilize the beam against transverse coherent oscillations. The
octupole polarity can be chosen in such a way the corresponding tune spread actually subtract
from the space charge value yielding an overall spread of about (.1,

Other approaches can be considered to reduce further the tune spread. One is the use of a second
harmonic rf system to flatten the distribution toward larger values of the bunching factor. The sec-
ond method is to adopt the “painting” technique during injection to shape the beam toward a more
rectangular transverse distribution. There are nevertheless concerns about the attainment of these
flattened distributions since they can cause disruptive effects of coherent instability both in the
longitudinal and transverse plane.
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