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MAGNETIC FIELD CALCULATIONS FOR A LARGE APERTURE NARROW 
QUADRUPOLE * 

N. Tsoupas,  J. Jackson, Y.Y. Lee,  D. Raparia,  J. Wei,  BNL, Upton, NY 11973 USA 
Abstract 
In the design of high -intensity proton synchrotrons and accumulator rings, quadrupole magnets of narrower size in one 
of the transverse dimensions are often needed to accommodate the compact ring geometry, the various  injection and 
extraction devices, and the large vacuum chamber aperture. The stringent limit on tolerable beam loss further demands a 
good magnetic field quality to minimize beam resonances caused by higher-order magnetic multipoles.  
In this paper, we present results from magnetic field calculations performed on 2D and 3D models of a large-aperture 
narrow-quadrupoles  that is suitable for a high intensity, low beam-loss accumulator rings . The pole face of the 
quadrupole has been optimized to minimize the integrated field of the first three allowed multipoles (12pole,20pole and 
28pole). The ratio of each integrated magnetic-multipole-strength to the integrated magnetic-quadrupole-strength at a 
radius of 85% of the quadrupole’s pole-tip-radius is less than 2x10-4. Results from the calculations performed on the 
two-dimensional and three-dimensional models of the narrow quad are presented. 

1 INTRODUCTION 
In a published paper[1] we provide detailed information about the design of a “narrow quadrupole” that has been built 
to be used in the SNS accumulator ring[2 ]. The  transverse dimension of the quadrupole on the horizontal plane has 
helped accommodate the various devices which are located at the injection and extraction regions[1] of the SNS 
accumulator ring. The main requirements for the magnetic design of the narrow quadrupole was to minimize the 
integrated strength of the 12pole magnetic multipole down to ?B12pole dz/?B4pole dz <2x10 -4 at a radius of r=10 cm, and we 
did not regard the contributions from the 20pole and 28pole multipoles. Table I shows the integrated strength of these 
multipoles relative to the integrated quadrupole strength as were calculated by the 3-Dimentional model and also as 
were measured in the first built quadrupole.  
In Table 1, Rn= ?Bn(r,z)dz/?B1(r,z)dz where Bn(r,z) is the nth coefficient in the expansion of the radial field B r(r,z) 
Br(r,z) =? Bn(r,z)cos[(n+1)θ]  {n=1 quad, n=3 oct …} (1) The Br(r,z) is calculated and measured at a radius r=10 cm 
and the coefficients Bn(r,z) are integrated along the z-axis which is along the beam direction.  
In Table 1, the 2nd  row shows the calculated quantity Rn , and the 3rd  and 4th rows the measured quantity Rn for the 
quadrupole as it was  delivered by the manufacturer  (3rd row ) and with a minor modification (reduce the transverse pole 
length by 0.75 mm), (4th row).The modification resulted in reduction of the R(12pole) multipole strength down to 1.2x10-4.   

The error in the measurements of the harmonics was ±0.02x10-4. 
 

Table 1: The Ratio R n of few allowed multipoles. The quantity Rn is defined in the text. 
 R5 (12pole) R9 (20pole) R 13 (28pole) 
CALC -4.2x10-4 -5.2 x10- 4 -1.5 x10- 4 
MEAS#1 +3.20x10-4 -6.90 x10-4 -1.20 x10-4 
MEAS#2 +1.20x10-4 -6.81x10-4 -0.92 x10-4 

 
Calculations performed on the SNS ring [3] showed that the measured strength of the (20 and 28)poles  multipoles (see 
Table 1) of the narrow quadrupole are well below the limits that may bring the beam into resonance and cause 
significant beam emittance growth that will result in beam losses. Nevertheless we thought as a useful task to design a 
narrow quadrupole that minimizes the first three allowed multipoles (12,20,28)pole.  The following sections are dealing 
with the design of such a narrow quadrupole. 

2 THEORY FOR THE MAGNET DESIGN  
 
  Poisson’s theorem states that the magnetic field vector B (or any vector, which is regular at infinity) 
can be expressed as: 

B(x)=(1/4p)?{[∇′(∇⋅B )-∇′x(∇′xB)]/ |x-x′|}d3x′  (1) 
 

  
* SNS is managed by UT-Battelle, LLC, under contract  
DE-AC05 -00OR22725 for the U.S. Department of Energy.  



By defining the magnetization vector  M=B-µ0H ,  and inserting the Maxell equations: ∇′⋅B=0 and  ∇′xH=J  in 
equation (1) we obtain eq. (2) 
 
B(x)=(µ0/4p){?[∇′xJ]/|x-x′ |}d3x′  + (1/4p){?[ ∇′x(∇′xM)]/|x-x′|}d3x′  (2) 
 
Equation (2) expresses the magnetic flux density B(x) as the contribution of two terms; one term corresponding to the  
currents distribution J the other term to the magnetization M of the materials. 
 
