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Electric �elds of a uniformly charged elliptical

beam.
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Introduction

This paper presents results for the electric �eld due to a uniformly charged

elliptical beam outside the beam. Results for the �eld inside inside the beam

are well known [1, 2] The beam being considered extends inde�nitly in the z

direction and has an elliptical boundary in x and y given by

x
2
=a

2 + y
2
=b

2 = 1 (1)

The charge density, �(x; y; z) is uniform within the elliptical boundary, zero

outside the elliptical boundary, and does not depend on z. The results given

below depend on the observation made by B. Houssais [3], that the result for

the electric �eld of a gaussian charge distribution given by W. Kellog [1] as

a one dimensional integral would hold for any elliptical charge distribution

as de�ned below. This may be stated as follows. Let the charge distribution

be given as

�(x; y; z) = �n(x; y) (2)

where � is the charge per unit length and

Z
dxdy n(x; y) = 1 (3)

A charge distribution will be called elliptical if n(x; y) can be written as

n(x; y) = n̂(T )=�ab

T = x
2
=a

2 + y
2
=b

2 (4)
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For the uniform elliptical beam , n̂(T ) is given by

n̂(T ) = 1; T � 1

n̂(T ) = 0; T > 1 (5)

For a Gaussian beam, n̂(T ) is given by

n̂(T ) = exp(�T ) (6)

One can show, using Eq. 3, that n̂(T ) obeys the equation
Z
1

0

dT n̂(T ) = 1 (7)

The generalization of the Kellog result for any elliptical beam is then

Ex = 2�

Z
1

0

dt
n̂(T̂ )

(a2 + t)3=2(b2 + t)1=2

T̂ = x
2
=(a2 + t) + y

2
=(b2 + t) (8)

A similar result, with a; b and x; y interchanged will give Ey

Electric �elds for x,y inside the beam

As a �rst step, the �elds inside a uniformly charged elliptical beam will be

found using Eq. 8 .In this case, T̂ is always � 1 since for t = 0 , T̂ =

x
2
=a

2+y
2
=b

2, which is � 1 for x,y inside the beam, and decreases further for

larger t. Eq. 8 then becomes

Ex = 2�x

Z
1

0

dt
1

(a2 + t)3=2(b2 + t)1=2

T̂ = x
2
=(a2 + t) + y

2
=(b2 + t) (9)

The integral in Eq. 9 can be done using the result
Z
1

t1

dt
1

(a2 + t)3=2(b2 + t)1=2
= 2

1

(a2 + t1)1=2
1

(a2 + t1)1=2 + (b2 + t1)1=2
(10)

This gives

Ex = 4�x
1

a(a + b)
(11)

and a similar result for Ey with a and b interchanged and x replaced by y.
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Electric �elds outside the beam when y = 0

As the next step, the �elds outside a uniformly charged elliptical beam will

be found using Eq. 8 for the case when y = 0. The results in this case are

simpler and the mathematics is easier to comprehend. In this case, T̂ is > 1

for t = 0 since for t = 0 , T̂ = x
2
=a

2 + y
2
=b

2, which is > 1 for x,y outside

the beam. For larger t, T̂ decreases and reaches the vaue of 1 at t = t1,

and at still larger t, T̂ decreases further always remaining smaller than 1.The

integral in Eq. 8 then goes from t = t1, to t =1. Eq. 8 then becomes

Ex = 2�x

Z
1

t1

dt
1

(a2 + t)3=2(b2 + t)1=2

T̂ = x
2
=(a2 + t) (12)

t1 = x
2
� a

2

y = 0 (13)

Using Eq. 10. one �nds

Ex = 4�
1

x+ (x2 + b2 � a2)1=2

Ey = 0 (14)

y = 0

Exx = @Ex=@x is given by

Exx = �
Ex

(x2 + b2 � a2)1=2
(15)

Electric �elds outside the beam when y 6= 0

As the �nal step, the �elds outside a uniformly charged elliptical beam will

be found using Eq. 8 for the general case. In this case, T̂ is > 1 for t = 0

since for t = 0 , T̂ = x
2
=a

2 + y
2
=b

2, which is > 1 for x,y outside the beam.

For larger t, T̂ decreases and reaches the vaue of 1 at t = t1, and at still

larger t, T̂ decreases further always remaining smaller than 1.The integral in

Eq. 8 then goes from t = t1, to t =1. Eq. 8 then becomes

Ex = 2�x

Z
1

t1

dt
1

(a2 + t)3=2(b2 + t)1=2

x
2
=(a2 + t1) + y

2
=(b2 + t1) = 1 (16)
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t1 is the positive root of the equation

x
2
=(a2 + t1) + y

2
=(b2 + t1) = 1 (17)

The quadratic equation for t1, Eq. 17, can be solved to give

t1 = (B2
=4 + C)1=2 +B=2

B = x
2 + y

2
� a

2
� b

2 (18)

C = x
2
b
2 + y

2
a
2
� a

2
b
2

Eq. 16 gives the result for Ex

Ex = 4�x
1

(a2 + t1)1=2
1

(a2 + t1)1=2 + (b2 + t1)1=2
(19)

and a similar result for Ey with a and b interchanged and x replaced by y.

It may be usefull to also have results for the derivatives of the �elds,

Exx; Eyy; Exy = Eyx, where Exx = @Ex=@x, Eyy = @Ey=@y and Exy =

@Ex=@y. Exx is found using Eq. 16 for Ex

Exx =
Ex

x
� 2�x

1

(a2 + t1)3=2(b2 + t1)1=2
dt1

dx
(20)

dt1=dx can be found from Eq. 17 for t1 as

dt1

dx
= 2x

(a2 + t1)(b
2 + t1)

2

x2(b2 + t1)2 + y2(a2 + t1)2
(21)

This gives for Exx

Exx =
Ex

x
� 4�x2

(a2 + t1)
�1=2(b2 + t1)

3=2

x2(b2 + t1)2 + y2(a2 + t1)2
(22)

Eyy and dt1=dy can be found by interchanging x and y, and a and b. Exy can

be found in the same way as

Exy = �4�xy
(a2 + t1)

1=2(b2 + t1)
1=2

x2(b2 + t1)2 + y2(a2 + t1)2
(23)
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