¢ Brookhaven

National Laboratory
BNL-105606-2014-TECH
BNL/SNS Technical Note No. 037;BNL-105606-2014-IR

Some Notes on Tuning the NSNS Ring Lattice

C. J. Gardner

August 1997

Collider Accelerator Department
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC)

Notice: This technical note has been authored by employees of Brookhaven Science Associates, LLC under
Contract No.DE-AC02-76CH00016 with the U.S. Department of Energy. The publisher by accepting the technical
note for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this technical note, or allow others to do so, for
United States Government purposes.



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.



SOME NOTES ON TUNING THE NSNS RING LATTICE

BNL/NSNS TECHNICAL NOTE

NO. 037

C. J. Gardner

August 12, 1997

ALTERNATING GRADIENT SYNCHROTRON DEPARTMENT

BROOKHAVEN NATIONAL LABORATORY
UPTON, NEW YORK 11973




Some Notes on Tuning the NSNS Ring Lattice

C.J. Gardner
August 12, 1997

1 Introduction

The four-fold symmetric lattice designed by Y.Y. Lee for the NSNS ring is
described in Refs. [1, 2]. We consider here the ways in which the lattice
quadrupoles can be tuned to achieve the desired betatron tunes while
keeping distortions of the betatron functions and the periodic dispersion to
a minimum. The effects of systematic and random quadrupole errors are
also investigated.

2 The Ideal Lattice

The ideal lattice consists of four superperiods, each containing a 90° arc
and a long straight section. In order to make the periodic dispersion zero
in the long straight sections, the horizontal transfer matrix for each arc
must be equal to the unit matrix I as discussed in Ref. [3]. We also require
that the vertical transfer matrix for each arc be equal to I. To satisfy these
requirements, the arcs consist of four identical FODO cells, each cell
having a betatron phase advance of 7/2 in both planes. Using AC to
denote the Arc Cell, we write, in the notation of the MAD program [4],

AC: Line = (QF, 00, BND, 0, QD, QD, 00, BND, 0, QF)

where QF and QD are horizontal focusing and defocusing half-quadrupoles
of length 0.25 meters, OO is a drift of length 1.55 meters, BND is a 11.25°
bend of length 1.5 meters, and O is a drift of length 0.45 meters. Each arc
cell is therefore 8 meters long and bends the beam 22.5°. We shall use KF



and KD to denote the field gradients in quadrupoles QF and QD. The
total 90° arc, consisting of 4 cells, is given by

ARC: Line = (AC, AC, AC, AC).

Two identical FODO cells without a dipole form each long straight section.
We use EC to denote these Empty Cells and write

EC: Line = (QFS, LL, LL, QDS, QDS, LL, LL, QFS)

where QFS and QDS are horizontal focusing and defocusing
half-quadrupoles of length 0.25 meters and LL is a drift of length 2.6465
meters. Each empty cell is therefore 11.586 meters long. We shall use KFS
and KDS to denote the field gradients in quadrupoles QFS and QDS. Each
superperiod, starting from the center of one long straight section and going
to the center of the next, is then given by

SP: Line = (EC, ARC, EC).

We use p;(AC) and p,(AC) to denote the horizontal and vertical betatron
phase advances for the arc cell AC; the horizontal and vertical tunes for
the entire ring are denoted by Q. and @,. To obtain the values of KF and
KD required to make p;(AC) = py(AC) = 7/2 in both planes, we apply
the Match module [5] of the MAD code to the arc cell AC with the
constraints p,;(AC) = py(AC) = 7/2. The resulting values (Tesla/meter)
of KF and KD are

KF = 3.882808, KD = —4.123195. (1)

With these values, the transfer matrix for the entire arc (ARC) will be I'in
both planes. The corresponding lattice parameters for the matched arc cell
are shown in Figure (1) where the solid line is the horizontal beta function
Bz, the dashed line is the vertical beta function 3,, and the dotted line is
the horizontal dispersion D,. To obtain the desired tunes for the ring, we
keep KF and KD fixed at the values given by (1) and adjust KFS and
KDS. Applying the Match module to the superperiod SP, we find that the
values (Tesla/meter) of KFS and KDS required to give the nominal tunes,
@z = 5.82 and @, = 5.80, are

KFS = 2.633147, KDS = —2.617792. (2)



The corresponding lattice parameters for the superperiod are shown in
Figure (2). Here the maximum values (meters) of 8;, By, and D, are
19.130, 19.225, and 4.101 respectively. The values (Tesla/meter) of KFS
and KDS required to give various tunes are listed in Table I along with the
maximum values of 3, and 8,.