Using:  JM=(1/µ0)(∇′xM )   equation (2) becomes: 
 
B(x)=(µ0/4p){?[∇′xJ]/|x-x′ |}d3x′ + (µ0/4p){?[∇′xJM]/|x-x′ |}d3x′  (3) 
 
Using the identities (4) and (5) below, in eq. (3) above, we obtain eq. (6):  
 
∇′xJM]/|x-x ′|=∇′x{JM/|x-x ′|}+ JMxru/|x-x′ |2 (4) 
 
 ?∇′x{JM/|x-x′|}d3x′= -?[JM/|x-x′ |]xd2x′   (5) 
 
B(x)=(µ0/4p){?[∇′xJ]/|x-x′ |]d 3x′+?[JMxru/|x-x′|2]d3x′ -?[JM/ |x-x′ |]xdS ′out} (6) 
 
The third integral in eq. (6) extends over the surface which encloses the whole volume of the space therefore vanishes 
because the JM is zero at large distances (No magnetic magnet  iron). 
 
The second integral in eq. (6) can be written as: 
 
?[JMxru/|x-x′ |2]d3x′= ?[JMxru/|x-x′ |2]d3x′ + ?[JMxru/ |x-x′|2]d3x′         (7) 
 
 
The integral over the volume of the “boundary layer” of the material can be written: 
 
 ?[JMxru/ |x-x ′|2]d3x′=?[∇ x[JM/ |x-x ′|]d3x′=∇x[?JM/|x-x′ |]d3x′=  {Use: ∇[X/r]=-ru[X/r]} 
 
 = (1/µ0)(∇x?[(∇′xM)/|x-x ′|]d 3x′=                                             {Use: JM=(1/µ0)(∇′xM) } 
 
=(1/µ0)∇ x{?[∇ x[M/ |x-x′ |]d3x′+?∇′x[M/ |x-x′ |]d3x′}                  {Use: (∇′M)/ |x-x’|= ∇ [M /|x-x′|]+∇′[M/|x-x′|]} 
 
=(1/µ0)∇ x{∇x?[M /|x-x′|]d 3x′-?[M/|x-x ′|]d2x′}                           {Use: ?∇′x[M/|x-x′ |]d3x′=-?[M/|x-x′ |]xdS ′out} 
 
 The volume integral ?[M/|x-x′ |]d3x′=0 as the volume layer approaches to zero volume. 
 
The surface integral   -(1/µ0)∇ x?[M/|x-x′|]dS ′out  = -(1/µ0)?∇x[M/|x-x′ |dS ′out= 
 
-(1/µ0)?∇ x[1/|x-x′ |][MxdS ′out]=(1/µ0)?[ru/|x-x′ |2]x[MxdS ′out]=′]=(1/µ0)?[MxdS ′outxru]/|x-x′ |2 
 
Thus equation (6) can be written as: 
 
B(x)=(µ0/4p){?[∇′xJ]/|x-x′ |]d3x′+?[JMxru/|x-x′ |2]d3x′+(1/µ0)?[MxdS ′outxru]/|x-x′|2}     (8)         (ru=unit vector along x-x′)  
 
In equation (8) the second integral extends over the interior of the finite volume of the magnetic material, and the third 
integral over the surface enclosing the volume of the magnetic material (dS ′out=normal to the surface element).  
It is the contribution of the third integral that can affect the strength of the various allowed multipoles by altering the 
contour of the pole face. We assume that the value of the permeability µ of the iron at the vicinity of the pole surface 
has a value µ>>1 for the third integral to have an effect on the magnetic multipoles.  It is therefore possible to affect the 
magnetic field in the space of the beam by modifying the contour of the pole tip of the quadrupole. This approach [4] 
was followed in the design of  narrow quadrupoles. In this paper we employ more sophisticated contour of the pole tip  
and we extend the calculations in  three dimensions. 
 

Inner Volume Volume of boundary layer 



3 TWO-DIMENSIONAL MODELING 
 

In this section we present the results of the two dimensional magnetic calculations as applied to three design s 
of the narrow quadrupole. The three designs will be referred in the text as A,B and C. In each of the designs, discussed 
below, we provide enough information about the cross section of the narrow quadrupoles, for the reader to repeat the 
calculations using her/his preferred computer code for the elelectomagnetic design. In all three designs the strength of 
all allowed multipoles B (12pole,20pole,28pole) was calculated at r=10cm and the  B(12pole,20pole,28pole)/Bquad ratio was reduced 
below the value of 1x10-4.  The deviation of the narrow quad  from the four fold symmetry, has introduced multipoles 
like octupoles, 16poles etc. However the relative strength of each of the multipoles (B(8pole,16pole,24pole)/Bquad) was below 
the value of 1x10-5 at r=10 cm . In each of the designs we kept intact both, the outside dimensions of the quadrupole 
(shown in Fig. 1)  and the pole tip radius Rp and we only varied the width of the pole piece W, and the pole tip  contour.  
In order to keep the permeability of the iron at a reasonable large value µ>>1, the quadrupole strength of each of  the 
models was also kept at a value of ~4.2 [T/m]. All calculations were performed using the computer code for 
electomagnetics of Vector_Fields[5 ].  
 
