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Simulations of Merging Helion Bunches

on the AGS Injection Porch

C.J. Gardner

August 29, 2014

During the setup of helions for the FY2014 RHIC run it was discovered
that the standard scheme for merging bunches on the AGS injection porch
required an injection kicker pulse shorter than what was available. To
overcome this difficulty, K. Zeno [1] proposed and developed an interesting
and unusual alternative which uses RF harmonic numbers 12, 4, 2 (rather
than the standard 8, 4, 2) to merge 8 helion bunches into 2. In this note
we carry out simulations that illustrate how the alternative scheme works
and how it compares with the standard scheme. This is done in Sections
13 and 14. A scheme in which 6 bunches are merged into 1 is simulated in
Section 15. This may be useful if more helions per merged bunch are
needed in future runs.

General formulae for the simulations are given in Sections 9 through 12.

For completeness, Sections 1 through 8 give a derivation of the
turn-by-turn equations of longitudinal motion at constant magnetic field.
The derivation is based on the work of MacLachlan [2]. The reader may
wish to skip over these Sections and start with Section 9.
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1 Synchronous Parameters

Let 2πR and ρ be the circumference and radius-of-curvature of the design
orbit in a given ring, and let B and 2πRs be the magnetic field and orbit
circumference for the synchronous particle. We assume that B and Rs are
given and calculate the other synchronous particle parameters in terms of
these. The radius-of-curvature of the synchronous particle is

ρs = ρ(Rs/R)1/α (1)

where

α =
1

γ2
t

(2)

is the “momentum compaction” factor and γt is the transition gamma of
the ring. The momentum of the synchronous particle is given by

cps = eQBρs (3)

where e is the proton charge and eQ is the charge of the particle. The
energy is

Es =
√

(cps)2 +m2c4 (4)

where m is the mass of the particle. The synchronous β, γ and angular
velocity are

βs = cps/Es, γs = Es/(mc
2), ωs = cβs/Rs. (5)

The revolution period and frequency of the synchronous particle are

Ts =
2π

ωs
, fs =

1

Ts
. (6)

We also define the phase slip factor

ηs =
1

γ2
t

− 1

γ2
s

. (7)
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2 Time Equation

We consider a ring with a single RF gap. Let T s
n and Tn be respectively

the times at which the synchronous and asynchronous particles make their
nth pass through the gap. The synchronous particle experiences no
acceleration in the gap and revolves around the ring with constant angular
velocity ωs. Thus

T s
n+1 = T s

n +
2π

ωs
(8)

and taking T s
1 = 0 it follows that

T s
n+1 = nTs. (9)

Similarly, for the asynchronous particle we have

Tn+1 = Tn +
2π

ωn
(10)

where ωn is the angular velocity just after the nth pass through the gap.
Defining

tn+1 = Tn+1 − T s
n+1, tn = Tn − T s

n (11)

we then have

tn+1 = tn + 2π

(

1

ωn
− 1

ωs

)

= tn +

(

ωs − ωn

ωn

)

Ts. (12)

3 Energy Equation

Now let En be the energy of the asynchronous particle just after its nth
pass through the gap. Then we have

En+1 = En + eQV (Tn+1), (13)

where V (T ) is the voltage across the gap at time T . Since the synchronous
particle undergoes no acceleration we must have

V (T s
n) = 0 (14)

for all n. We assume that

V (T + Ts/h) = V (T ) (15)
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where h is a positive integer called the fundamental harmonic. It then
follows that

V (T + nTs) = V (T ). (16)

In terms of En, the other asynchronous parameters are

cpn =
√

E2
n −m2c4, βn = cpn/En (17)

and
ρn =

cpn

eQB
, Rn = R(ρn/ρ)

α, ωn = cβn/Rn. (18)

Define
en+1 = En+1 − Es, en = En − Es. (19)

Then using
Tn+1 = tn+1 + T s

n+1 = tn+1 + nTs (20)

we have
V (Tn+1) = V (tn+1) (21)

and
en+1 = en + eQV (tn+1). (22)

This, together with

tn+1 = tn +

(

ωs − ωn

ωn

)

Ts (23)

gives the turn-by-turn longitudinal motion of the asynchronous particle.

4 Symplectic Map

The Jacobian matrix elements for the map from (tn, en) to (tn+1, en+1) are

∂tn+1

∂tn
= 1,

∂tn+1

∂en
= 2π

∂(1/ωn)

∂en
(24)

∂en+1

∂tn
= eQV ′,

∂en+1

∂en
= 1 + 2πeQV ′

∂(1/ωn)

∂en
(25)

where V ′ is the derivative of V with respect to T at time Tn+1. Thus we
have

(

∂tn+1

∂tn

)(

∂en+1

∂en

)

−
(

∂tn+1

∂en

)(

∂en+1

∂tn

)

= 1 (26)

and the map is symplectic. This guarantees that the map preserves area.
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5 Approximate Time Equation

Writing
ωs

ωn
=

{

1 +

(

ωn − ωs

ωs

)}

−1

(27)

and expanding we have

ωs

ωn
= 1 −

(

ωn − ωs

ωs

)

+

(

ωn − ωs

ωs

)2

−
(

ωn − ωs

ωs

)3

+ · · · . (28)

To first order in pn − ps and En − Es we also have

(

ωn − ωs

ωs

)

= −ηs

(

pn − ps

ps

)

= −ηs

(

En −Es

β2
sEs

)

. (29)

Thus to first order

ωs

ωn
= 1 −

(

ωn − ωs

ωs

)

= 1 +

(

ηs

β2
sEs

)

en (30)

and (23) becomes

tn+1 = tn + Ts

(

ηs

β2
sEs

)

en. (31)

This together with
en+1 = en + eQV (tn+1) (32)

again produces a symplectic map from (tn, en) to (tn+1, en+1).