Table I: Ideal Lattice Parameters
KFS KDS$ Qs Qy Bz By
2.633147 | —2.617792 | 5.820 | 5.800 | 19.130 | 19.225
2.323119 | —2.546390 | 5.500 | 5.800 | 20.338 | 18.303
2.802707 | —2.654130 | 5.992 | 5.800 | 19.014 | 19.731
2.633147 | —2.617792 | 5.820 | 5.800 | 19.130 | 19.225
2.567355 | —2.328728 | 5.820 | 5.500 | 18.272 | 20.404
2.673089 | —2.806309 | 5.820 | 5.992 | 19.691 | 19.069
2.633147 | —2.617792 | 5.820 | 5.800 | 19.130 | 19.225
2.235635 | —2.235635 | 5.500 | 5.500 | 19.351 | 19.351
2.375463 | —2.747311 | 5.500 | 5.992 | 20.978 | 18.194
2.747312 | —2.375463 | 5.992 | 5.500 | 18.195 | 20.978
2.836559 | —2.836559 | 5.992 | 5.992 | 19.552 | 19.551

3 The Actual Lattice

In the Ideal Lattice described above, the half-quadrupoles QF at the ends
of the arcs are joined with the half-quadrupoles QFS at the ends of the
long straight sections thereby making full-length quadrupoles having a
gradient of KF for one half of the quad and KFS for the other half. Since
such quadrupoles can not be made in practice, we must modify the ideal
lattice so that the two halves of the end quadrupoles have the same
gradient. This will amount to a small perturbation of the ideal lattice
which, as we shall see, requires some careful attention as the tunes
approach six. Let us define the superperiod of the actual lattice as follows:

SP: Line = (EL, ARC, ER).
where
EL: Line = (QHC, LL, LL, QVS, QVS, LL, LL, QHE),

ER: Line = (QHE, LL, LL, QVS, QVS, LL, LL, QHC),



ARC: Line = (AL, AC, AC, AR),
and
AL: Line = (QHE, 00, BND, O, QVA, QVA, 00, BND, 0, QHA),
AC: Line = (QHA, 00, BND, O, QVA, QVA, 00, BND, O, QHA),
AR: Line = (QHA, 00, BND, O, QVA, QVA, 00, BND, 0, QHE).

Here EL and ER are the Empty cells to the Left and Right of the arc; AL
and AR are the Arc cells on the Left and Right ends of the Arc. The drifts
and bends are the same as those in the ideal lattice and each of the
quadrupoles is a half-quadrupole of length 0.25 meters. In the labeling of
the quadrupoles, QH and QV denote horizontal and vertical focusing
quadrupoles, and the additional letters A, E, S, C denote quadrupoles
located in the Arcs, at the Ends of the arcs, in the long Straight sections,
and at the Center of the long straight sections. With the lattice
superperiod defined in this way, the half-quads QHE at the ends of the
arcs are joined with the same half-quads at the ends of the long straight
sections.

We use KHA, KVA, KHE, KHC, KVS to denote the field gradients in
quadrupoles QHA, QVA, QHE, QHC, QVS. To ensure that the dispersion
is zero in the long straight sections of the actual lattice, it is sufficient to
set the gradients of quadrupoles QHA and QVA equal to those of the
corresponding quadrupoles of the ideal lattice. Thus we have

KHA = KF = 3.882808, KVA = KD = —4.123195. (3)

As a first approximation for the settings of the end quadrupoles (QHE)
and the straight section quadrupoles (QHC and QVS) we set

KHE — %(KF + KFS), KHC = KFS, KVS = KDS. 4)

