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NSNS Transverse Microwave Instabilities

1 Introduction

In this note, the conventional space charge coherent and incoherent tune shifts will be pre-
sented. It will be shown that applying the transverse space charge impedance to the beam
dynamic equation, we get the difference of the space charge coherent and incoherent tune
shifts.

Secondly, the transverse Landau damping is discussed with respect to the sources of
the coherent tune shift and the incoherent tune shift. It is indicated that for low energy
synchrotrons, the space charge incoherent tune spread is an important stabilizing force. Also
it is shown that the transverse space charge impedance is relevant to both the coherent tune
shift and the stabilizing incoherent tune spread.

Finally, the NSNS transverse microwave instability is studied. Because of the large space
charge tune spread, the transverse microwave instability is not of serious concern. For the
same reason, other damping factors, i.e. the chromatic, the frequency slippage, the octupolar,
and the synchrotron oscillation effects are not eritical in the transverse microwave instability.
On the other hand, the incoherent tune spread cannot help for the rigid bunch instabilities,
because of the synchrotron oscillation. Careful study for this kind of instabilities, such as
the resistive wall instability, is needed.

2 Coherent and Incoherent Tune Shifts

For coasting symmetric beam with non-penetrating fields, the space charge incoherent and
coherent tune shifts are defined as [1],
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where N is the total number of particles, R is the machme average radius, 7o is the classical
radius of proton, 1 is the betatron tune with zero beam current, and b is the average half
chamber height, g is the half pole gap, a is the average radius of the beam, and €; and €,



are the Laslett incoherent electric and magnetic coefficients, respectively. The coefficient &
is the Laslett coherent electric coefficient.
For the simplified model, we consider circular chamber, which gives rise to,
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then the incoherent and coherent tune shifts become,
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We indicate that for low energy synchrotrons, since 7y is small, therefore, the equations
(5) and (6) are approximately right, even the chamber is not circular.

For bunched beams, we take a simplified approach, by adding the bunching factor By to
the denominators of equations (5) and (6).

3 Transverse Space Charge Impedance

The conventional transverse space charge impedance is defined as [2,3],

RZy 1 1
Zrsc = Jw(bj 2 (7)

where Z; is the impedance of free space. Since a < b, this impedance is usually taken as
capacitive.
Consider the transverse bunched beam dynamic equation with the azimuthal mode m =0

[4],
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where wg and wp are the betatron and revolution frequencies, respectively, Io is the average
beam current, and myg is the rest mass of proton. Also Zr is the transverse impedance, and
Ag is the spectrum of the beam line density for m = 0 mode.

In the following, we show that,

e The tune shifts shown in (5) and (6) can be obtained by substituting a proper part of
the space charge impedance into the dynamic equation (8).
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e The transverse space charge impedance represents the difference between the coherent
and incoherent tune shifts.

e The incoherent tune shift will be cancelled in the dynamic equation, and therefore, it
pays no role in the coherent motion.

3.1 Impedance and dynamic equation
First, we take the chamber part of the transverse space charge impedance (7),

RZy 1
Zr=1j] i 9)

For coasting beams, the beam line density is a DC signal, therefore, its spectrum is a delta
function. The amplitude of this delta function can be found in [4] as 1/27, i.e.
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Thus, the summation in (8) is removed.
Now we use
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where ¢ is the permittivity in free space. Also using
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then the tune shift by substituting (9) into (8) is
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which is exactly the space charge coherent tune shift shown in (6). This shows that the
chamber part of the space charge impedance represents the coherent tune shift. Similarly,
the beam part of the impedance is relevant to the incoherent tune shift.



3.2 Transverse space charge impedance

Now substituting the transverse space charge impedance (7) into the dynamic equation (8),
we have,
w — wg = AVeonwo — Alincwo (16)

i.e. the transverse space charge impedance represents the difference between the coherent
and incoherent tune shifts.

The impedance (7) is defined based on the deflecting electromagnetic fields distributed
between the beam and the perfectly conducting wall [5]. The physical implication of this
impedance to the beam, however, is only shown in (16).

Specifically, substituting the transverse space charge impedance into the dynamic equa-
tion gives neither coherent nor incoherent tune shift. In the case that a < b, the obtained
tune shift will be approximately equal to the incoherent tune shift. However, this tune shift
is increased, while the space charge incoherent tune shift should be decreased.

3.3 Incoherent tune shift and coherent motion

Using the transverse impedance (7), it can be shown that the incoherent tune shift plays no
role for the coherent motion in the dynamic equation (8).
Writing on the left side of (8) by the following convention ,

Wg = Wgo + AI/mcwo (17)
and also using (16), the equation (8) becomes,
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where the incoherent tune shift is cancelled. This shows that the incoherent tune shift plays
no role in the transverse coherent motion. Therefore, the beam part of the transverse space
charge impedance is a redundancy.

The writing of (17) is following the longitudinal case, where the synchrotron oscillation
frequency has to be written as ws = wgo + AVsincwo, because the incoherent frequency
shift affects the longitudinal focusing, which is often called the potential well effect. In the
transverse case, the similar effect is negligible.