6 Phase and W Equations

Let us now introduce new variables

φn = hωstn, Wn =
en
hωs

. (33)

Here φn is the phase that corresponds to time tn, and Wn is defined so
that the transformation from (tn, en) to (φn, Wn) is symplectic. Note that
φn varies from −π to +π as tn varies from −Ts/(2h) to +Ts/(2h). In terms
of the new variables equations (31) and (32) become

φn+1 = φn + Ts

(

h2ω2
sηs

β2
sEs

)

Wn (34)
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and

Wn+1 = Wn + Ts

(

eQ

2πh

)

V

(

φn+1

hωs

)

. (35)

Defining

a =

(

h2ω2
sηs

β2
sEs

)

(36)

and

F (φn+1) =

(

eQ

2πh

)

V

(

φn+1

hωs

)

(37)

we then have
φn+1 = φn + aTsWn (38)

and
Wn+1 = Wn + TsF (φn+1). (39)

These equations again generate a sympletic map. Note that since V (0) = 0
and V (T + Ts/h) = V (Ts) we have

F (0) = 0, F (φ+ 2π) = F (φ). (40)

Since we are interested in the momentum deviation pn − ps, it is useful to
have an expression for this in terms of Wn. Using (29) and (33) we find

(

pn − ps

ps

)

=

(

En − Es

β2
sEs

)

=

(

hωs

β2
sEs

)

Wn. (41)

7 Fixed Points of the Motion

Fixed points of the motion are points (φf , Wf ) that are unchanged by (38)
and (39). For these points we must have

F (φf ) = 0, Wf = 0. (42)

Since F (0) = 0 we see that the point (0, 0) is a fixed point.

If a particle launched near a fixed point stays close to the fixed point, the
fixed point is said to be stable. In the Appendix we show that below
transition (a < 0) a fixed point is stable if

F ′(φf ) > 0 (43)

and unstable if
F ′(φf ) < 0 (44)
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where the primes denote differentiation with respect to φ. Similarly above
transition (a > 0) a fixed point will be stable if

F ′(φf ) < 0 (45)

and unstable if
F ′(φf ) > 0. (46)

8 RF Buckets

Consider the hamiltonian

H(φ,W ) =
1

2
aW 2 + U(φ) (47)

where
∂U

∂φ
= −F (φ). (48)

The equations of motion are

dφ

dt
=
∂H

∂W
= aW (49)

dW

dt
= −∂H

∂φ
= F (φ) (50)

and we have
dH

dt
=
∂H

∂t
=
∂U

∂t
. (51)

The hamiltonian is therefore a constant of the motion if U has no explicit
dependence on time. This constraint can be used to determine the extent
of the regions of bounded motion generated by H.

The fixed points are the same as those for the motion generated by (38)
and (39). They are given by (42). Let

Uφφ = U ′′(φf ) (52)

where the primes denote differentiation with respect to φ. Then below
transition (a < 0) the fixed point will be stable if Uφφ < 0 and unstable if
Uφφ > 0. Similarly above transition (a > 0) the fixed point will be stable if
Uφφ > 0 and unstable if Uφφ < 0.
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Let Hu be the value of H at an unstable fixed point (φu, 0). Then

Hu = U(φu) (53)

and the equation
H(φ,W ) = Hu (54)

can be solved to obtain

W 2(φ) =
2

a
{U(φu) − U(φ)} . (55)

The curve W (φ) is called the separatrix. Differentiating W 2(φ) with
respect to φ we obtain

dW 2

dφ
= −2

a
U ′(φ) (56)

and
d2W 2

d2φ
= −2

a
U ′′(φ) (57)

which shows that W 2(φ) reaches a local maximum at each stable fixed
point. The area around a stable fixed point and bounded by the separatrix
is an RF bucket. This is the extent of the region of bounded motion
around the fixed point. The beam contained in the RF bucket is called a
bunch. The height Wb of the bucket is given by

W 2
b =

2

a
{U(φu) − U(φs)} (58)

where φs is the stable fixed point phase.

First-order symplectic integration [3] of (49) and (50) from time t to time
t+ Ts yields

φ(t+ Ts) = φ(t) + aTsW (t) (59)

and
W (t+ Ts) = W (t) + TsF (φ(t+ Ts)). (60)

These are the same as (38) and (39). This suggests that the motion
generated by the hamiltonian approximates that generated by (38) and
(39). To the extent that this is true, the regions of bounded motion
generated by H will approximate those generated by (38) and (39).
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9 Capturing Unbunched Beam into RF Buckets

For simulations that start with bunched beam we want an initial beam
distribution that consists of ĥ bunches in ĥ adjacent harmonic ĥh buckets.
Here ĥh is the total number of RF buckets around the ring and ĥ is the
number of buckets in 1/h of the ring. To obtain the desired ĥ bunches we
start with a uniform distribution of unbunched beam consisting of an
80-by-80 array of particles which cover the region

−φI ≤ φ ≤ φI , −WI ≤W ≤WI (61)

where
φI = π (62)

and

WI =
EI

hωs
=
EITs

2πh
. (63)

Here EI is the energy half-width of the unbunched beam. As defined by
(33), the phase φ varies from −π to +π as the time deviation t varies from
−Ts/(2h) to +Ts/(2h). The region defined by (61) therefore occupies 1/h
of the ring as desired. The area of the region is

ǫ = (2φI)(2WI) = 2EITs/h. (64)

This is the longitudinal emittance of the unbunched beam (in 1/h of the
ring).

To capture the beam into ĥ adjacent harmonic ĥh buckets we take

F (φ) = −A sin ĥφ (65)

in (38) and (39). During capture A is raised slowly and quadratically from
zero to AC over time interval 0 ≤ T ≤ TC according to

A(T ) = AC

(

T

TC

)2

(66)

where

AC =
eQVC

2πh
(67)

and VC is the RF harmonic ĥh voltage at time TC . The time TC is chosen
to be long enough to ensure that the longitudinal emittance of the ĥ
bunches is as close to that of the initial distribution of unbunched beam as
practical.
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10 Formulae for the Standard 4 to 1 Merge

Here we divide the ĥh buckets into h groups of ĥ = 4 adjacent buckets and
consider the merge of the 4 bunches in a given group into 1 bunch. If all of
the ĥh buckets are occupied then the gap of time available for the injection
kicker pulse is

TG = 2

(

Ts

ĥh

)

− TW (68)

where TW is the bunch width and Ts is the revolution period.

For the merge we take

F (φ) = A1 sinφ−A2 sin 2φ−A4 sin 4φ (69)

in (38) and (39). The parameters A1, A2 and A4 are either zero or
positive. They are varied slowly during the merging process. Note again
that the phase φ varies from −π to +π as the time deviation t varies from
−Ts/(2h) to +Ts/(2h).

In order to satisfy (48) we take

U(φ) = A1 cosφ− 1

2
A2 cos 2φ− 1

4
A4 cos 4φ (70)

which gives

U ′′(φ) = −A1 cosφ+ 2A2 cos 2φ+ 4A4 cos 4φ. (71)

This is positive at fixed point phases

φu = ±π (72)

which shows that these are unstable fixed point phases below transition.
We then have

U(φu) = −A1 −
A2

2
− A4

4
(73)

which can be used in (55) to obtain the separatrix.