The actual lattice is then the same as the ideal lattice except for the values
of the gradients in the end quads. Because of the four-fold symmetry of
the ring, these quads introduce a 12th harmonic quadrupole perturbation
that can excite the 2Q, = 12 and 2Q),, = 12 resonances. As the tunes



approach six, we therefore expect some beta function distortion. To
correct for this effect, we apply a small correction, KE, to KHE and adjust
its value to minimize the beta function distortion. At the same time we
apply a correction —2+xKE to the center quads QHC so that there is no
change in the tunes (to first order). Thus we have

KHE = %(KF + KFS) + KE, KHC = KFS — 2+KE. (5)
Using the Match module of the MAD code with appropriate constraints on
the beta function we obtain the values (Tesla/meter) of KFS, KDS, and
KE required to give various tunes while keeping the beta function
distortion to a minimum. The results are listed in Table II along with the
maximum values of 3, and G, (meters).

Table II: Actual Lattice Parameters
KFS KDS KE x 103 Q= Qy Bz By
2.630007 | —2.616449 | —1.135565 | 5.820 | 5.800 | 19.062 | 19.207
2.318054 | —2.544043 | —1.259121 | 5.500 | 5.800 | 20.247 | 18.275
2.800399 | —2.653185 | —1.052921 | 5.992 | 5.800 | 18.955 | 19.718
2.630007 | —2.616449 | —1.135565 | 5.820 | 5.800 | 19.062 | 19.207
2.563762 | —2.326891 | —1.258435 | 5.820 | 5.500 | 18.202 | 20.383
2.670187 | —-2.805179 | —1.063944 | 5.820 | 5.992 | 19.624 | 19.194
2.630007 | —2.616449 | —1.135565 | 5.820 | 5.800 | 19.062 | 19.207
2.229719 | —2.232356 | —1.394014 | 5.500 | 5.500 | 19.256 | 19.316
2.370821 | —2.745334 | —1.180672 | 5.500 | 5.992 | 20.890 | 18.441
2.744694 | —2.374182 | —1.164053 | 5.992 | 5.500 | 18.135 | 20.962
2.834419 | —2.835763 | —0.987781 | 5.992 | 5.992 | 19.494 | 19.633

Comparing these numbers with those listed in Table I we see that with the
appropriate correction KE we get similar values for the maximum of the
beta function. Figures (3) and (4) show the effect of the correction for the
case in which @, = 5.992 and @, = 5.80. Here we see that without the
correction, the maximum value of 8, is 25 meters; this is reduced to 19
meters with the appropriate correction. Figures (5) and (6) show the effect
of the correction for the case in which the tunes are set at the nominal
operating point (Q, = 5.82, @, = 5.80). Here the effect is small because
the tunes are sufficiently far from six. The effect of the correction for the
case in which @, = 5.82, @, = 5.992 is shown in Figures (7) and (8). Here
we see that even with the vertical tune close to six, the distortion of the



vertical beta function is small. This is because the end quads are located
at vertical beta minima and therefore do not significantly perturb the
vertical lattice parameters.

4 Quadrupole Strings

To provide sufficient tuning flexibility, the lattice quadrupoles will have
main and trim windings that will be wired together to form several
different series strings. To facilitate the description of the strings we label
the four superperiods of the ring A, B, C, and D which we take to run
along the beam direction from the beginning of one arc to the next. The
order of magnets in each superperiod X is DHX1, QVX1, DHX2, QHX2,
..., DHX8, QHXS, QVX9, QHX10, QVX11, and QHX12, where D and Q
denote Dipoles and Quadrupoles and H and V refer to the Horizontal and
Vertical planes. The long straight section in superperiod X runs from
QHXS8 through QHX12. In terms of the half-quadrupoles defined in
Section 3 we have