3.1 Narrow Quadrupole Design_A 
 
The cross section of one of the pole pieces of the desisign_A quadrupole is shown in Fig 2. In this design we kept the 
contour of the pole tip similar to the contour of the narrow quad discussed in ref [1] but we increased the pole width 
(W) to a value of 19.8 cm, to achieve minimization of the 20pole and  28pole multipoles. The design was finally 
optimized by modifying the contour of the pole face, by varying the radii of curvature ? i ,?o  and the location of  the 
inflection points P1,P2 ,shown in Fig 2. 
The optimization yielded a ratio  Bn/Bquad  of <1x10 -4 at a radius r=10 cm for the (12, 20, 28)pole multipoles . 
The increase of the pole width (W) however reduced the area of the current conductor which has to run at a higher 
current density (J) to achieve the quadrupole  strength of ~4.2 [T/m]. An alternative design which satisfies the 
requirements of low relative strength B npole/B 4pole<1x10-4, for the (12, 20, 28)pole multipoles, and also provides more 
conductor area, is discussed in the next subsection. 
 

 
 
Figure 1:    Cross section of the narrow quad. The outer dimensions were the same for all designs A,B, and C.  
 
3.2 Narrow Quadrupole Design_B 
 

w 

Rp 



The cross section of this alternative design of a narrow quadrupole is shown in Fig. 3. In this design the width of the 
pole piece has been reduced to 17.6 cm but the overall shape of the pole tip surface remained almost the same  as in 
design_A with only small modifications of the location of the inflection points P1,P2 and radii of curvature ?i, ? o. These 
minor modifications reduced the relative strength Bnpole/B4pole of the (12, 20, 28)pole multipoles, below the required 
value of 1x10- 4 at a radius r=10 cm. 
 

 
 
Figure 2. Cross section of pole piece corresponding to “design A” (see text).  The inflection points P1,P2 , and the radii 
of curvature ρi ,  ρo  were varied in order to minimize the strength of the (12,20,28)pole multipoles.  
 
Compared with design A, this design allows for an increased cupper area and the required gradient  of ~4.2 [T/m] is 
achieved at a reduced current density, but the magnet ic field B inside the poles will be higher for the same value of the 
magnetic field at the pole tip.  
 

 
 
 
 
 
 
 

Figure 3. Cross section of pole piece for  “design B” .   
 
3.3 Narrow Quadrupole Design_C 
 
This design combines the features of the design_A and design_B namely larger conductor area (same as in design_B) 
and lower value  of the magnetic flux density B inside the pole pieces (as in design_A).  The cross section is shown in 
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figure 4. Tthe relative strength B npole /B4pole of the (12,20, 28)pole is minimized to values < 1x10-4. Compare the contour 
shape of design_C with that of designs_A or B. 
 

 
 
Figure 4. Cross section of the pole piece of  “ design_C ”. 
 
4      THREE-DIMENSIONAL MODELING 

 
Practical considerations lead us to perform the three dimensional magnetic field calculations on the “design_C”. The 
goal was to minimize the relative integrated strength ?Bnpoledz/?B4poledz of the (12,20, 28)pole multipoles . The method of 
optimization was to chamfer the edges of the pole pieces at both, the entrance and exit of the magnet [1] as shown in 
figure 6. The “pole chamfering” reduced the integrated strength of the 12pole multipole but introduced some strength in 
the 20pole and 28pole multipoles. This strength was reduced by reshaping slightly the contour of the pole tip inside the 
magnet. The optimization yielded the following results:   
?B12pole dz/?B4pole dz=2x10-6   ?B20poledz/?B4poledz=4x10- 5 ?B28poledz/?B4poledz=5x10-5  at r=10 cm. 
  

 
 
Figure 5 An isometric view of the chamfered  ends of one of the pole-piece of the narrow quadrupole.  
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5 CONCLUSIONS 
Two dimensional magnetic field calculations were performed on three models of a large aperture narrow quadrupole. 
Each of the models was optimized to minimize the relative strength B npole/B 4pole of the (12, 20, 28)pole multipoles  to 
values less than 1x10-4 at a radius r=10 cm. One of the models was optimized using 3D magnetic field calculations. 
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