Starting with 4 bunches in 4 adjacent harmonic 4h buckets, the merge is
done in two steps. First the 4 bunches are merged into 2 and then the 2
are merged into 1. The merge of 4 bunches into 2 takes place over the time
interval 0 ≤ T ≤ TK . During this time A1 is held at zero, A2 is raised
linearly from zero to AK , and A4 is lowered linearly from AC to zero. Thus

A1(T ) = 0 (74)

10



and

A2(T ) = AK

(

T

TK

)

, A4(T ) = AC

(

TK − T

TK

)

. (75)

Here

AK =
eQVK

2πh
, AC =

eQVC

2πh
(76)

where VK is the harmonic 2h voltage at time TK and VC is the harmonic
4h voltage at time 0.

The merge of 2 bunches into 1 takes place over the time interval
TK ≤ T ≤ TL. During this time A4 is held at zero, A1 is raised linearly
from zero to AL, and A2 is lowered linearly from AK to zero. Thus

A1(T ) = AL

(

T − TK

TL − TK

)

, A2(T ) = AK

(

TL − T

TL − TK

)

(77)

and
A4(T ) = 0. (78)

Here

AL =
eQVL

2πh
(79)

where VL is the harmonic h voltage at time TL.

11 Formulae for the Alternative 4 to 1 Merge

In this case we divide the ĥh buckets into h groups of ĥ = 6 adjacent
buckets and consider the merge of the 4 inner bunches of a given group
into 1 bunch. The motivation here is that if the 2 outer buckets in each
group are unoccupied, they provide time for the injection kicker pulse. The
total gap of time available is

TG = 4

(

Ts

ĥh

)

− TW (80)

where TW is the bunch width and Ts is the revolution period. For harmonic
ĥh = 12 this turns out to be just long enough for the kicker pulse [4].

For this merge we take

F (φ) = A1 sinφ−A2 sin 2φ−A6 sin 6φ (81)

in (38) and (39). The parameters A1, A2, and A6 are either zero or
positive. They are varied slowly during the merging process. Note again
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that the phase φ varies from −π to +π as the time deviation t varies from
−Ts/(2h) to +Ts/(2h).

In order to satisfy (48) we take

U(φ) = A1 cosφ− 1

2
A2 cos 2φ− 1

6
A6 cos 6φ (82)

which gives

U ′′(φ) = −A1 cosφ+ 2A2 cos 2φ+ 6A6 cos 6φ. (83)

This is positive at fixed point phases

φu = ±π (84)

which shows that these are unstable fixed point phases below transition.
We then have

U(φu) = −A1 −
A2

2
− A6

6
(85)

which can be used in (55) to obtain the separatrix.

At fixed point phase
φf = 0 (86)

we have
U ′′(φf ) = −A1 + 2A2 + 6A6. (87)

This gives an unstable fixed point (below transition) if

A1 < 2A2 + 6A6. (88)

In this case one has unstable fixed point phase

φu = 0 (89)

and

U(φu) = A1 −
A2

2
− A6

6
(90)

which can be used in (55) to obtain the associated separatrix.

For 0 ≤ T ≤ TK we take

A1(T ) = FAL

(

T

TK

)

, A2(T ) = AK

(

T

TK

)

(91)

and

A6(T ) = AC

(

TK − T

TK

)

(92)
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where
0 ≤ F ≤ 1. (93)

The parameter F is adjusted to keep the 4 inner bunches separated from
the phase space of the 2 outer buckets, and to minimize the gross
emittance of the final merged bunch.

For TK ≤ T ≤ TL we take

A6(T ) = 0, A2(T ) = AK

(

TL − T

TL − TK

)

(94)

and

A1(T ) = FAL + (1 −F)AL

(

T − TK

TL − TK

)

. (95)

Here

AL =
eQVL

2πh
, AK =

eQVK

2πh
, AC =

eQVC

2πh
(96)

where VL, VK , and VC are the harmonic h, 2h, and 6h voltages at times
TL, TK , and 0, respectively.

12 Formulae for a 6 to 1 Merge

In this case we divide the ĥh buckets into h groups of ĥ = 6 adjacent
buckets and consider the merge of the 6 bunches in a given group into 1
bunch. The motivation here is to get more helions per merged bunch. If all
of the ĥh buckets are occupied then the gap of time available for the
injection kicker pulse is

TG = 2

(

Ts

ĥh

)

− TW (97)

where TW is the bunch width and Ts is the revolution period.

For this merge we take

F (φ) = A1 sinφ−A2 sin 2φ+A3 sin 3φ−A6 sin 6φ (98)

in (38) and (39). The parameters A1, A2, A3, and A6 are either zero or
positive. They are varied slowly during the merging process. Note again
that the phase φ varies from −π to +π as the time deviation t varies from
−Ts/(2h) to +Ts/(2h).
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In order to satisfy (48) we take

U(φ) = A1 cosφ− 1

2
A2 cos 2φ+

1

3
A3 cos 3φ− 1

6
A6 cos 6φ (99)

which gives

U ′′(φ) = −A1 cosφ+ 2A2 cos 2φ− 3A3 cos 3φ+ 6A6 cos 6φ. (100)

This is positive at fixed point phases

φu = ±π (101)

which shows that these are unstable fixed point phases below transition.
We then have

U(φu) = −A1 −
A2

2
− A3

3
− A6

6
(102)

which can be used in (55) to obtain the separatrix.

For the case A6 = 0 we have

F (φ) = A1 sinφ−A2 sin 2φ+A3 sin 3φ (103)

U(φ) = A1 cosφ− 1

2
A2 cos 2φ+

1

3
A3 cos 3φ (104)

and
U ′′(φ) = −A1 cosφ+ 2A2 cos 2φ− 3A3 cos 3φ. (105)

Using
sin 2φ = 2cosφ sinφ (106)

and
sin 3φ = 3 sinφ− 4 sin3 φ (107)

we then have

F (φ) =
{

A1 − 2A2 cosφ+A3

(

4 cos2 φ− 1
)}

sinφ (108)

which shows that in addition to the unstable fixed point phases (101) we
have fixed point phases given by

A1 − 2A2 cosφf +A3

(

4 cos2 φf − 1
)

= 0. (109)

Solving this for cosφf gives

cosφf =
A2

4A3

± 1

4A3

√

A2
2 + 4A3(A3 −A1). (110)
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To evaluate U(φ) and U ′′(φ) at φf we use

cos 2φ = 2cos2 φ− 1 (111)

and
cos 3φ = 4cos3 φ− 3 cosφ (112)

which give

U(φ) = A1 cosφ− A2

2

(

2 cos2 φ− 1
)

+
A3

3

(

4 cos3 φ− 3 cosφ
)

(113)

and

U ′′(φ) = −A1 cosφ+ 2A2

(

2 cos2 φ− 1
)

− 3A3

(

4 cos3 φ− 3 cos φ
)

. (114)

For the values of A1, A2, and A3 considered here, U ′′(φf ) is positive for the
phase given by the upper sign in (110). This is then the phase for an
unstable fixed point below transition. The lower sign gives the phase for a
stable fixed point below transition. Thus using

cosφu =
A2

4A3

+
1

4A3

√

A2
2 + 4A3(A3 −A1) (115)

in (113) gives U(φu) which can be used in (55) to obtain the associated
separatrix.