QVX1: Line = (QVA, QVA), QHX2: Line = (QHA, QHA)
QVX3: Line = (QVA, QVA), QHX4: Line = (QHA, QHA)
QVXS5: Line = (QVA, QVA), QHX6: Line = (QHA, QHA)
QVXT7: Line = (QVA, QVA), QHXS: Line = (QHE, QHE)
QVX9: Line = (QVS, QVS), QHZXI10: Line = (QHC, QHC)
QVX1l1: Line = (QVS, QVS), QHX12: Line = (QHE, QHE).
In the actual ring, the lengths of quadrupoles QHX2, QHX4, and QHX6
will be adjusted so that with the main windings of all 28 arc quadrupoles
(QVX1, QHX2, ..., QVXT7) connected in a series string to one power
supply, the current in the string can be adjusted to give zero dispersion in
the long straight sections. We use PSA to denote this string and its power

supply (here A stands for Arc). The main windings of the 12 Horizontal
quads (QHXS8, QHX10 and QHX12) in the long straight sections will be



connected in a series string PSH powered by a supply with the same name;
the main windings of the 8 Vertical quads (QVX9 and QVX11) will be
connected in a series string PSV. Thus we write

PSA = QVX1 + QHX2 + --- + QVX7,
PSH = QHXS8 + QHX10 + QHX12, PSV = QVX9 + QVX11

where X indicates that the quadrupoles from all four superperiods A, B, C,
D are included in the string. Power supplies PSH and PSV will be used to
adjust the tunes of the ring.

To correct for any systematic errors in the relative strengths of the
horizontal and vertical quads in the arcs, quads QHX2, QHX4, and QHX6
will have trim windings that are connected together to form two series
strings TRMA and TRMB. Thus

TRMA = QHX2 + QHX6, TRMB = QHX4.

To allow for independent adjustment of the Center and End quads in the
long straight sections, quads QHXS8, QHX10, and QHX12 will have trim
windings that are connected together to form two series strings TRMC and
TRME. Thus '

TRMC = QHX10, TRME = QHXS8 + QHX12.

These strings allow one to apply the correction KE discussed in the
previous section. To correct distortions of the vertical beta function, quads
QVX9 and QVXI11 will have trim windings that are connected together to
form string TRMYV. Thus

TRMV = QVX9 — QVX11.

Here the — sign indicates that trim winding of QVX11 is connected in the
string with polarity opposite that of QVX9. This ensures that the string
does not alter the tunes (to first order).

Each of the eight strings (PSA, PSH, PSV, TRMA, TRMB, TRMC,
TRME, TRMV) defined above maintains the four-fold symmetry of the
ring, and, except for TRMYV, they are the same as those originally



proposed by Y.Y. Lee. For the correction of random quadrupole errors it is
necessary to have an additional set of trim windings connected together in
strings that break the four-fold symmetry. We define these as follows:

XTRMA = QHA2 — QHB2 + QHC2 — QHD2
— QHAS6 + QHB6 — QHC6 + QHDS,
XTRMB = QHA4 — QHB4 + QHC4 — QHD4,
XTRM1 = QHA10 — QHC10, XTRM2 = QHB10 — QHD10
XTRM3 = QVAll — QVC11, XTRM4 = QVB11 — QVD11.

Here XTRM stands for eXtra TRiM, and the + and — signs indicate the
relative polarities of the quadrupoles in each string. In the XTRMA and
XTRMB strings, quadrupoles separated by an azimuthal angle of = /2 are
excited with opposite polatities and therefore produce only azimuthal
harmonics 2, 6, 10, 14, and so on. Similarly, in the XTRM1, XTRM2,
XTRM3, and XTRM4 strings, quadrupoles separated by an azimuthal
angle of 7 are excited with opposite polarities and therefore produce only
harmonics 1, 3, 5, 7, 9, 11, and so on. The use of these strings will be
discussed in the next sections.

5 Distortions of Dispersion and Beta

If the arc quadrupoles, QHA and QVA, do not have the gradients given by
(3), then the periodic dispersion may not be zero in the long straight
sections. Let us assume that

KHA = KF(1 + Ar), KVA = KD(1 + Ap) (6)

where KF and KD are the nominal gradients required to give zero
dispersion. The lattice parameters obtained for various values of Ay and
Ap are listed in Table III. Here the straight section quadrupoles have been
adjusted to give the indicated tunes, and D and Ds are the resulting
extreme values (in meters) of the periodic dispersion in the Arcs and
Straight sections respectively. The maximum values (meters) of 3, and 3,
are also given.