4 'Transverse Landau Damping

For NSNS storage ring, the bunch is long. Also, since the beam stays in the ring for
about 1 ms, only the transverse microwave instabilities having growth rate greater than the
synchrotron frequency is relevant. Therefore, the coasting beam criterion can be applied.
The power spectrum of the perturbation will be a delta function §(n — n,)/27, where the
spectrum line n; represents the frequency (n; + 14 )wo, because only the perturbation at these
frequencies has a chance to grow. Substituting the beam peak current I, for the average
current I, the equation (8) becomes,
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To proceed further, we write the left side of the equation (19) as the frequency spread Aw,
which will be responsible for the Landau damping, and can be written by the tune spread
Av as,

Aw = Avwy (20)
Note that the Landau damping has two implications,

e If the impedance is real and positive, the system is stable, and the Landau damping is
not needed. If it is negative, then the frequency spread must be larger than the growth
rate to suppress the instability.

e If the impedance is imaginary, then the frequency spread on the left side must be larger
than the coherent frequency shift. Otherwise, an infinitesimal perturbation may cause
instability.

The microwave instability criterion is, therefore, obtained as follows,
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It remains to clarify the sources responsible for the incoherent and coherent tune shifts.

4.1 Incoherent tune spread

For the incoherent tune spread, we consider the following sources,

e Space charge incoherent tune spread, which is the largest stabilizing force for the low
energy proton synchrotrons. For the high energy machine, the tune spread is decreased,
and its contribution diminishes. This is a reason that the transverse instabilities is more
critical for the high energy machines.

e Chromatic tune spread. A large chromatic tune spread will cause beam loss due to
the resonance crossing, therefore, it needs to be corrected. For bunched beams, the
chromatic tune spread is not effective for the weak instabilities with the growth rate
comparable to the synchrotron oscillation period. It is, however, effective for the fast
instabilities. This tune spread is momentum spread dependent.

e Frequency slippage. This is momentum spread dependent. This tune spread could be
cancelled by the chromatic tune spread, then the trick is to let the cancellation happen
at a stable frequency region.

e Octupolar tune spread. This tune spread is betatron oscillation amplitude dependent.
In case the microwave instability is a problem, octupoles can be added to ensure the
beam stability.



e Finally, for bunched beams, the synchrotron oscillation tune spread may help. Con-
ventionally, this contribution is estimated as Aw = wg = Avswy.

The combined tune spread can, therefore, be written for the effective frequency (n14vo)wo
as [6],

A
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where Ap/p is the beam momentum spread. Usually, the slippage 77 and the chromaticity €
should have same sign, such that the cancellation of their contributions will happen at the
stable region. This could be important for high energy machines, but not for the NSNS.

4.2 Coherent tune shift

The coherent tune shifts simply come from mainly two sources,

e Space charge coherent tune shift.

e Broad band impedance induced tune shift.

It can be observed that if the conventional transverse space charge impedance (7) is used,
then it is relevant to both the incoherent and coherent tune shifts. Therefore, it takes effect
on both sides of the equation (21).

However, the transverse microwave instability can be estimated by taking the sum of the
transverse space charge impedance with the broad band impedances, such as in [8]. If the
sum is negative, then the incoherent tune spread is dominant, and the system is stable. If
it is positive, then the space charge incoherent tune spread is not strong enough to stabilize
the system by itself.

Note that this approach is not only valid for the low energy synchrotron, but also can
be used for the high energy rings. For high energy synchrotrons, the image effect is often
stronger than the direct effect. However, the image coherent tune shift is approximately
cancelled by the image incoherent tune spread, therefore, the total effect is still negligible.

5 NSNS Transverse Microwave Instabilities

The criterion of the transverse microwave instability in (21) will be used to analyze the
NSNS transverse instabilities.

As shown in [7], the real part of the broad band impedance is much smaller than the
imaginary part in the relevant frequency range, therefore, we consider only the coherent tune
shift. In this way, the broad band impedance will be considered as Z7pp(n) ~ j 200 KQ /m,
as in [7]. If we use (9) to get the space charge coherent impedance, then for b = 10 cm, we
have the coherent part of the space charge impedance Zrsceon(n) = 7 406 K Q/m. For 2
MW storage ring, the peak current is I, = 91 A. We also have R = 35.124 m, 1 = 5.82,
and wp = 27 X 1.189 x 10 rad./sec. Using (21), we get the coherent tune shift as



AVcoh,total = —0.016 (23)

where the contribution of the broad band impedance is —0.005, and the space charge coherent
tune is —0.011.

The space charge incoherent tune spread can be calculated either using (5) or substituting
the space charge incoherent impedance into the equation (19). If we use the latter, then
taking a = v/20 = 2.36 cm [7], we get the incoherent part of the space charge impedance
ZTSCinc(n) ~ j 7.3 MQ/m. Thus, the space charge incoherent tune spread is

Avine = —0.20 (24)

It is clear that |Avine| > |AVeontota|, therefore, for NSNS the transverse microwave
instability will not be of serious concern. Also since the space charge incoherent tune spread
is relatively large, other sources such as the frequency slippage and chromatic effects are not
critical for the beam stabilization.

This mechanism of stabilization of the transverse microwave instability is, in fact, appli-
cable to all low energy synchrotrons. In specific, no special effort is needed for the Landau
damping of the transverse microwave instability for a low energy synchrotron.

For rigid bunch instabilities, such as the resistive wall instability or the instability caused
by the kicker impedance, the incoherent tune spread is not effective in terms of the Landau
damping, because of the synchrotron oscillation. Also, the machine has to be operated at
a small negative chromaticity, because of the large beam momentum spread required by
the depression of the longitudinal microwave instability. Therefore, this instability needs
attentions.
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