Starting with 6 bunches in 6 adjacent harmonic 6h buckets, the merge is
done in three steps. First the 6 bunches are merged into 3. This is a
straightforward 2 to 1 merge. Next the 3 bunches are moved toward one
another but are kept in separate buckets. Finally, as soon as the bunches
touch one another, they are allowed to mix and merge into a single bunch.
The 3 to 1 merge is based on the the work of Garoby [5, 6]. A similar
scheme was developed by M. Blaskiewicz and J.M. Brennan for merging 24
bunches of gold ions into 4 bunches on the AGS injection porch [7].

The merge of 6 bunches into 3 takes place over the time interval
0 ≤ T ≤ TK . During this time A1 and A2 are held at zero, A3 is raised
linearly from zero to AM , and A6 is lowered linearly from AC to zero.
Thus we have

A1(T ) = 0, A2(T ) = 0 (116)

and

A3(T ) = AM

(

T

TK

)

, A6(T ) = AC

(

TK − T

TK

)

. (117)
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Here

AM =
eQVM

2πh
, AC =

eQVC

2πh
(118)

where VM is the harmonic 3h voltage at time T = TK and VC is the
harmonic 6h voltage at time T = 0.

The first part of the merge of 3 bunches into 1 takes place over the time
interval TK ≤ T ≤ TL1. During this time A6 is held at zero, A3 is lowered
linearly from AM to AM1, and A1 is raised linearly from zero to AL1. The
parameter A2 is raised linearly from zero to AK1. Thus we have

A6(T ) = 0 (119)

A3(T ) = AM

(

TL1 − T

TL1 − TK

)

+AM1

(

T − TK

TL1 − TK

)

(120)

and

A1(T ) = AL1

(

T − TK

TL1 − TK

)

, A2(T ) = AK1

(

T − TK

TL1 − TK

)

(121)

where

AK1 =
eQVK1

2πh
, AL1 =

eQVL1

2πh
, AM1 =

eQVM1

2πh
. (122)

Here VK1, VL1, and VM1 are the harmonic 2h, h, and 3h voltages,
respectively, at time TL1.

The second part of the 3 to 1 merge takes place over the time interval
TL1 ≤ T ≤ TL2. During this time A6 continues to be held at zero, A3 is
lowered linearly from AM1 to AM2, and A2 is lowered linearly from AK1 to
AK2. The parameter A1 is held at AL1. Thus

A3(T ) = AM1

(

TL2 − T

TL2 − TL1

)

+AM2

(

T − TL1

TL2 − TL1

)

(123)

A2(T ) = AK1

(

TL2 − T

TL2 − TL1

)

+AK2

(

T − TL1

TL2 − TL1

)

(124)

and
A1(T ) = AL1, A6(T ) = 0 (125)

where

AK2 =
eQVK2

2πh
, AM2 =

eQVM2

2πh
. (126)
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Here VK2 and VM2 are the harmonic 2h and 3h voltages, respectively, at
time TL2.

The final part of the 3 to 1 merge takes place over the time interval
TL2 ≤ T ≤ TF . During this time A6 continues to be held at zero, A3 is
lowered linearly from AM2 to zero, A2 is lowered linearly from AK2 to zero,
and A1 continues to be held at AL1. Thus

A3(T ) = AM2

(

TF − T

TF − TL2

)

, A2(T ) = AK2

(

TF − T

TF − TL2

)

(127)

and
A1(T ) = AL1, A6(T ) = 0. (128)

13 Simulation of Standard 4 to 1 Merge

In this scheme we take harmonic ĥh = 8 on the AGS injection porch and
populate all 8 buckets with helion bunches from Booster. This gives h = 2
groups of ĥ = 4 adjacent bunches. The 4 bunches in each group are
merged into 2 bunches by bringing on harmonic 4 = 2h voltage with RF
cavity KL while reducing the harmonic 8 = 4h voltage to zero. The 2
bunches are then merged into 1 by bringing on harmonic 2 = 1h voltage
with RF cavity L10 while reducing the harmonic 4 = 2h voltage to zero.

For the simulation we start with 4 adjacent bunches of helions. These are
obtained from a uniform distribution of unbunched beam as described in
Section 9. We use capture time TC = 400 ms and harmonic 8 voltage
VC = 40 kV. The harmonic 8 frequency is 8fs = 2.51 MHz. The
longitudinal emittance of the unbunched beam is taken to be 0.80 eV s per
nucleon. Figure 1 shows the resulting bunches in 4 buckets on the porch.
One can see by inspection that the emittance of the 4 bunches is close to
that of the initial distribution. This gives an emittance of 0.2 eV s per
nucleon per bunch. Note also that taking bunch width TW = 90 ns in (68)
gives time gap

TG = 707 ns (129)

which is too short (by some 300 ns) for the present injection kicker pulse.
This means that in practice only 7 of the 8 buckets can be filled with
bunches from Booster.

Figure 2 shows the RF voltages for the 4 to 1 merge. These are given by
the formulae of Section 10 with h set equal to 2. Here the 4 to 2 merge
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takes place over the time interval 0 ≤ T ≤ 80 ms. The 2 to 1 merge takes
place over the interval 80 ≤ T ≤ 160 ms.

Figure 3 shows the “potential” U(φu) − U(φ) at various times during the
merge. Here U(φu) and U(φ) are defined in Sections 8 and 10.