Table III: Effect of Arc Quad Variations
Ar (%) | Ap(%) | @z | Qy Bz By Dy Ds
+1 +1 5.820 | 5.800 | 19.214 | 18.881 | 4.028 | +0.104
-1 -1 5.820 | 5.800 | 19.566 | 19.672 | 4.174 | —0.108
+1 0 5.820 | 5.800 | 19.518 | 19.102 | 3.994 | +0.132
-1 0 5.820 | 5.800 | 19.311 | 19.314 | 4.208 | —0.137
0 +1 5.820 | 5.800 | 19.103 | 18.985 | 4.135 | —0.028
0 -1 5.820 | 5.800 | 19.663 | 19.550 | 4.067 | +0.029
+1 +1 5.992 | 5.800 | 19.800 | 19.387 | 4.041 | +0.102
-1 -1 5.992 | 5.800 | 20.250 | 20.158 | 4.159 | —0.107
+1 0 5.992 | 5.800 | 20.513 | 19.607 | 4.012 | +0.130
-1 0 5.992 | 5.800 | 20.494 | 19.827 | 4.190 | —0.135
0 +1 5.992 | 5.800 | 19.057 | 19.493 | 4.131 | —0.028
0 -1 5.992 | 5.800 | 19.547 | 20.031 | 4.071 | +0.028

Figures (9) and (10) show the lattice parameters obtained for the case in
which Ap = £1% with tunes Q. = 5.992, @, = 5.80. Here, and in the
Table, we see that even with the horizontal tune close to six, the distortion
of the dispersion in the straight sections is at most +0.14 meters. The
reason for the relatively small distortion is that the quadrupole
perturbation introduced by KHA does not have any sixth harmonic
component. Only if the four-fold symmetry of the arc quadrupoles is
broken will there be a sixth harmonic component that can produce
significant distortion of the dispersion.

Let us suppose, then, that the gradient KHA of the horizontal quadrupole
in the center of one of the arcs, say QHAA4, is just 0.1 percent higher than
the nominal value given by (3). The resulting lattice parameters for the
case in which @, = 5.992 and @, = 5.80 are shown in Figure (11). Here we
see a significantly larger distortion of the dispersion for a much smaller
quadrupole perturbation. To compensate for this kind of perturbation we
need to produce a sixth harmonic which cancels that produced by the
perturbation. This can be done with the quadrupole strings XTRMA and
XTRMB defined in the previous section. Using the Match module of the
MAD code with appropriate constraints on the dispersion, we find that we
can correct the dispersion distortion with the gradients in string XTRMA
set to zero and those in string XTRMB set to —9.71 x 10~* Tesla/meter.
This is just what we expect for the error of 0.001 x 3.882808 in the setting
of QHAA4. Figure (12) shows the corrected lattice parameters.



As a further test of the ability of strings XTRMA and XTRMB to correct
distortions of the dispersion, we use the Efield command [6] of the MAD
code to generate Gaussian distributions of quadrupole errors in the ring.
We take the RMS deviation of the distributions to be 0.1 percent of the
nominal quadrupole gradients and impose a cutoff of 2.5 standard
deviations. Figure (13) shows the lattice parameters obtained from an
error distribution with a seed of 7777. Here the tunes have been adjusted
to be Q; = @, = 5.992 after the errors have been generated, but no further
corrections have been applied. Because the tunes are close to six, we see
significant distortion of the dispersion and the beta functions. Using the
Match module with appropriate constraints on the dispersion, we find that
we can correct the dispersion distortion with the gradients in string
XTRMA set to 2.644 x 1072 and those in string XTRMB set to

1.366 x 1073 Tesla/meter. Using the Match module again with appropriate
constraints on the beta functions we find that we can minimize the beta
function distortion with KE set to —1.518 x 1073 and the gradients of the
quads in string TRMV set to 0.236 x 10~2 Tesla/meter. Figure (14) shows
the resulting lattice parameters with these corrections. The results of
carrying out the analysis with several different seeds are summarized in
Table IV.

Table IV: Beta and Dispersion Corrections
Q: = Q, = 5.992 (Gradients in units of 1073 T/m
Seed KFS KDS KE TRMV | XTRMA | XTRMB
7777 | 2835.144 | —2831.689 | —1.518 | +0.236 | +2.644 +1.366
6777 | 2836.492 | —2837.919 | +0.043 | —0.393 | —0.324 +1.505
5777 | 2830.878 | —2838.450 | —1.837 | —3.400 | -—-1.397 -2.327
4777 | 2834.847 | —2836.694 | —0.794 | —0.369 | —1.996 —0.476
3777 | 2834.964 | —2834.670 | —0.227 | +0.596 | +0.487 +0.425
2777 | 2835.790 | —2837.040 | —0.850 | —0.689 | +1.819 +0.002
1777 | 2835.752 | —2833.118 | —0.516 | —1.729 | +1.715 +1.164

6 2Q,=11 and 2Q, = 11 Resonance Correction

If the tunes are near either the 2Q; = 11 or the 2Q, = 11 resonance, then
quadrupole errors that have an azimuthal 11th harmonic can excite the
resonance and produce significant distortions of the beta function. To
cancel the 11th harmonic components of the quadrupole errors, we use the
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strings XTRM1, 2, 3, 4 defined in Section 4. To test the ability of the
strings to correct the resonances, we again use the Efield command of the
MAD code to generate Gaussian distributions of quadrupole errors in the
ring. We take the RMS deviation of the distributions to be 0.1 percent of
the nominal quadrupole gradients and impose a cutoff of 2.5 standard
deviations. Figure (15) shows the lattice parameters obtained from an
error distribution with a seed of 7777. Here the tunes have been adjusted
to be @, = @, = 5.508 after the errors have been generated, but no further
corrections have been applied. (Actually, the dispersion has been corrected
here too, but the effect of this correction with @, = @, = 5.508 is very
small.) Using the Match module with appropriate constraints on the beta
functions we find that we can minimize the beta function distortion with
the gradients of the quads in strings XTRM1, 2, 3, 4 set to —2.333, —5.951,
—3.428, and 11.82 x 1072 Tesla/meter respectively. Figure (16) shows the
resulting lattice parameters with these corrections. The results of carrying
out the analysis with several different seeds are summarized in Table V.

Table V: Correction of the 2@, = 11 and 2@, = 11 Resonances
Q. = @, = 5.508 (Gradients in units of 1072 T/m)
Seed KFS KDS XTRM1 | XTRM2 | XTRM3 | XTRM4
TT77 | 2240.269 | —2238.156 | —2.333 | —5.951 | —3.428 | +11.82
6777 | 2242.873 | —2245.721 | —-1.831 | +2.253 | —8.032 | +3.578
4777 | 2240.784 | —2243.997 | +2.428 | —4.375 | —2.608 | +9.933
3777 | 2240.893 | —2242.070 | +5.567 | —4.035 | +0.228 | +4.895
2777 | 2241.911 | —2244.586 | +2.558 | +5.028 | —3.388 | ~1.980
1777 | 2241.216 | —2240.044 | —1.368 | +1.173 | —7.458 | +3.448
0777 | 2239.480 | ~2240.771 | —1.561 | +0.266 | +4.648 | —9.778
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Figure 3: Actual Lattice Parameters
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Figure 5: Actual Lattice Parameters

Qx

5.80, End Quads NOT Corrected.
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Figure 6: Actual Lattice Parameters

5.80, End Quads Corrected.
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5.82, Qy =5.992, End Quads NOT Corrected.

Figure 7: Actual Lattice Parameters
Qx
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Figure 9: Actual Lattice Parameters

5.80, KHA 1% too High
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Figure 9: Actual Lattice Parameters

5.80, KHA 1% too High
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Figure 10: Actual Lattice Parameters

5.80, KHA 1% too Low
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Figure 10: Actual Lattice Parameters

5.80, KHA 1% too Low
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