The merge from 4 to 2 bunches is shown in Figures 4 and 5. The merge
from 2 to 1 bunches is shown in Figures 6 and 7. One can see by
inspection that the emittance of the final merged bunch is close to that
(0.80 eV s per nucleon) of the initial distribution of unbunched beam. The
bunch is easily held in the harmonic 2 bucket with voltage VL = 20 kV.

14 Simulation of Alternative 4 to 1 Merge

In this scheme we take harmonic ĥh = 12 on the AGS injection porch.
This gives h = 2 groups of ĥ = 6 adjacent buckets. The 4 inner buckets of
each group are populated with helion bunches from Booster. The 2 outer
buckets of each group are left empty to provide time for the injection
kicker pulse. The 4 bunches in each group are merged into 2 bunches by
bringing on harmonic 4 = 2h and 2 = 1h voltages with RF cavities KL and
L10, respectively, while reducing the harmonic 12 = 6h voltage to zero.
The 2 bunches are then merged into 1 by reducing the harmonic 4 = 2h
voltage to zero.

For the simulation we start with 6 adjacent bunches of helions. These are
obtained from a uniform distribution of unbunched beam as described in
Section 9. We use capture time TC = 200 ms and harmonic 12 voltage
VC = 47 kV. The harmonic 12 frequency is 12fs = 3.765 MHz. The
longitudinal emittance of the unbunched beam is taken to be 1.2 eV s per
nucleon. Figure 8 shows the resulting bunches in 6 buckets on the porch.
One can see by inspection that the emittance of the 6 bunches is close to
that of the initial distribution. This gives an emittance of 0.2 eV s per
nucleon per bunch. Note also that taking bunch width TW = 90 ns in (80)
gives time gap

TG = 972 ns (130)

which is just long enough for the present injection kicker pulse [4].

Figure 9 shows the RF voltages for the 4 to 1 merge. These are given by
the formulae of Section 11 with h set equal to 2. Here the parameter F
(defined in Section 11) has been set equal to 0.95. This setting keeps the
inner 4 bunches separated from the outer 2 during the merging process and
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minimizes the gross emittance of the final merged bunch.

Figure 10 shows the “potential” U(φu) − U(φ) at various times during
the merge. Here U(φu) and U(φ) are defined in Sections 8 and 11.

The merge from 4 to 2 bunches is shown in Figures 11 and 12. Here we
see that the brown separatrix keeps the inner 4 bunches separated from the
outer 2. The two outer bunches (which are not present in practice) form a
halo around the inner 4.

The merge from 2 to 1 bunches is shown in Figures 13 and 14. One can
see by inspection that the emittance of the final merged bunch is close to
that (0.80 eV s per nucleon) of the inner 4 bunches of the initial
distribution of bunched beam. The bunch is easily held in the harmonic 2
bucket with voltage VL = 22 kV.

Comparing Figures 7 and 14 one sees that alternative 4 to 1 merge
produces a merged bunch of the same size and quality as the standard 4 to
1 merge.

15 Simulation of 6 to 1 Merge

In this scheme we again take harmonic ĥh = 12 on the AGS injection
porch. This gives h = 2 groups of ĥ = 6 adjacent buckets. The 6 buckets of
each group are populated with helion bunches from Booster. The 6
bunches in each group are merged into 3 bunches by bringing on harmonic
6 = 3h while reducing the harmonic 12 = 6h voltage to zero. The 3
bunches are then merged into 1 by manipulating harmonics 6 = 3h,
4 = 2h, and 2 = 1h as described in Section 12. Harmonics 4 and 2 are
provided by the KL and L10 cavities respectively.

For the simulation we start with 6 adjacent bunches of helions. These are
obtained from a uniform distribution of unbunched beam as described in
Section 9. We use capture time TC = 200 ms and harmonic 12 voltage
VC = 47 kV. The harmonic 12 frequency is 12fs = 3.765 MHz. The
longitudinal emittance of the unbunched beam is taken to be 1.2 eV s per
nucleon. Figure 15 shows the resulting bunches in 6 buckets on the
porch. One can see by inspection that the emittance of the 6 bunches is
close to that of the initial distribution. This gives an emittance of 0.2 eV s
per nucleon per bunch. Note also that taking bunch width TW = 90 ns in
(97) gives time gap

TG = 441 ns. (131)
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This is too short for the present injection kicker pulse, but still allows for 6
of the 12 buckets to be filled.

Figures 16 and 17 show the RF voltages for the 6 to 1 merge. These are
given by the formulae of Section 12 with h set equal to 2. Here the 6 to 3
merge takes place over the time interval 0 ≤ T ≤ 30 ms. The 3 to 1 merge
takes place over the interval 30 ≤ T ≤ 120 ms.

Figures 18 and 19 show the “potential” U(φu) − U(φ) at various times
during the merge. Here U(φu) and U(φ) are defined in Sections 8 and 12.

The merge from 6 to 3 bunches is shown in Figures 20 and 21.

Figures 22 and 23 show the 3 bunches one sixth and one third of the way
through the 3 to 1 merge. In both figures the bunches are kept separated
by the brown separatrix. In Figure 23 the bunches are nearly touching
but are still in separate buckets.

In Figure 24 the bunches are halfway through the 3 to 1 merge. Here the
bunches have started to mix with one another.

In Figure 25 the bunches are two thirds of the way through the 3 to 1
merge. The bunches continue to mix and merge.

The completion of the 3 to 1 merge is shown in Figure 26. The magnified
view in Figure 27 shows a tightly merged bunch. This is the final result
of the 6 to 1 merge.

Note that if the 2 outer buckets in Figure 15 are left empty, then the 6 to
1 merge becomes another alternative scheme for merging 4 bunches into 1.
In this case, however, the phase space of the 2 outer buckets mixes with
the 4 inner bunches and dilutes the gross emittance. One ends up with the
bunch shown in Figure 28. (This was obtained by simply turning off the
black and brown points in Figure 26.) The gross emittance of the bunch
is 6/4 times larger than that obtained with the alternative 4 to 1 scheme of
Section 14.
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16 Appendix

For motion near a fixed point (φf , 0) we have

F (φ) = −k(φ− φf ) (132)

where
k = −F ′(φf ). (133)

Equations (38) and (39) then become

φn+1 − φf = (φn − φf ) + aTsWn (134)

and
Wn+1 = Wn − kTs(φn − φf ) − akT 2

sWn. (135)

Defining
Φ = φ− φf (136)

and

Xn+1 =

(

Φn+1

Wn+1

)

, Xn =

(

Φn

Wn

)

(137)

we then have
Xn+1 = MXn (138)

where

M =

(

1 aTs

−kTs 1 − akT 2
s

)

. (139)

The matrix M has unit determinant and its trace is

T = 2 − akT 2
s . (140)

It can be expressed in Courant-Snyder [8] form

M =

(

C + AS BS
−GS C −AS

)

(141)

where

C = 1 − 1

2
akT 2

s , S2 = 1 − C2 (142)

BS = aTs, 2AS = akT 2
s , GS = kTs (143)

and
BG −A2 = 1. (144)
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16.1 Conserved Quadratic Form

Defining

E =

(

B −A
−A G

)

, E−1 =

(

G A
A B

)

(145)

and
T = MT E−1M (146)

where the superscript T denotes the transpose of the matrix, we have

T =

(

C + AS −GS
BS C −AS

)(

G A
A B

)(

C + AS BS
−GS C −AS

)

(147)

T =

(

C + AS −GS
BS C −AS

)(

GC S + AC
AC − S BC

)

(148)

and

T =

(

G A
A B

)

. (149)

Thus
MT E−1M = E−1 (150)

and
XT

n+1E
−1Xn+1 = XT

nMT E−1 MXn = XT
nE−1Xn. (151)

Here we have quadratic forms

XT
n+1E

−1Xn+1 = GΦ2
n+1 + 2AΦn+1Wn+1 + BW 2

n+1 (152)

and
XT

nE−1Xn = GΦ2
n + 2AΦnWn + BW 2

n (153)

and we can write
G(Φn+1,Wn+1) = G(Φn,Wn) (154)

where
G(Φ,W ) = GΦ2 + 2AΦW + BW 2. (155)

This shows that G(Φ,W ) is a conserved quantity for the turn-by-turn
motion generated by (134) and (135).

22



16.2 Stable Fixed Point

We assume that k < 0 below transition and k > 0 above transition. Then
since a < 0 below transition and a > 0 above transition, we have

ak > 0. (156)

We assume further that |k| is small enough to ensure that

|T | < 2. (157)

It then follows that |C| < 1 and S2 > 0. The parameters S, A, B, and G
are then all real numbers. The sign of S is chosen so that B > 0. We then
have

G(Φ,W ) = E (158)

where E is a real number. With the help of (144) we have

Φ2 + (AΦ + BW )2 = EB (159)

and
W 2 + (GΦ + AW )2 = EG. (160)

The maximum possible Φ is then

ΦM =
√
EB (161)

and the corresponding W is

W (ΦM ) = −A
B ΦM . (162)

Similarly the maximum possible W is

WM =
√
EG (163)

and the corresponding Φ is

Φ(WM ) = −A
G WM . (164)

Here

−A
B = −1

2
kTs, −A

G = −1

2
aTs. (165)

This analysis shows that under the conditions assumed, a particle launched
close to the fixed point will stay close to the fixed point. The fixed point is
then said to be stable.
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Note that (158) defines an ellipse with area πE and Courant-Snyder
parameters A, B and G. Since we have assumed that k < 0 below
transition we also have A < 0. The ellipse is therefore rotated clockwise
with respect to the Φ and W axes.

Note also that defining

H(Φ,W ) =
S

2Ts
G(Φ,W ) (166)

and using the identities

SB
2Ts

=
a

2
,

2AS
2Ts

=
1

2
akTs,

SG
2Ts

=
k

2
(167)

we have

H(Φ,W ) =
1

2
aW 2 +

1

2
kΦ2 +

1

2
akTsΦW. (168)

This is a conserved quantity for the motion generated by (134) and (135).
It shows that the hamiltonian

H =
1

2
aW 2 +

1

2
kΦ2 (169)

is not conserved. In fact we have

H(Φ,W ) = H(Φ,W ) − 1

2
akTsΦW (170)

which we can write as

H(Φ,W ) =
SE
2Ts

− 1

2
akTsΦW (171)

where
E = G(Φ,W ). (172)

The first term on the right hand side of (171) is constant but the second
term varies with Φ and W .

16.3 Explicit Turn-by-Turn Motion

Now let
ψ = arcsinS (173)

where S is given by (142). Then

C = cosψ, S = sinψ (174)
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and following Courant and Snyder [8] we can write

M = I cosψ + J sinψ (175)

where

I =

(

1 0
0 1

)

, J =

(

A B
−G −A

)

. (176)

Here
J2 = −I (177)

and it follows that

{I cosψ + J sinψ} {I cosχ+ J sinχ} = I cos(ψ + χ) + J sin(ψ + χ). (178)

Thus we have
Mn = I cosnψ + J sinnψ (179)

and
Φn = (Cn + ASn)Φ0 + BSnW0 (180)

Wn = −GSnΦ0 + (Cn −ASn)W0 (181)

where
Cn = cosnψ, Sn = sinnψ (182)

and Φ0 and W0 are initial values of φ and W . Collecting terms we have

Φn = Φ0Cn + (AΦ0 + BW0)Sn (183)

Wn = W0Cn − (GΦ0 + AW0)Sn (184)

and therefore

Φn =
√
EB {Cn cos ξ − Sn sin ξ} =

√
EB cos(nψ + ξ) (185)

Wn =
√
EG {Cn sinχ+ Sn cosχ} =

√
EG sin(nψ + χ) (186)

where
EB = Φ2

0 + (AΦ0 + BW0)
2 (187)

EG = W 2
0 + (GΦ0 + AW0)

2 (188)

and √
EB cos ξ = Φ0,

√
EB sin ξ = −(AΦ0 + BW0) (189)

√
EG sinχ = W0,

√
EG cosχ = −(GΦ0 + AW0). (190)

These equations give explicitly the turn-by-turn motion near the stable
fixed point.
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16.4 Synchrotron Oscillation Tune and Period

The synchrotron tune is defined to be

Qs =
|ψ|
2π
. (191)

The synchrotron oscillation period is then

Ps =
Ts

Qs
. (192)

For sufficiently small akT 2
s we have

ψ = −Ts

√
ak (193)

which gives

Qs =
Ts

2π

√
ak, Ps =

2π√
ak
. (194)

For the case

F (φ) =

(

eQVG

2πh

)

sinφ (195)

we have stable fixed point phase φs = 0 (below transition) and

ak = −eQVG

2πh

(

h2ω2
sηs

β2
sEs

)

= −eQVG

2πh

(

h2c2ηs

R2
sEs

)

. (196)

16.5 Unstable Fixed Point

For all of the above work we have assumed that k < 0 below transition and
k > 0 above transition. If instead we assume that k > 0 below transition
and k < 0 above transition then

ak < 0 (197)

and we see from (140) that the trace of M is greater than 2. One then
finds that a particle launched close to the fixed point will not stay close to
the fixed point. The fixed point is then said to be unstable.

We again have conserved quadratic form (159) which we can write as

Φ2 − (iAΦ + iBW )2 = EB. (198)
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But now A, B, and E are pure imaginary numbers which means that iA,
iB, and EB are all real. Equation (198) therefore defines a hyperbola. The
asymptotes are given by

iAΦ + iBW = ±Φ (199)

which we can write as

W =
−iA± 1

iB Φ. (200)

For a particle on either of the asymptotes we have E = 0. Since E is a
conserved quantity, the particle stays on the asymptote.

Again following Courant and Snyder [8] we can write

M = CI + SJ (201)

where

I =

(

1 0
0 1

)

, J =

(

A B
−G −A

)

(202)

and
J2 = −I. (203)

Here C and S are given by (142) and since C > 1, we can find real ψ such
that

C = coshψ, S = i sinhψ. (204)

We then have
M = I coshψ + iJ sinhψ (205)

and

{I coshψ + iJ sinhψ} {I coshχ+ iJ sinhχ}
= I cosh(ψ + χ) + iJ sinh(ψ + χ). (206)

It then follows that

Mn = I coshnψ + iJ sinhnψ (207)

and

Mn =

(

cosh nψ + iA sinhnψ iB sinhnψ
−iG sinhnψ cosh nψ − iA sinhnψ

)

. (208)

This gives the turn-by-turn motion near the unstable fixed point.
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Figure 1: Four bunches of helions in harmonic 8 buckets on the AGS injection
porch. The harmonic 8 frequency is 8fs = 2.51 MHz. The RF voltage is
VC = 40 kV. The black rectangle is the border of the uniform distribution
used to make the bunches. The longitudinal emittance of the distribution is
0.80 eV s per nucleon. One can see by inspection that the emittance of the
4 bunches is close to that of the initial distribution. This gives an emittance
of 0.2 eV s per nucleon per bunch. The horizontal axis is the phase φ in
degrees. The vertical axis is W in units of eV s.
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Figure 2: RF voltages for the standard 4 to 1 merge. Here the black, red,
and blue curves are the harmonic 2 = 1h, 4 = 2h, and 8 = 4h voltages
respectively. These are given by the formulae of Section 10 with h set equal
to 2. Here the harmonic 8, 4, and 2 voltages are VC = 40 kV, VK = 20
kV, and VL = 20 kV respectively. The times TK and TL are 80 and 160 ms
respectively.
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Figure 3: Plots of the “potential” U(φu) − U(φ) at various times during
the standard 4 to 1 merge. Here U(φu) and U(φ) are defined in Sections 8
and 10. The black, magenta, blue, orange, and green curves are U(φu)−U(φ)
at times 0, 40, 80, 120, and 160 ms respectively. The local minima of the
curves correspond to stable fixed points. The local maxima correspond to
unstable fixed points.
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Figure 4: Halfway through the 4 to 2 merge of the bunches in Figure 1.
This is at time 40 ms in Figure 2 and corresponds to the magenta curve in
Figure 3. The horizontal axis is the phase φ in degrees. The vertical axis
is W in units of eV s.
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Figure 5: Completion of the 4 to 2 merge. This is at time 80 ms in Figure 2

and corresponds to the blue curve in Figure 3. The horizontal axis is the
phase φ in degrees. The vertical axis is W in units of eV s.
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Figure 6: Halfway through the 2 to 1 merge of the bunches in Figure 5.
This is at time 120 ms in Figure 2 and corresponds to the orange curve in
Figure 3. The horizontal axis is the phase φ in degrees. The vertical axis
is W in units of eV s.
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Figure 7: Completion of the 2 to 1 merge. This is at time 160 ms in Figure 2

and corresponds to the green curve in Figure 3. One can see by inspection
(of this and the previous figures) that the emittance of the bunch is close to
that (0.80 eV s per nucleon) of the initial distribution of unbunched beam.
The bunch is easily held in the harmonic 2 bucket. The horizontal axis is
the phase φ in degrees. The vertical axis is W in units of eV s.
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Figure 8: Six bunches of helions in harmonic 12 buckets on the AGS injection
porch. The harmonic 12 frequency is 12fs = 3.765 MHz. The voltage is
VC = 47 kV. The black rectangle is the border of the uniform distribution
used to make the bunches. The longitudinal emittance of the distribution is
1.20 eV s per nucleon. One can see by inspection that the emittance of the
6 bunches is close to that of the initial distribution. This gives an emittance
of 0.2 eV s per nucleon per bunch. In practice the two outer buckets are left
unoccupied to provide time for the injection kicker pulse. The horizontal
axis is the phase φ in degrees. The vertical axis is W in units of eV s.
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Figure 9: RF voltages for the alternative 4 to 1 merge. Here the black, red,
and blue curves are the harmonic 2 = 1h, 4 = 2h, and 12 = 6h voltages
respectively. These are given by the formulae of Section 11 with h set equal
to 2. Here the harmonic 12, 4, and 2 voltages are VC = 47 kV, VK = 22
kV, and VL = 22 kV respectively. The times TK and TL are 30 and 60
ms respectively. The parameter F has been set equal to 0.95. This setting
keeps the inner 4 bunches separated from the outer 2 during the merging
process and minimizes the gross emittance of the final merged bunch.
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Figure 10: Plots of the “potential” U(φu) − U(φ) at various times during
the alternate 4 to 1 merge. Here U(φu) and U(φ) are defined in Sections 8
and 11. The black, magenta, blue, orange, and green curves are U(φu)−U(φ)
at times 0, 15, 30, 45, and 60 ms respectively. The local minima of the curves
correspond to stable fixed points. The local maxima correspond to unstable
fixed points.
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Figure 11: Halfway through the 4 to 2 merge of the bunches in Figure 8.
This is at time 15 ms in Figure 9 and corresponds to the magenta curve
in Figure 10. Note that the brown separatrix keeps the inner 4 bunches
separated from the outer 2. The two outer bunches (which are not present
in practice) have started to form a halo around the inner 4. The horizontal
axis is the phase φ in degrees. The vertical axis is W in units of eV s.
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Figure 12: Completion of the 4 to 2 merge. This is at time 30 ms in Figure 9

and corresponds to the blue curve in Figure 10. Note again that the brown
separatrix keeps the inner 4 bunches separated from the outer 2. The two
outer bunches (which are not present in practice) have formed a halo around
the inner 4. The horizontal axis is the phase φ in degrees. The vertical axis
is W in units of eV s.
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Figure 13: Halfway through the 2 to 1 merge of the bunches in Figure 12.
This is at time 45 ms in Figure 9 and corresponds to the orange curve in
Figure 10. The horizontal axis is the phase φ in degrees. The vertical axis
is W in units of eV s.
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Figure 14: Completion of the 2 to 1 merge. This is at time 60 ms in Figure 9

and corresponds to the green curve in Figure 10. One can see by inspection
(of this and the previous figures) that the emittance of the merged bunch
is close to that (0.80 eV s per nucleon) of the 4 inner bunches of the initial
distribution of bunched beam. The bunch is easily held in the harmonic 2
bucket. (The halo, formed by the 2 outer bunches of the initial distribution
of bunched beam, is not present in practice.) The horizontal axis is the
phase φ in degrees. The vertical axis is W in units of eV s. Comparing with
Figure 7 one sees that alternative 4 to 1 merge produces a merged bunch
of the same size and quality as the standard 4 to 1 merge.
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Figure 15: Six bunches of helions in harmonic 12 buckets on the AGS in-
jection porch. The harmonic 12 frequency is 12fs = 3.765 MHz. The RF
voltage is VC = 47 kV. The black rectangle is the border of the uniform
distribution used to make the bunches. The longitudinal emittance of the
distribution is 1.20 eV s per nucleon. One can see by inspection that the
emittance of the 6 bunches is close to that of the initial distribution. This
gives an emittance of 0.2 eV s per nucleon per bunch. The horizontal axis is
the phase φ in degrees. The vertical axis is W in units of eV s.
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Figure 16: RF voltages for the 6 to 1 merge. Here the black, red, green, and
blue curves are the harmonic 2 = 1h, 4 = 2h, 6 = 3h, and 12 = 6h voltages
respectively. These are given by the formulae of Section 12 with h set equal
to 2. Here the harmonic 12 voltage VC = 47 kV. The harmonic 6 voltages
VM = 22 kV, VM1 = 11 kV, and VM2 = 1.0 kV. The harmonic 4 voltages
VK1 = 16 kV and VK2 = 9 kV. The harmonic 2 voltage VL1 = 11 kV. The
times TK , TL1, TL2, and TF are 30, 60, 90, and 120 ms respectively. The 6
to 3 merge takes place over the time interval 0 ≤ T ≤ 30 ms. The 3 to 1
merge takes place over the interval 30 ≤ T ≤ 120 ms.
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Figure 17: Magnified view of Figure 16 showing the RF voltages for the 3
to 1 portion of the 6 to 1 merge.

45



-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
Phase (degrees)

-5000

-4000

-3000

-2000

-1000

0

Figure 18: Plots of the “potential” U(φu) − U(φ) at various times during
the 6 to 1 merge. Here U(φu) and U(φ) are defined in Sections 8 and 12.
The black, magenta, blue, brown, orange, red, violet, and green curves are
U(φu) − U(φ) at times 0, 15, 30, 45, 60, 75, 90, and 120 ms respectively.
The local minima of the curves correspond to stable fixed points. The local
maxima correspond to unstable fixed points.
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Figure 19: Plots of the “potential” U(φu) − U(φ) at various times during
the 3 to 1 portion of 6 to 1 merge. Here U(φu) and U(φ) are defined in
Sections 8 and 12. The blue, brown, orange, red, violet, and green curves
are U(φu) − U(φ) at times 30, 45, 60, 75, 90, and 120 ms respectively. The
local minima of the curves correspond to stable fixed points. The local
maxima correspond to unstable fixed points.
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Figure 20: Halfway through the 6 to 3 merge of the bunches in Figure 15.
This is at time 15 ms in Figure 16 and corresponds to the magenta curve
in Figure 18. The horizontal axis is the phase φ in degrees. The vertical
axis is W in units of eV s.
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Figure 21: Completion of the 6 to 3 merge. This is at time 30 ms in
Figure 16 and corresponds to the blue curve in Figure 18. The horizontal
axis is the phase φ in degrees. The vertical axis is W in units of eV s.
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Figure 22: One sixth of the way through the 3 to 1 merge of the bunches
in Figure 21. This is at time 45 ms in Figure 16 and corresponds to the
brown curve in Figure 18. The bunches are kept separated by the brown
separatrix. The horizontal axis is the phase φ in degrees. The vertical axis
is W in units of eV s.
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Figure 23: One third of the way through the 3 to 1 merge of the bunches
in Figure 21. This is at time 60 ms in Figure 16 and corresponds to the
orange curve in Figure 18. The bunches are nearly touching but are still in
separate buckets. The horizontal axis is the phase φ in degrees. The vertical
axis is W in units of eV s.
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Figure 24: Halfway through the 3 to 1 merge of the bunches in Figure 21.
This is at time 75 ms in Figure 16 and corresponds to the red curve in
Figure 18. Here the bunches have started to mix with one another. The
horizontal axis is the phase φ in degrees. The vertical axis is W in units of
eV s.

52



-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
-3

-2

-1

0

1

2

3

Figure 25: Two thirds of the way through the 3 to 1 merge of the bunches
in Figure 21. This is at time 90 ms in Figure 16 and corresponds to the
violet curve in Figure 18. The bunches continue to mix and merge. The
horizontal axis is the phase φ in degrees. The vertical axis is W in units of
eV s.
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Figure 26: Completion of the 3 to 1 merge of the bunches in Figure 21.
This is at time 120 ms in Figure 16 and corresponds to the green curve in
Figure 18. The horizontal axis is the phase φ in degrees. The vertical axis
is W in units of eV s.
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Figure 27: Magnified view of Figure 26 with color suppressed, showing a
tightly merged bunch. This is the final result of the 6 to 1 merge.
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Figure 28: If the 2 outer buckets in Figure 15 are left empty, then the 6
to 1 merge becomes another alternative scheme for merging 4 bunches into
1. In this case, however, the phase space of the 2 outer buckets mixes with
the 4 inner bunches and dilutes the gross emittance. One ends up with the
bunch shown above. (This was obtained by simply turning off the black and
brown points in Figure 26.) The gross emittance of the bunch is 6/4 times
larger than that obtained with the alternative 4 to 1 scheme of Section 14.
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Figure 29: Magnified view of Figure 28 with color suppressed, showing the
dilution of the gross emittance.
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